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ABSTRACT: We use finite elements and the full-Newton iteration method to solve the steady, two-dimensional 
flow of a Newtonian planar film issuing from a slit under a pressure difference, in the presence of gravity and 
surface tension. The simulated film shapes agree with available experimental data within the range of the 
experimental error. The numerical calculations show that the shape of the film depends strongly on the imposed 
pressure difference, inertia and gravity, and is rather insensitive to surface tension. 
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1. INTRODUCTION 

The extrusion of two-dimensional or annular 
sheets is important in many industrial applications, 
such as coating processes, film blowing, 
atomization, and paper manufacturing, and has 
been the subject of experimental, theoretical, and 
numerical studies (see De Luca (1999), Roche 
et al. (2006), Clanet (2007) and references 
therein). Finnicum, Weinstein and Ruschak (1993) 
studied theoretically and experimentally the effect 
of applied pressure on a two-dimensional liquid 
curtain issuing from a slot and falling under the 
influence of gravity. They obtained an 
approximate equation for the location of the 
curtain which, in addition to gravity and the 
applied pressure, also takes into account the 
surface tension. Their theoretical model is based 
on the assumption that the thickness of the curtain 
varies very slowly as it falls vertically, i.e., it is 
nearly one-dimensional. Their theoretical 
predictions involving an experimentally 
determined constant are in agreement with their 
experimental results. 
The objectives of the present work are: (a) to 
solve numerically the steady, two-dimensional 
flow of a planar Newtonian curtain issuing from a 
slit and under a pressure difference, taking into 
account gravity and surface tension effects; and (b) 
to make comparisons with the experimental film 
shapes provided by Finnicum, Weinstein and 
Ruschak (1993). The finite element method with 
the full-Newton iteration technique for the 
calculation of the unknown positions of the two 
free surfaces of the film is well established and is 

described elsewhere (Georgiou, Papanastasiou 
and Wilkes, 1988; Housiadas, Georgiou and 
Tsamopoulos, 2000; Georgiou, 2003). 
In Section 2, the governing equations and the 
boundary conditions of the flow are presented, 
and an outline of the finite element method used 
in the simulations is given. In Section 3, the 
numerical results are presented and discussed. 
The predicted shapes of the film agree only 
qualitatively with the experimental ones provided 
by Finnicum, Weinstein and Ruschak (1993). 
Some explanations for the differences between 
simulations and experiments are provided. Our 
conclusions are summarized in Section 4. 

2. GOVERNING EQUATIONS 

The geometry of the flow is depicted in Fig. 1a. 
The flow is assumed to be steady, incompressible, 
isothermal, and Newtonian. The governing 
equations are nondimensionalized by scaling 
lengths by the slit width W, the velocity vector, v, 
by the average velocity U in the slit, and the 
pressure, p, and the stress tensor, τ, by μU/W, 
where μ is the constant viscosity. The resulting 
dimensionless forms of the continuity and 
momentum equations are: 

0∇⋅ =v  (1) 

and 

Re p St⋅∇ = −∇ +∇ ⋅ +v v τ i  (2) 

where 
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Re UWρ
μ

≡  (3) 

and 
2gWSt

U
ρ
μ

≡  (4) 

are the Reynolds and Stokes numbers, 
respectively, ρ is the density, g is the gravitational 
acceleration, and i denotes the unit vector in the  
x-direction (Fig. 1a). 
The boundary conditions of the flow are shown in 
Fig. 1b. At the inlet plane, taken at a distance L1 
upstream the die exit, the flow is assumed to be 
fully developed, i.e., vx is given by the standard 
Poiseuille profile 6(y –y2) and vy=0. Along the 
solid walls, both the velocity components vanish 
(i.e., no slip is assumed). At the outlet plane, 
taken at a distance L2 downstream from the die 
exit, the flow is assumed to be approximately 
uniform, and, thus, 

0xx xxT p τ= − + =    and   0yv =  (5) 

where Txx and τxx are respectively the total and 
viscous normal stress components. (The subscript 
xx denotes here the xx-component of a tensor.) Of 
course, the above set of boundary conditions is 
not valid when the film is deflected, i.e., when pA 

is nonzero. However, they lead to satisfactory 
results up to a certain fraction of the length L2 , 
provided that the latter is sufficiently long. Other 
combinations of boundary conditions at the outlet 
plane have also been used and are discussed 
below. 
There remain the boundary conditions along the 
two free surfaces. It is assumed that the external 
pressure pA is applied on the lower free surface 
(Fig. 1b). The kinematic condition on the two free 
surfaces, 

0⋅ =n v  (6) 

where n is the unit normal vector pointing 
outwards from a free surface, provides the two 
additional equations needed for the calculation of 
the unknown positions h1 and h2 of the lower and 
upper free surfaces, respectively (Georgiou, 
Papanastasiou and Wilkes, 1988; Housiadas, 
Georgiou and Tsamopoulos, 2000; Georgiou, 
2003). 
A momentum balance on the upper free surface 
requires the shear stress to vanish and the normal 
stress in the liquid to balance any capillary 
pressure, 

2H
Ca

⋅ = −n T n  (7) 

 

 
Fig. 1 Geometry and boundary conditions of the flow of a two-dimensional curtain issuing from a slit under pressure.
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In the above equation, 

( )Tp p= − + = − +∇ + ∇T I τ I v v  (8) 

is the total stress tensor, I is the unit tensor, Ca is 
the capillary number, defined by 

UCa μ
σ

≡  (9) 

where σ denotes the surface tension, and 2H is the 
mean curvature of the free surface, given by 

2 3/ 22
(1 )

hH
h
′′

− =
′+

 (10) 

where h′  and h′′  are respectively the first and 
second derivative of h(x) with respect to x. 
Similar expressions hold for the lower free 
surface, where, however, the external pressure pA 
must be taken into account, i.e., 

2
A

Hp
Ca

⋅ = − −n T n n  (11) 

The above governing equations and boundary 
conditions have been solved using finite elements. 
The Newton method has been employed in order 
to solve the resulting nonlinear system of the 
discretized equations. In other words, the five 
unknowns, vx , vy , p, h1 , and h2 , are calculated 
simultaneously. The numerical method is 
discussed elsewhere (Georgiou, Papanastasiou 
and Wilkes, 1988; Housiadas, Georgiou and 
Tsamopoulos, 2000; Georgiou, 2003). 
 

Table 1 Data for some of the meshes used in the 
present work. 

Mesh L2 Nx Ny Number of 
elements 

Number of 
unknowns

1 
2 
3 
4 

1600 
1000 
1000 
 600 

 317 
 774 
1359 
1359 

10 
10 
10 
10 

 3170 
 7740 
 13590 
 13590 

 31311 
 76554 
 134469 
 134469 

 

We used meshes of different lengths and degrees 
of refinement to investigate the robustness of the 
boundary condition at the outflow plane. In 
Table 1, useful data for some of the meshes used 
in the calculations are tabulated. Nx and Ny denote 
the numbers of elements in the x- and y-direction, 
respectively. All meshes were graded, with the 
element dimensions becoming progressively 
smaller towards the exit plane and the walls. As 
discussed in Section 3, the method diverges above 
a critical value of pA which depends on the 
Reynolds, Stokes and capillary numbers. In an 

attempt to extend the numerical calculations to 
higher values of pA , we also tried to apply the so-
called free outflow boundary condition 
(Malamataris and Papanastasiou, 1991; 
Papanastasiou, Malamataris and Ellwood, 1992). 
Two different combinations have been considered. 
In the first one, both the stress components at the 
outflow plane were free: 

2 x
xx

vT p
x

∂= − +
∂

   and   yx
xy

vvT
y x

∂∂= +
∂ ∂

 (12) 

In the second combination only Txy was free, that 
is 

0xxT =    and   yx
xy

vvT
y x

∂∂= +
∂ ∂

 (13) 

The results obtained in both cases are essentially 
the same as those obtained with boundary 
conditions (5), except in a small region near x=L2 . 

3. RESULTS AND DISCUSSION 

The values of all the dimensionless flow 
parameters in the two experiments of Finnicum, 
Weinstein and Ruschak (1993) are tabulated in 
Table 2. We first obtained results for the case of 
zero applied pressure (pA=0), in order to get some 
initial information about the behavior of the 
solution and test the convergence of the numerical 
solution with mesh refinement. When pA=0, the 
flow is, of course, reduced to the planar extrudate-
swell problem and the two free surfaces are 
symmetric about the midplane of the slit. L1 was 
taken equal to 5, in all runs. In Fig. 2, we plot the 
calculated upper free surfaces with Meshes 1 and 
2 for (a) Re=St=0, (b) Re=12.1, St=0, and (c) 
Re=12.1, St=0.063, with zero surface tension 
(Ca=∞). A zoom of Fig. 2 near the exit is 
provided in Fig. 3. It is clear that the predictions 
with the two meshes are essentially the same. 
Note also that in case (a) the elevation of the 
upper free surface far downstream is 1.093. This 
value corresponds to an extrudate-swell ratio of 
1.186 which agrees well with previous studies 
(Georgiou and Boudouvis, 1999), and indicates 
that the mesh refinement near the die exit is 
satisfactory. The effect of the gravitational force 
is important and results in considerable reduction 
of the film thickness, in agreement with previous 
work (Georgiou, Papanastasiou and Wilkes, 
1988). The calculated upper free surfaces for the 
dimensionless numbers corresponding to the two 
experiments of Finnicum, Weinstein and Ruschak 
(1993) are plotted in Fig. 4. Again the applied 
external pressure is taken to be zero. 
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Table 2 Values of the dimensionless parameters in the 
two experiments of Finnicum, Weinstein and 
Ruschak (1993). 

Experiment Re St Ca pA×10 3 

1 12.1 0.063 0.331 2.21 
6.88 
18.7 

2 5.97 0.127 0.165 2.97 
8.89 
18.8 

 

 
Fig. 2 Effect of the Reynolds and Stokes numbers on 

the upper free surface with L2=1000 (solid 
line) and 1600 (dashed line); no pressure 
difference.

 
 

Fig. 3 Zoom of Fig. 2 near the die exit. Fig. 4 Calculated upper free surfaces in the absence of 
pressure difference for two sets of experiments 
by Finnicum, Weinstein and Ruschak (1993). 

 

Re=12.1 ,  St=0063, Ca=0.331

Re=5.97, St=0.127, Ca=0.165

Re=12.1 , St=0, Ca=∞

Re=12.1 ,  St=0063, Ca=∞ 

Re=St=0, Ca=∞ 

Re=St=0, Ca=∞ 

Re=12.1 ,  St=0, Ca=∞ 

Re=12.1 ,  St=0063, Ca=∞ 
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In Fig. 5, we plot the film shapes calculated with 
Mesh 1 for different values of pA and with the 
remaining parameters equal to those of the first 
experiment of Finnicum, Weinstein and Ruschak 
(1993). Beyond a critical distance from the die 
exit, which is reduced as pA is increased, the 
calculated free surfaces are tainted by oscillations 
at rather low values of pA , and the method 
diverges at higher applied pressures. The 
oscillations are entirely due to the poor mesh 
refinement and are eliminated by using the more 
refined and shorter Mesh 3, as shown in Fig. 6. 
Nevertheless, it has not been possible to extend 
the calculations to values of pA greater than 0.01. 
As explained below, the divergence of the method 
when the liquid film is highly curved is due to the 
limitations of the spine technique used in 
constructing the finite element mesh rather than 
inadequate mesh refinement. Comparison of 
Figs. 5 and 6 shows that, apart from the 
oscillations, the predicted shapes of the liquid 
curtain with Meshes 1 and 3 (L2=1600 and 1000, 
respectively) are the same. An interesting 
observation is that the film thickness varies 
significantly in the direction of the flow, in 
contrast to the assumption made in the analysis of 
Finnicum, Weinstein and Ruschak (1993). Our 
calculations with different values of Ca showed 
that, for the Reynolds and Stokes numbers of 
interest, the effect of surface tension on the shape 
of the film is negligible. 
 

 
Fig. 5 Films obtained for different values of pA with 

Mesh 1; Re=12.1, St=0.063 and Ca=0.331. 

 
Fig. 6 Films obtained for different values of pA with 

Mesh 3; Re=12.1, St=0.063 and Ca=0.331. 

Finally, in Figs. 7 and 8, we compare the 
numerically predicted film shapes with the 
experimental data of Finnicum, Weinstein and 
Ruschak (1993). There is only qualitative 
agreement between simulation and experiment. 
The deviations of the film from the x-axis seem to 
be underestimated in the calculations and the 
discrepancies from the experiment increase with 
pA . However, the observed differences are within 
the range of the experimental error. As pointed 
out by Finnicum, Weinstein and Ruschak (1993), 
the measurement precision of the 
micromanometers used in the experiments is 
±25 dyne/cm2, whereas the highest experimental 
pressure difference is 7.6 dyne/cm2. 
 
 

 

Fig. 7 Comparisons with experimental data of 
Finnicum, Weinstein and Ruschak (1993) for 
Re=12.1, St=0.063, Ca=0.331 and 
pA=0.00212 (◊) and 0.00689 (+).  
The experimental data for pA=0.0187 ( ) are 
also shown. 

0.00212

0.01

0.00689

10 -3

p
A =10 -4

0.00689

0.00212

10 -3

p
A =10 -4
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Fig. 8 Comparisons with experimental data of 
Finnicum, Weinstein and Ruschak (1993) for 
Re=5.97, St=0.127, Ca=0.165 and 
pA=0.00297 (◊) and 0.0089 (+).  
The experimental data for pA=0.0188 ( ) are 
also shown. 

The divergence of the method at high values of pA 
may be attributed to the distortion of the finite 
element mesh. Note that the mesh is updated at 
each iteration of the Newton method according to 
the newly found positions of the lower and upper 
free surfaces, using the spine technique (Georgiou, 
Papanastasiou and Wilkes, 1988; Georgiou, 2003). 
The two sides of the rectangular finite elements 
are vertical, and thus the more the liquid curtain 
deviates from the x-axis, the more distorted the 
elements become. A different approach, such as 
the quasi-elliptic mesh-generating scheme for 
moving boundary and free-surface problems 
developed by Dimakopoulos and Tsamopoulos 
(2007), must, therefore, be employed in order to 
extend the range of convergence of the method. 

4. CONCLUSIONS 

We have used finite elements to solve the steady, 
two-dimensional flow of a Newtonian planar film, 
under a pressure difference, gravity and surface 
tension. The simulated film shapes agree 
qualitatively with experiments. However, the 
differences between simulations and experiments 
are within the range of the experimental error. 
Our simulations reveal that, in the range of 
Reynolds and Stokes numbers examined, the film 
thickness is reduced significantly in the direction 
of the flow and the effect of the surface tension on 
the shape of the film is negligible. The proposed 
method is not applicable for high values of the 
applied pressure difference, in which case special 
meshing techniques are required for the 
calculation of the position of the film which 
deviates significantly from the plane of the slit. 
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