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a b s t r a c t

The laminar flow of inelastic non-Newtonian fluids, obeying the power-law model, through a planar sud-

den expansion with a 1:3 expansion ratio was investigated numerically using a finite volume method. A

broad range of power-law indices in the range 0.2 6 n 6 4 was considered. Shear-thinning, Newtonian

and shear-thickening fluids are analyzed, with particular emphasis on the flow patterns and bifurcation

phenomenon occurring at high Reynolds number laminar flows. The effect of the generalized Reynolds

number (based on power-law index, n, and the inflow channel height, h) on the main vortex character-

istics and Couette correction are examined in detail in the range 0.01 6 Regen 6 600. Values for the critical

generalized Reynolds number for the onset of steady flow asymmetry and the appearance of a third main

vortex are also included. We found that the shear-thinning behavior increases the critical Regen, while

shear-thickening has the opposite effect. Comparison with available literature and with predictions using

a commercial software (Fluent� 6.3.26) are also presented and discussed. It was found that both results

are in good agreement, and that our code is able to achieve converged solutions for a broad range of flow

conditions, providing new benchmark quality data.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

WhenaNewtonianfluidflowsat low tomoderateReynoldsnum-

ber in a 2D planar channel and encounters a sudden expansion, flow

separation occurs resulting in a pair of symmetric recirculating ed-

dies along the downstreamwalls. The vortices become asymmetric,

but steady,when the Reynolds number (Re) is increased above a cer-

tain critical value. With a further increase in Re a third vortex is

formed downstream of the smallest of the two main vortices [1]. A

bifurcation phenomenon, consisting of a transition from symmetric

to asymmetric flow, occurs above a critical Reynolds number that

depends on the expansion ratio of the planar expansion and the rhe-

ology of the fluid. The expansion ratio for a planar geometry is de-

fined as the ratio of the height of the outlet channel (H) to the

height of the inlet channel (h) and henceforth is denoted as ER.

Since the early 1970s there has been a number of experimental

studies devoted to the subject of flow bifurcation in channels with

a sudden planar expansion. Using laser Doppler anemometry

(LDA)Durst et al. [1] examined theNewtonianfluid flow in a 1:3 pla-

nar symmetric expansion. In their experiments, two symmetric vor-

tices along the walls of the expansion were observed at Re = 56. At

Re = 114, flow bifurcationwas already observedwith vortices of un-

equal size forming at both salient corners. The experimental mea-

surements of Cherdron et al. [2] also relied on LDA, but were more

comprehensive and explored the flow patterns and instabilities in

ducts with symmetric expansions, investigating also the effect of

the aspect ratio of the tested geometries. The more recent experi-

mental and numerical study of Fearn et al. [3] in a 1:3 planar expan-

sion showed a similar flowbifurcation at a Reynolds number of 40.5.

In contrast to the few experimental investigations, there is a large

number of numerical works available in the literature and one of

its advantages is that it is possible to investigate truly 2D flows. In

his numerical investigation on planar expansion flows with various

expansion ratios, Drikakis [4] found that the critical Reynolds num-

ber for the symmetry-breaking bifurcation is reduced when the

expansion ratio is increased. Battaglia and Papadopoulos [5] studied

the influence of three-dimensional effects on the bifurcation charac-

teristics at low Reynolds number flows in rectangular sudden

expansions, in the range of 150 6 Re 6 600. All these experimental

and numerical studies were concerned with Newtonian fluids.

In many realistic situations the fluids flowing through flow de-

vices are non-Newtonian and show complex rheological behavior.
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Specifically, they can exhibit shear-thinning or shear-thickening

viscosity depending on the type of fluid and thus it is relevant to

investigate the non-Newtonian fluid flow in planar expansions

starting with simple rheological models in order to independently

assess the impact of specific rheological features upon the flow

characteristics. If the non-Newtonian solutions are not too concen-

trated the flows tend to have a high Reynolds number, even leading

to turbulent flow. Since the sudden expansion is a well-known

geometry for studies of laminar flow instabilities at high Reynolds

numbers, in recent years it has naturally started to attract the

attention of researchers in the field of non-Newtonian fluid

mechanics wishing to investigate the complex interaction between

these bifurcations and fluid rheology, namely viscoelasticity. In

non-Newtonian fluid mechanics there are other traditional bench-

mark flows, such as the 4:1 sudden contraction and the flow

around a confined cylinder under 50% blockage ratio, but these

have been devised to address the numerical convergence difficul-

ties in creeping flows of viscoelastic fluids. As we show below,

the investigations of power law fluids carried out so far in a 1:3

planar expansion provide an incomplete picture, which we aim

to address and complete in this work. It is to be noted that flow

of blood (which is non-Newtonian) in arterial stenoses and abdom-

inal aneurysms are relevant to flow in expansions.

The non-Newtonian power-law model is the simplest model for

a purely viscous fluid that can represent the behavior of shear-

shinning, shear-thickening and Newtonian fluids by varying the

parameter of the model, n, known as the power-law index. Conse-

quently, it comes as no surprise that several numerical studies in

the past were performed using the power-law viscosity model to

study the flow of shear-thinning and shear-thickening fluids in pla-

nar sudden expansions of various ER.

Mishra and Jayaraman [6] examined numerically and experi-

mentally the asymmetric steady flow patterns of shear-thinning

fluids through planar sudden expansions with a large expansion

ratio, ER = 16. Manica and De Bortoli [7] studied numerically the

flow of power-law fluids in a 1:3 planar sudden expansion for

n = 0.5, 1 and 1.5. They presented the vortex characteristics for

these values of n and for 30 6 Re 6 125, and observed that the flow

bifurcation for shear-thinning fluids occurs at a critical Reynolds

number higher than for Newtonian fluids, and that shear-thicken-

ing fluids exhibited the lowest critical Reynolds number. Consider-

ing again purely viscous fluids represented by the power-law and

Casson models, Neofytou [8] analyzed the transition from symmet-

ric to asymmetric flow of power-law fluids with power-law indices

in the range 0.3 6 n 6 3 in a 1:2 planar sudden expansion and also

studied the effect of Reynolds number on the flow patterns.

Ternik et al. [9] studied the flow through a 1:3 planar symmet-

ric expansion of non-Newtonian fluids with shear-thickening

behavior using the quadratic and power-law viscosity models.

They compared the results of both models with those of Newtonian

fluids and concluded that the occurrence of flow asymmetry is

greatly affected by the shear-thickening behavior. Later, Ternik

[10], computed the flow of shear-thinning fluids with power-law

indices n = 0.6 and 0.8 in a 1:3 planar sudden expansion. After

the first bifurcation, from a symmetric to asymmetric flow, a sec-

ond flow bifurcation, marking the appearance of a third vortex,

was predicted as the generalized Reynolds number was further in-

creased, with shear-thinning delaying the onset of this second

bifurcation. More recently, Ternik [11] revisited the generalized

Newtonian flow in a two-dimensional 1:3 sudden expansion using

the open source OpenFOAM CFD software. The fluid was again rep-

resented by the power-law model with power-law index in the

range 0.6 6 n 6 1.4 and the simulations were performed for gener-

alized Reynolds numbers in the range 10�4
6 Regen 6 10 with the

emphasis on the analysis of low Reynolds number flows, below

the critical conditions for the onset of the pitchfork bifurcation.

Small recirculations, typical of creeping flow (called Moffatt vorti-

ces [12]) were observed for all fluids with shear-thinning behavior

reducing the size and intensity of the secondary flow.

Numerical simulations of the flow of power-law fluids in a pla-

nar 1:3 sudden expansion using commercial or open source codes

were attempted by several authors. It was found that the solution

convergence is often a major limitation when utilizing these codes

especially when the non-Newtonian behavior is enhanced (large or

small n values for power-law model). For instance, Poole and Rid-

ley [13] used Fluent� software to numerically calculate the devel-

opment-length required to attain fully developed laminar pipe

flow of inelastic power-law fluids and were unable to attain a con-

verged solution for n < 0.4. Ternik [10] reported that the iterative

convergence had become increasingly time consuming with a

reduction in power-law index, and for n < 0.6 no converged solu-

tions were obtained using the OpenFOAM software.

From the aforementioned discussion, it is clear that a compre-

hensive investigation on the flow of power-law fluids in planar sud-

den expansions is still lacking for power-law indices below n = 0.5

and above n = 1.5 and this is clearly seen in Fig. 1. This work aims

to fill this gap in the literature using an in-house finite-volume code

[14]. We present a systematic study of the flow in a 1:3 sudden pla-

nar expansion for a wide range of power-law indices, 0.2 6 n 6 4,

and generalized Reynolds numbers, 0.01 6 Regen 6 600, including

data for the Couette correction. The critical generalized Reynolds

number at which symmetry breaking flow bifurcation occurs is re-

ported and the flow structures in the expansion are visualized using

streamline plots. We also compare the results obtainedwith our in-

house code with those calculated using the Fluent� 6.3.26 software

using exactly the same meshes and flow conditions. The remainder

of this paper is organized as follows: in Section 2 we present the

mathematical formulation of the problem, and in Section 3 we dis-

cuss the numerical method along with the code validation. The re-

sults are presented and discussed in Section 4, and Section 5

summarizes the main conclusions.

2. Mathematical formulation

2.1. Problem description

The problem under study is illustrated schematically in Fig. 2a,

which also includes the nomenclature used to refer to the various

characteristic lengths of the vortices. A 2D, long, planar channel of

width h has a sudden expansion to a second channel of width H,

Fig. 1. Graphical illustration of the range of generalised Reynolds numbers (Regen)

and power-law index (n) used in various studies in the archival literature. (See

above-mentioned references for further information.)
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thus defining an expansion ratio ER = H/h = 3. The center of the

co-ordinate axes system lies at the center of the geometry expan-

sion plane. The downstream channel has a length LE = 200h and

the upstream channel length is LC = 50h. The inlet of the compu-

tational domain is located sufficiently far from the expansion

plane in order for the inlet fluid flow to become fully developed

well before the expansion. Similarly, the outlet of the channel is

located far from the region of interest where the separating flow

regions occur.

2.2. Governing equations

The flow is considered to be laminar, steady and incompressible

and the fluid in the channel flows in the positive x-direction. This

2D flow is governed by the continuity equation,

@u

@x
þ @v

@y
¼ 0 ð1Þ

and the momentum equations:

q
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where u and v are the velocity components in the x and y directions,

respectively, p is the pressure and q is the density of the fluid. The

power-law model is used, and the extra-stress tensor is calculated

as

sij ¼ 2gð _cÞD ð4Þ

where Dij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �

is the rate of deformation tensor (with ui = u

or v and xi = x or y for i = 1 and 2, respectively), and the viscosity

function is calculated as

gð _cÞ ¼ K _c
n�1 ð5Þ

with K being the consistency index and n the power-law index.

Here, the shear rate, _c, is related to the second invariant of the rate

of deformation tensor (D) as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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According to the definition used in previous works with power-law

fluid flows [10,11] the generalized Reynolds number used

(a)

(b)

(c)

Fig. 2. Illustration of (a) two-dimensional 1:3 sudden planar expansion geometry considered in the study and (b) blocks that were used; (c) mesh distribution near the

expansion plane (Mesh C, �2 6 x 6 6 and �1.5 6 y 6 1.5).
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throughout this paper is defined based on the upstream channel

height and bulk inlet velocity ð�uÞ as

Regen ¼ 6q�uð2�nÞh
n

K½ð4nþ 2Þ=n�n : ð7Þ

3. Numerical procedure and validation

The governing Eqs. (1)–(3) are solved using an in-house finite

volume method and employing the SIMPLEC pressure correction

algorithm formulated with the collocated variable arrangement

[14]. These equations are integrated in space and time over ele-

mentary control volumes, resulting in a set of linearized algebraic

equations. The CUBISTA high-resolution scheme [14] was used for

discretizing the convective terms in the momentum equations,

which is formally of third order accuracy. The central difference

scheme was used for the discretization of diffusive terms, while a

first-order implicit Euler scheme was used for the time derivatives

required by the time-marching procedure used to advance the

numerical solution until steady state flow is achieved. We note

that we are only interested in steady state simulations and there-

fore the order of convergence of the transient term is irrelevant

since it will vanish when steady-state is approached. The set of lin-

earized algebraic equations are solved using either a symmetric or

a bi-conjugate gradient method, respectively for pressure and

velocities [15] with preconditioning by LU factorization. Iterations

are continued until a divergence-free velocity field is obtained.

Convergence is assumed when the normalized summation of the

residuals decreased below 10�8 for all equations, which was

checked to be sufficiently low by comparing with the solution ob-

tained with the more stringent convergence criterion of 10�10.

The computational domain is mapped by block-structured

meshes and is partitioned into five blocks as shown in Fig. 2b. In

the streamwise direction the grids are stretched/compressed in

geometric progression in each block, whereas in the transverse

direction they are uniform. Grids are finer near the step of the

expansion (Fig. 2c) while they are coarser near the inlet and outlet.

In order to check the grid dependence on the results, four different

grids were used, namely meshes A, B, C and D, as detailed in Table 1

which summarizes the number of grid points (Nx,Ny), the factors

(fx, fy) and minimum size of the smallest grid point used for each

mesh (Dxmin/h,Dymin/h) in this study.

3.1. Boundary conditions

At the inlet a uniform velocity field is assumed. Since the inlet

channel is very long, the flow will be fully developed well up-

stream of the expansion plane. At the outlet, vanishing gradients

are assumed for velocity (@u/@x = @v/@x = 0) while pressure is line-

arly extrapolated from the two upstream cells. On the walls no-slip

boundary conditions are applied, u = 0, v = 0.

3.2. Validation

Analysis of the vortex characteristics obtained at various Rey-

nolds numbers (cf. Table 2) indicates that nearly grid independent

results, to within 0.2% of the refined Mesh D, could be obtained

using Mesh C for 0.6 6 n 6 1.4, increasing to just over 0.5% when

n is reduced to 0.2% and to 0.7% when n is increased to 4. As such,

the subsequent results were obtained with Mesh C, unless stated

otherwise. In order to validate the present code, extensive simula-

tions have been performed and the results are compared with

those available in the literature and with Fluent� calculations. In

the calculations using Fluent�, the convective terms were discret-

ized with the QUICK scheme [16] while the pressure-velocity

coupling was enforced using the standard PISO algorithm [17].

Table 2 presents the vortex characteristics at n = 0.2, 0.6, 1, 1.4

and 4 obtained using our numerical code, as well as those obtained

using Fluent� for three different characteristic values of the gener-

alized Reynolds numbers representing each of the three different

flow regimes. For the lower Regen considered, the flow is symmet-

ric, while the other two cases correspond to the asymmetric and

the asymmetric with third eddy regimes. The results obtained with

our code are in good agreement with those predicted using Fluent�

with a maximum percentage error of less than 6% in the coarse

mesh, and becoming more accurate as the meshes are refined.

Plots of the dependence of vortex characteristics (Xa in case of

symmetric flow, Xa and Xb for asymmetric flow and Xc and Xd in

case of asymmetric flow with a third eddy, cf. Fig. 2a for defini-

tions) with (Dxmin/h) are presented in Fig. 3 for n = 0.6 and

n = 1.4. It is clear from Fig. 3 that the solution converges to similar

values when the mesh size (Dxmin/h) gradually decreases. We note

that for low and high n values Fluent� simulations did not fully

converge to the prescribed residual tolerance, as also reported by

Poole and Ridley [13].

Figs. 4–6 compare our results for the power-law fluid flow in

the 1:3 planar sudden expansion with those available in the liter-

ature. Fig. 4 reports the recirculation length (Xa/h) and the separa-

tion point (Ya/h) obtained under creeping flow conditions

(Regen = 0.01) for 0.6 6 n 6 1.4 and compares them with those of

Ternik [11] revealing a good agreement. The variation of Xa/h and

Ya/h for generalized Reynolds numbers in the range 0.01 6 Regen
6 10 for 0.6 6 n 6 1.4, shown by lines in Fig. 5, again exhibits an

excellent agreement with the data of Ternik [11], which are repre-

sented as closed symbols. The present code has further been

validated by comparing the characteristic dimensions of vortices

(Xa, Xb, Xc and Xd, cf. Fig. 2(a)) at n = 0.6, 0.8 and 1 with those of

Ternik [10,11] and Oliveira [18]. These comparisons are shown in

the bifurcation plots of Fig. 6 and the agreement is again very good.

4. Results and discussion

In the validation section we showed the good quality of our pre-

dictions of the recirculation characteristics of the various separated

flow regions for the range of conditions available in the literature

for power-law fluids. In this section we present a comprehensive

set of new results that extend currently available predictions to a

wider range of power-law indices and Regen as follows:

Table 1

Computational domain and mesh characteristics of the 1:3 sudden planar expansion

geometry.

Mesh Block Nx � Ny fx fy Dxmin/h Dymin/h

Mesh A I 72 � 13 0.9531 1.0

II 35 � 39 1.01960 1.0

III 38 � 39 1.0000 1.0 0.08 0.08

IV 63 � 39 1.0204 1.0

V 75 � 39 1.0318 1.0

Mesh B I 144 � 25 0.9763 1.0

II 70 � 75 1.0098 1.0

III 76 � 75 1.0000 1.0 0.04 0.04

IV 126 � 75 1.0101 1.0

V 150 � 75 1.0158 1.0

Mesh C I 288 � 51 0.9881 1.0

II 140 � 153 1.0049 1.0

III 152 � 153 1.0000 1.0 0.02 0.02

IV 252 � 153 1.0051 1.0

V 300 � 153 1.0079 1.0

Mesh D I 576 � 102 0.9940 1.0

II 280 � 306 1.0024 1.0

III 304 � 306 1.0000 1.0 0.01 0.01

IV 504 � 306 1.0025 1.0

V 600 � 306 1.0039 1.0
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� Power-law index, n: 0.2, 0.4, 0.6, 0.8, 1, 1.4, 2, 3 and 4.

� Generalized Reynolds number, Regen: 0.01 6 Regen 6 600.

4.1. Flow characteristics under creeping flow conditions

Streamline plots are presented in Fig. 7 for nearly creeping flow

conditions (Regen? 0). These calculations were performed at

Regen = 0.01 and 0.2 6 n 6 4. Under negligible inertia, the flow is

always symmetric with equal sized vortices on either side of the

centerline. For compactness only half channel is shown for each

flow condition. It is clear that the recirculating eddies are small

in size and grow with the power-law index, n. This is shown more

clearly as the variation of the vortex size Xa/h as a function of

power-law index in Fig. 4a for the creeping flow case (Regen = 0.01).

When the power-law index, n, is varied from 0.2 to 1 a quasi-linear

increase in Xa/h is observed, but with a further increase in n the rise

Table 2

Mesh dependence tests and comparisons with Fluent for the same parameters at different n.

Regen = 200 Regen = 420 Regen = 600

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h

(a) n = 0.2

Present calculations

Mesh A 4.2236 4.2236 13.0889 4.6422 18.2835 5.0670

Mesh B 4.4792 4.4792 13.6316 5.0807 19.2448 5.5762

Mesh C 4.5679 4.5679 13.7484 5.2414 19.4957 5.7819

Mesh D 4.5839 4.5839 13.7659 5.2852 19.5603 5.8322

Regen = 90 Regen = 180 Regen = 360

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xc/h Xd/h

(b) n = 0.6

Present calculations

Mesh A 4.7456 4.7456 12.3070 4.1773 19.6293 5.0612 17.2218 26.6961

Mesh B 4.8000 4.8000 12.4731 4.2488 20.3754 5.2192 18.0315 27.0220

Mesh C 4.8599 4.8599 12.5133 4.2651 20.5289 5.2589 18.1721 27.1130

Mesh D 4.8652 4.8652 12.5426 4.2815 20.5426 5.2715 18.1926 27.1250

Fluent calculations

Mesh A 4.6094 4.6094 12.1364 4.0821 19.5867 4.9382 17.6233 26.2325

Mesh B 4.6993 4.6993 12.3259 4.2003 20.2350 5.1555 18.0885 26.6610

Mesh C 4.7843 4.7843 12.3935 4.2388 20.4223 5.2219 18.1769 26.8011

Mesh D 4.8448 4.8448 12.4256 4.2544 20.4649 5.2425 18.1753 26.8552

Regen = 50 Regen = 70 Regen = 120

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xc/h Xd/h

(c) n = 1

Present calculations

Mesh A 5.0633 5.0633 9.0012 3.6573 12.7426 3.9197 11.1772 16.7932

Mesh B 5.0739 5.0739 9.0291 3.6741 12.8490 3.9551 11.2838 16.8711

Mesh C 5.0824 5.0824 9.0427 3.6744 12.8674 3.9620 11.2967 16.8950

Mesh D 5.0873 5.0873 9.0495 3.6742 12.8721 3.9643 11.2647 16.9065

Fluent calculations

Mesh A 4.8497 4.8497 8.8466 3.5328 12.6328 3.7859 11.6557 17.5246

Mesh B 4.9681 4.9681 8.9479 3.6139 12.7920 3.8893 11.5264 16.6664

Mesh C 5.0361 5.0366 9.0030 3.6461 12.8426 3.9322 11.4155 16.7913

Mesh D 5.0585 5.0585 9.0011 3.6672 12.8376 3.9452 11.3332 16.8611

Regen = 20 Regen = 40 Regen = 65

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xc/h Xd/h

(d) n = 1.4

Present calculations

Mesh A 3.6438 3.6438 8.9890 3.5175 11.1289 3.5898 9.1607 17.1619

Mesh B 3.6473 3.6473 8.9963 3.5163 11.2032 3.5984 9.2285 17.1161

Mesh C 3.6519 3.6519 8.8895 3.5190 11.2023 3.6009 9.2261 17.1081

Mesh D 3.6550 3.6550 9.0006 3.5190 11.2047 3.6246 9.2315 17.1019

Fluent calculations

Mesh A 3.4387 3.4387 8.7974 3.3281 10.9914 3.4189 9.5822 16.7157

Mesh B 3.5376 3.5374 8.8890 3.4352 11.1210 3.5213 9.4434 16.8762

Mesh C 3.5970 3.5972 8.9042 3.4805 11.1744 3.5674 9.3350 17.0105

Mesh D 3.6260 3.6260 8.9742 3.5002 11.2272 3.6241 9.2814 17.0685

Regen = 1.0

Xa/h Xb/h

(e) n = 4

Present calculations

Mesh A 3.8113 3.8113

Mesh B 3.8881 3.8881

Mesh C 3.9236 3.9236

Mesh D 3.9450 3.9450
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of Xa/h progressively asymptotes to 0.796 for n > 3. A similar feature

is observed for the point of separation (Ya/h) which is plotted in

Fig. 4b. Under creeping flow conditions Ya/h linearly decreases with

an increase in n from0.2 to 1 and thereafter, asymptotically, tends to

a value of 0.54 indicating that the recirculation nearly reaches the

step of the expansion (cf. Fig. 7). For comparison, the correlations

proposed by Ternik [11] are also displayed in the Figs. 4a and

Fig. 3b showing that, as per our finding, his correlations are only va-

lid approximations in the range of 0.6 6 n 6 1.4 as recommended in

[11].We present the following correlations for Xa/h and Ya/h derived

on the basis of our more extensive numerical predictions:

Xa

h
¼ 0:382þ 0:414 tanh ð1:142n� 0:775Þ

Ya

h
¼ 1:03þ 0:49 tanhð�1:72nþ 1:13Þ

The correlations are accurate to within 1.1% and 0.9% of the

numerical predictions for Xa/h and Ya/h, respectively for the entire

range of n considered.

4.2. Vortex characteristics for non-negligible inertia

Fig. 5a shows the variation of recirculation length in the stream-

wise direction, Xa/h, with generalized Reynolds number in the

range 0.01 6 Regen 6 10, for 0.2 6 n 6 4. For reference we have also

included data from Ternik [11]. At low values of Regen, Xa/h is con-

stant for each value of n and increases with n. As inertia becomes

important Xa/h increases, with the value of Regen that marks the

onset of inertia driven growth of the recirculation progressively

decreasing as n increases. The variation with n and Regen of the sep-

aration point, Ya/h, at the step of the expansion is presented in

Fig. 5b. For shear-thinning fluids, the separation point moves away

from the sharp re-entrant corner, and hence Ya/h increases with

decreasing n at a constant value of Regen because the separated flow

region weakens as is also clear from the visualization in Fig. 7. On

the contrary, for shear-thickening fluids the separation point

moves towards the sharp corner and thus Ya/h approaches the lim-

iting value of 0.5 at large values of n. Since an increase in inertia

leads to longer and stronger recirculations, it comes as no surprise

that regardless of the value of n, increasing the Reynolds number

leads to flow separation right at the corner. Consequently, increas-

ing Regen from 0.01 to 10, results in a decrease in Ya/h for all fluids

and in particular for shear-thinning fluids. For shear-thickening

fluids the variation is smaller, since the recirculations are wider

and Ya/h is already close to 0.5, but nevertheless a reduction to

0.5 is also seen as n and Regen increase.

As already mentioned, the comparisons between our predic-

tions and those of other authors shown in Fig. 6a–b are found to

be in excellent agreement. This also includes the bifurcations ob-

served in these figures, which are explored in detail below.

The variation of recirculation length downstream of the expan-

sion with the generalized Reynolds number for the entire range

investigated numerically is presented in Fig. 8a–d for different val-

ues of the power-law index. Initially, at low generalized Reynolds
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Fig. 3. Dependence of vortex characteristics (Xa and Xd in case of symmetric flow

and asymmetric flow with a third eddy, respectively) on the smallest grid size

(Dxmin/h) corresponding to different meshes obtained with our code and Fluent: (a)

n = 0.6 and (b) n = 1.4.
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numbers, the recirculating eddies are symmetric and grow with an

increase in the Reynolds number (their lengths along the walls are

referred to as Xa and Xb as shown in Fig. 2a). When the generalized

Reynolds number reaches a critical value (Regen,cr1) one vortex be-

comes longer than the other (there is no preferred wall for this to

happen, but for the sake of understanding we will consider that

Xa > Xb). With a further increase in Regen a third eddy appears on

the side of the smaller of the two original main eddies and is lo-

cated further downstream. The critical Regen at which this third

main eddy appears is termed as the second critical Reynolds num-

ber, Regen,cr2. The distance from the step to the point where the flow

separates to form the third eddy is termed Xc and the distance from

the step to the point where the flow reattaches on the wall is

termed Xd as sketched in Fig. 2a.

For a Newtonian fluid (n = 1), the first critical Reynolds number

is Regen,cr1 = 54.5. Above this value of Regen, the longer eddy (Xa)

continues to grow in size while the smaller eddy decreases in size

(Xb) up to Regen / 80. Beyond this value of Regen, Xa continues to in-

crease and Xb starts to grow linearly with Regen, but less intensively

than the growth of Xa. At Regen = 102.2, the third eddy appears in

agreement with the results of Oliveira [18] and Ternik [10,11]. Sim-

ilar to Xa and Xb, the variations of Xc and Xd with Regen are initially

nonlinear but, then become approximately linear above a certain

value of Regen. Comparing the results of Xa, Xb, Xc and Xd for n = 1

and n = 0.8, we find in Fig. 8b that shear-thinning delays all flow

transitions. For n = 0.8 the onset of asymmetry is delayed to a

higher generalized Reynolds number of 74.1 and similarly, the

appearance of the third eddy (Regen,cr2) is also delayed to

Regen = 158.3. Further decreasing the values of power-law index,

corresponding to stronger shear-thinning, results in further de-

layed flow transitions, shifting the critical values (Regen,cr1 and

Regen,cr2) to higher values as observed in Fig. 8a and b. For example,

for n = 0.4 we obtained Regen,cr1 = 180 and Regen,cr2 = 462.

The picture for shear-thickening fluids, shown in Fig. 8c and d, is

consistent with the previous results, but also shows some signifi-

cant differences, especially for very strong shear-thickening behav-

ior (nP 3). In fact, by increasing n, the flow bifurcation is

now anticipated to lower values of Regen. The critical value,

Regen,cr1 = 54.5 found for n = 1 is reduced to Regen,cr1 = 30 for

n = 1.4. Moreover, the shape of the variation of Xa and Xb with Regen
beyond Regen,cr1 looks different from the Newtonian and shear-

thinning cases, although for n = 1.4 we still observe the initial non-

linear variation and decrease of Xb immediately above Regen,cr1, fol-

lowed by an increase. Note also that the onset of the third eddy

appears very quickly, with Regen,cr2 close to Regen,cr1. Also, and un-

like the Newtonian and shear thinning fluid cases, the size of the

third recirculation eddy increases significantly with an increase

in Regen. Increasing the power-law index further to n = 2, 3 and 4

induces flow asymmetry at even lower values of Regen and it is

interesting to note from Fig. 8d for nP 3 that Xb becomes nearly

constant and no longer increases with Regen, but instead it starts

to reduce in size above Regen,cr2. Actually, except for the size of

the third eddy, all other characteristics lengths (Xa, Xb and Xc)
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Fig. 5. Variation of the main vortex characteristics with the generalized Reynolds

number (0.01 6 Regen 6 10) at different power-law index in the range 0.2 6 n 6 4:

(a) Xa/h and (b) Ya/h. Legend in (a) is also applicable to (b).

Fig. 6. Variation of vortex size with generalized Reynolds number at n = 0.6 and 1

for the power-law fluid flow in a 1:3 planar sudden expansion and comparison with

the available literature data.
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decrease with Reynolds number above Regen,cr2. Also, the size of the

third recirculating eddy is much larger compared to other cases.

The variation of the two critical generalized Reynolds numbers,

Regen,cr1 and Regen,cr2, as a function of n are presented in Fig. 9 where

we map different flow pattern types including symmetric, asym-

metric and asymmetric with third eddy. In the figure we use differ-

ent symbols to easily demarcate different flow regimes. It is

evident in Fig. 9 that shear-thinning stabilizes the flow by raising

significantly the two critical generalized Reynolds numbers, as al-

ready pointed out, and also by increasing the difference between

the two critical points. In agreement with this, increasing the

power-law index above the Newtonian value reduces significantly

Regen,cr1 and Regen,cr2. In fact, for n = 0.4 we have Regen,cr1 = 180.4 and

Regen,cr2 = 461.3, which reduce to Regen,cr1 = 5.1 and Regen,cr2 = 5.9 for

n = 3. We present the following correlations derived on the basis of

calculated numerical data for Regen,cr1 and Regen,cr2 , which are accu-

rate to within 2% of numerical data:

Regen;cr1 ¼ 105

sinhð1:5nÞ þ
6

coshð0:5nÞ ð10Þ

Regen;cr2 ¼ 605

sinhð3nÞ þ
65

coshðnÞ ð11Þ

Fig. 7. Flow patterns obtained under creeping flow conditions (Regen = 0.01) at different power-law index in the range 0.2 6 n 6 4.
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So, we see that shear-thickening destabilizes the flow and

shear-thinning stabilizes it relative to the Newtonian flow case.

The symmetry–asymmetry transition in planar sudden expansions

is a manifestation of the Coanda effect [3,18], where a perturbation

to the symmetric flow at the plane of the expansion pushes fluid

towards one of the sides of the expansion and this gives rise locally

to higher velocities and a lower pressure which further accentuates

the deviation due to the transverse pressure gradient. The effect is

very much affected by the shape of the velocity profile in the inlet

duct, which is essentially also its shape as the fluid passes the

expansion plane since the Reynolds number is high; as n decreases

(shear-thinning fluids) the inlet velocity profile tends to a plug and

as n increases it tends to a triangle, i.e., close to the wall the veloc-

ities (and the velocity gradients) are smaller for shear-thickening

than for shear-thinning fluids. A small perturbation tends to raise

the near wall velocity by a larger amount when the velocities there

are small (large n) than when they are large (small n). In the limit

of a plug flow (n = 0) the velocity variations near the wall would be

even smaller. The larger velocity variations near the wall due to

perturbations lead to larger transverse pressure gradients, and so

the flow is more sensitive to perturbations when the fluid is

shear-thickening than when it is shear-thinning.

To illustrate the flow patterns in different regimes, the stream-

line plots are depicted in Fig. 10 for shear-thinning and in Fig. 11

for Newtonian and shear-thickening fluids at three different gener-

alized Reynolds numbers pertaining to the symmetric, asymmetric

and third eddy regimes. Since there is a strong variation of Regen,cr1
and Regen,cr2 with n, the values of generalized Reynolds numbers

used in Figs. 10 and 11 are not the same but they are qualitatively

the same in the following sense: for the symmetric regime we con-

sidered a value of Regen = 0.8Regen,cr1, for the asymmetric regime we

considered a Reynolds number of Regen = 0.5(Regen,cr1 + Regen,cr2) and

for the third eddy regime we used Regen = 1.2Regen,cr2. For the shear-

thinning fluids, with decreasing value of n, the sizes of the vortices

are found to be larger. Comparing the streamline patterns for the

shear-thinning and shear-thickening cases, we observe that the ed-

dies are stretched along the walls with enhanced shear-thickening

behavior, while when shear-thinning becomes more pronounced,

the eddies are more curved along the walls.

4.3. Couette correction

The Couette correction, C, represents the excess pressure drop

associated with the flow redevelopment at the expansion, normal-

ized with the average fully developed upstream wall shear stress,

swall:

C ¼ DP � ðDPfd;uc þ DPfd;dcÞ
2swall

ð12Þ
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Fig. 9. Effect of power-law index on the critical generalized Reynolds numbers at

which flow bifurcation occurs (Regen,cr1) and at which a tertiary recirculating eddy

appears (Regen,cr2). Different flow patterns are shown by different symbols.

Fig. 10. Flow patterns in the 1:3 planar sudden expansion at three different regimes are shown for each case: (i) symmetric flow (Regen = 0.8Regen,cr1); (ii) asymmetric flow

[Regen = 0.5(Regen,cr1 + Regen,cr2)] and (iii) asymmetric flow with a third recirculating eddy (Regen = 1.2Regen,cr2) at different power-law index values: (a) n = 0.4; (b) n = 0.6; (c)

n = 0.8.
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where, DP is the real global pressure drop across the expansion, be-

tween two points A and B far upstream and downstream of the

expansion plane, to ensure that they are well within the regions

of fully-developed channel flow, DPfd,uc is the estimated pressure

drop between point A and the expansion plane assuming fully-

developed flow, and DPfd,dc is the estimated pressure drop between

the expansion plane and the point B also assuming fully-developed

flow conditions. Fig. 12 depicts the variation of Couette correction

as a function of Regen in the range 0.01 6 Regen 6 10 for different val-

ues of n. Comparison of the present data with those of Ternik [11]

for 0.6 6 n 6 1.4 are found to be in excellent agreement. The Cou-

ette correction plateaus for all values of n for 0.01 6 Regen 6 0.1,

while for Regen > 0.1 the Couette correction starts to decrease with

increasing Regen and tends to negative values. Direct inspection of

Eq. (12) shows that in this case the real pressure loss through the

expansion is less than the estimated for fully developed flow, but

a more in depth analysis shows the real meaning of a negative C

to be that the pressure recovery as the fluid goes through the

expansion actually exceeds the viscous losses. Additionally, we find

that for a constant value of Regen, increasing n leads to a decrease in

the value of C. For Regen > 10 we find that C varies linearly but in in-

verse proportion to Regen an indication that the flow is becoming

dominated by inertia with a negative slope due to the decrease of

the kinetic energy across the expansion plane (for a Newtonian

fluid: Dpkin / -u2; swall / u; Dpext/swall / -Regen, where the excess

pressure drop (Dpext) is the numerator of Eq. (12)).

5. Summary and conclusion

We have performed a systematic numerical study on the flow of

power-law fluids through a 1:3 planar sudden expansion. Using

our finite volume code, we were able to obtain convergence for a

much wider range of flow conditions than previously attained in

numerical works for power-law fluids. Specifically, we obtained re-

sults in the power-law index range 0.2 6 n 6 4. We restricted the

analysis to such range of n, not because there were convergence

difficulties, but because real fluids will hardly behave outside this

range.

The following are some of the main conclusions of this study:

1. The flow is steady for the whole range of Regen and power-law

index, n, investigated. The flow is strongly dependent on the

power-law index, as significant changes in flow behavior occur

with varying n values.

2. In the creeping flow limit (Re? 0), Moffatt eddies appear and

gradually increase in size with increasing n and asymptotically

reach a constant value above n � 3. The separation point, Ya/h

moves towards the sharp corner with an increase in the

power-law index, and reaches a constant value at high values

of n.

3. Flow bifurcation is delayed for shear-thinning fluids (n < 1)

when compared to the Newtonian fluids (n = 1) while this phe-

nomenon occurs earlier in the case of shear-thickening fluids

(n > 1). Thus, the critical Reynolds number at which asymmetry

is observed increases as n decreases and this is related to the

higher sensitivity of lower near-wall velocities to Coanda effect

perturbations leading to higher transverse pressure gradients

(and concomitantly the opposite effect for higher near-wall

velocities).

4. The recirculating eddies along the walls become more stretched

as the shear-thickening behavior is enhanced, while they

become more curved when the shear-thinning behavior is

enhanced.

Additionally we provide benchmark quality data for this wide

range of flow and fluid conditions for such properties as the vortex

Fig. 11. Flow patterns in the 1:3 planar sudden expansion at three different regimes are shown for each case: (i) symmetric flow (Regen = 0.8Regen,cr1); (ii) asymmetric flow

[Regen = 0.5(Regen,cr1 + Regen,cr2)] and (iii) asymmetric flowwith a third recirculating eddy (Regen = 1.2Regen,cr2) at different power-law index values: (a) n = 1; (b) n = 1.4; (c) n = 2.
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length characteristics (Xa, Xb, Xc, Xd and Ya) and for the two critical

Reynolds numbers marking the onset of the first transition from

symmetric to asymmetric flow and marking the second transition

from asymmetric flow to asymmetric flow with a third vortex.
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