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Abstract. The stability of steady, vertically upward and downward flow of water in a ho-

mogeneous layer of soil is analyzed. Three equivalent dimensionless forms of the Richards

equation are introduced, namely the pressure head, saturation, and matric flux potential forms.

To illustrate general results and derive special results, use is made of several representative

classes of soils. For all classes of soils with a Lipschitz continuous relationship between the

hydraulic conductivity and the matric flux potential, steady flows are shown to be unique.

In addition, linear stability of these steady flows is proved. To this end, use is made of the

energy method, in which one considers (weighted) L2-norms of the perturbations of the steady

flows. This gives a general restriction of the dependence of the hydraulic conductivity upon

the matric flux potential, yielding linear stability and exponential decay with time of a specific

weighted L2-norm. It is shown that for other norms the ultimate decay towards the steady-

solution is preceded by transient growth. An extension of the Richards equation to take into

account dynamic memory effects is also considered. It is shown that the stability condition for

the standard Richards equation implies linear stability of the steady solution of the extended

model.

Keywords: Richards’ equation, steady flow, uniqueness, linear stability analysis, energy meth-

od, dynamic memory effects, transient growth

1. Introduction

About 70 years ago, Lorenzo A. Richards consolidated the efforts of previous

generations of soil physicists by formulating a general, macroscopic theory

for movement of water in rigid, unsaturated soils (Richards, 1931). The theory

of Richards can be formulated within the framework of the modern contin-

uum theory of mixtures, provided that one recognizes from the outset the

existence of the separate solid, liquid, and gaseous phases (Raats, 1984). It

can also be justified on the basis of the principles of surface tension and

viscous flow at the pore scale (Miller and Miller, 1956; Whitaker, 1986).

Richards theory combines the balance of mass, expressed in the equation

of continuity, and of momentum, expressed in Darcy’s law. The Richards
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equation describes movement of water in unsaturated, isothermal, rigid soils,

with the air pressure everywhere and always at atmospheric pressure.

Complications beyond the standard theory may arise from thermal gra-

dients, chemical influences (density variations, limited wettability, electrical

charges on solid phase balanced by a diffuse double layer in the fluid phase),

mechanical aspects associated with swelling and shrinkage, finite permeabil-

ity for the gaseous phase, spatial heterogeneity, and temporal changes of

the soil. But even in the realm of the standard theory, nonlinearity and the

hysteretic nature of the process of water retention remain challenging. In par-

ticular, observations of seemingly unstable flows raise the question whether

these can be explained in the context of the standard theory or suggest that

the theory be extended.

The first studies of unstable flow in porous media dealt with the displace-

ment of oil by water in connection with water-drive processes in oil reservoirs

(Engelberts and Klinkenberg, 1951) and the displacement of sugar liquors by

water from columns of granular bone charcoal in the process of refining raw

sugar (Hill, 1952). Numerous studies soon followed, including studies using

displacement of one fluid by another in a Hele-Shaw cell, i.e. two closely

spaced parallel glass sheets serving as a model of a oil reservoir (Saffman and

Taylor, 1958) and in columns of layered glass particles serving as a model

for the displacement of air by water in layered soils (Tabuchi, 1961). The

earliest studies focussed on the stability of the interface between two fluids,

using either simple physical reasoning (Hill, 1952; Tabuchi, 1961) or formal

linear stability analysis (Saffman and Taylor, 1958; Chuoke et al., 1959). The

latter used the surface tension of the interface between the two fluids as the

damping mechanism. In the 1960s and 1970s there was a steadily growing

awareness and interest in the stability of movement of water in unsaturated

soils. Systematic study of the stability of the displacement of air by water dur-

ing infiltration and redistribution in soils started in the early 1970s (Hill and

Parlange, 1972, Raats, 1973, Parlange and Hill, 1976, Philip 1975a, 1975b)

and has been pursued ever since, theoretically as well as experimentally (see

recent reviews of some aspects by de Rooij (2000), Parlange et al. (2002),

and Hendrickx and Flury (2001).

Raats (1973) reviewed early observations and presented some tentative

explanations. He focussed on the infiltration process and extended the Green–

Ampt approach pioneered by Tabuchi (1961) to discuss effects of soil crusts,

vertical heterogeneity of hydraulic conductivity, air pressure build-up ahead

of wetting front, hysteresis, and wettability. Generally unstable displacement

of air by water arises if the pressure gradient is such that it opposes the

advance of the wetting front, but less so as the front advances. Theoretical

studies and observations in the laboratory and the field have shown that this

may occur for infiltration at a rate less than the hydraulic conductivity at

saturation, either due to limited supply of water or due to the presence of a
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surface crust, infiltration of ponded water with compression of air ahead of the

wetting front, infiltration in soils with a fine textured layer overlying a coarse

textured layer, infiltration in water repellent soils, and during redistribution

of water following infiltration (Raats, 1973, de Rooij, 2000, Hendrickx and

Flury, 2001, Parlange et al., 2002).

Philip (1975a; 1975b) analyzed the stability of the Green–Ampt model

for vertical infiltration, using linear stability analysis with a macroscopic sur-

face tension of the wetting front as a damping mechanism, thus essentially

following Saffman and Taylor (1958) and Chuoke et al. (1959). Rather than

applying linear stability analysis to the equation of motion of a Green–Ampt

sharp interface, Diment and Watson (1982; 1983; 1985) applied it directly

to the Richards equation. Their numerical solution indicated infiltration to

be stable (Diment and Watson, 1983). Egorov et al. (2002) confirmed this

analytically for the long time, diffuse front travelling wave solution for infil-

tration into initially wet soil. However, for infiltration into an initially dry

soil, they found the long time, sharp front travelling wave solution to be

unstable for any perturbation mode. Without the surface tension damping

mechanism, Saffman and Taylor (1958), Chuoke et al. (1959), and Philip

(1975a; 1975b) would have reached the same conclusion for the motion of

the sharp interfaces. Egorov et al. (2002) demonstrated that the extension of

the Richards equation by Hassanizadeh and Gray (1990; 1993), to take into

account dynamic memory effects, may provide a damping mechanism. This

critically depends on the relaxation parameter involved.

Kapoor (1996) derived stability criteria for the various types of steady,

vertical upward and downward flows in homogeneous, unsaturated porous

media. Using the energy method, he showed that purely gravitational flows

are stable. For the other types of steady, vertical flows he derived criteria

for stability/instability. Based on experimental evidence that observed fingers

often are long and narrow, he assumed that the vertical length scale of the

perturbations is large compared to the horizontal length scale and on that

basis simplified the perturbation equation. However, linear stability analysis

concerns the process of initiation of the fingers and in that stage the vertical

length scale of the perturbations is still small. The observed long and narrow

fingers are always connected with infiltration and redistribution processes

reviewed briefly above. Therefore in this paper we reconsider the problem

studied by Kapoor, without ignoring the vertical gradients. Like Kapoor, we

ignore possible effects of hysteresis. Our analysis will show that the vertical

gradients play an essential role in the analysis. In Section 8 we will state the

conclusions of Kapoor and compare them with our results.

In Section 2, we start with three equivalent formulations of the model for

flow of water in unsaturated soils, namely the pressure head, water content,

and matric flux potential formulations. Making the equations dimensionless

by using the limiting saturated reference state and the layer thickness, we
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introduce the dimensionless Rayleigh number as the ratio of the layer thick-

ness and the capillary length scale of the soil. To illustrate general results and

derive special results, use is made of several representative classes of soils

defined by specific water retention and hydraulic conductivity characteristics,

i.e. the Broadbridge–White, Burgers, and Gardner classes of soils.

In Section 3 the steady background flows are analyzed. In Subsection 3.1

we prove uniqueness of steady flows for all classes of soils with a Lipschitz

continuous relationship between the hydraulic conductivity and the matric

flux potential and show that among these are the Broadbridge–White, Burg-

ers, and Gardner classes of soils. The proof of the uniqueness theorem is given

in Appendix A. In Subsection 3.2 we identify the various types of steady

vertical flows.

Since the uniqueness theorem suggests stability of steady vertical flows,

we concentrate in this paper on deriving estimates of the rate of decay of

perturbations of these steady flows. In Subsection 4.1 we prove, again subject

to certain requirements concerning the relationship between the hydraulic

conductivity and the matric flux potential, the stability of steady vertical

flows, and, moreover, show that the squared of the weighted L2-norm of the

perturbation of the matric flux potential decays exponentially with time. In

Subsection 4.2, we show that the requirements for this stability theorem are

fulfilled by the Broadbridge–White, Burgers, and Gardner classes of soils and

the corresponding estimates of the decay rates are derived.

In Section 5 we consider estimates of the decay rate in terms of the squared

of the L2-norm of the perturbation of the saturation. First we derive such an

estimate directly from the estimate in terms of the perturbation of the matric

flux potential. The resulting saturation based estimate shows that transient

growth may occur, except for the Burgers class of soils. However, in Section

5 it is also indicated that in some cases a direct and sharp saturation based

estimate can be obtained from the linearized equation for the perturbation of

the saturation. In Appendix B this is worked out in detail for the Gardner

class of soils. At the end of Section 5 it is shown that the steady solutions

for the Burgers class of soils are nonlinearly stable with respect to arbitrary

finite-amplitude perturbations.

In Section 6 we consider an extension of the Richards equation to take into

account dynamic memory effects, in a form suggested by Hassanizadeh and

Gray (1990; 1993). Using the saturation formulation, we show that linear sta-

bility of the steady solutions corresponding to the standard Richards equation

implies linear stability of the steady solutions of the extended equation.

Finally in Section 7, again for the Burgers class of soils, transient growth

is studied in more detail, using a norm based on the pressure head.
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2. Problem formulation

In this paper we use the convention that a prime ( ′ ) denotes differentiation

with respect to the argument. We restrict ourselves to a flow domain Ω which

is bounded in the horizontal plane and which has vertical boundaries between

z=0 and z=H, i.e.

Ω = {(x,y,z) : (x,y) ∈ Ω⊥ ,0 < z < H} ,

with z being the vertical coordinate taken positive downward and where Ω⊥
is a bounded set in IR2 with a piecewise smooth boundary ∂Ω⊥.

Assuming the water to be incompressible, the balance of mass can be

written as a volumetric balance equation

∂θ
∂t

= −∇ ·F , (1)

where t is the time, ∇ is the vector differential operator, θ is the volumetric

water content, F = θv is the volumetric flux of the water, with v being the

velocity of the water.

The pressure head Ψ of the water is defined by

Ψ =
(pw − pg)

γg
= − pc

γg
, (2)

where pw and pg are the pressures of the aqueous and gaseous phases, pc is

the capillary pressure, γ is the density of water, and g is the gravitational con-

stant. In the theory of Richards, it is assumed that the pressure of the gaseous

phase is spatially uniform and constant. Furthermore, it is assumed that the

pressure head Ψ is a monotonically increasing function of the volumetric

water content θ. In this paper we ignore the generally hysteretic nature of the

Ψ(θ) relationship. The volumetric water capacity c is defined as

c =
dθ
dΨ

. (3)

Darcy’s law for the volumetric flux F of the water has three alternative

forms:






F = −k∇Ψ + kez ,

F = −D∇θ + kez ,

F = −∇Φ + kez .

(4)

Here, k is the hydraulic conductivity, ez = ∇ z is the unit vector field in the

z-direction, D=kdΨ/dθ is the soil water diffusivity, and Φ is the matric flux
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potential or Kirchhoff potential defined by

Φ =
∫ Ψ

−∞
k dΨ =

∫ θ

0
D dθ . (5)

The volumetric flux F is the sum of a matric component −k∇Ψ =−D∇θ =
−∇Φ and a gravitational component kez. The matric component of the volu-

metric flux is given by the gradient of Φ and therefore it is appropriate to call

Φ the matric flux potential. A transformation of the type (5) was given around

1880 by Kirchhoff in his lectures on heat conduction (Kirchhoff, 1894). For

this reason, Φ is often called the Kirchhoff potential and the transformation

from Ψ and θ to Φ is then referred to as the Kirchhoff transform.

The hydraulic conductivity k is a monotonically increasing function of the

volumetric water content θ. Based on this k(θ) relationship, we introduce

ν =
dk

dθ
(6)

as the kinematic wave speed of the water.

Let θ0 be the volumetric water content at saturation and θr the irreducible

volumetric water content. Using the saturated state as the reference state, the

(apparent) saturation S is defined as

S =
θ−θr

θ0 −θr

, (7)

so that S(θr)=06S6S(θ0)=1. Using the layer thickness H and the saturated

reference state, we redefine the variables as follows:

(RV1)






{x,y,z} :=
{x,y,z}

H
,

∇ := H∇ ,

t :=
t

tref

=
t

H2/D0

,

F :=
F

|Fref|
=

F

k0

,

Ψ :=
Ψ

Ψref

=
Ψ

(θ0 −θr)/c0

,

Φ :=
Φ

Φref

=
Φ

D0(θ0 −θr)
,

(RV2)






c :=
c

c0

,

k :=
k

k0

,

D =
k

c
:=

D

D0

=
k/k0

c/c0

,

ν :=
ν
ν0

.

Since Ψ→ 0 as S→ 1, the scaling of Ψ cannot be based on its value in the

reference state. Instead (θ0 −θr)/c0 serves as the capillary length scale. The

redefinitions (RV2) of c, k, D, and ν imply c=k=D=ν=1 when S=1.
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In terms of these reduced variables, the volumetric mass balance and the

three forms of Darcy’s law become

∂S

∂t
= −∇ · (RF) , (8)

and





RF = −k∇Ψ +Rkez ,

RF = −D∇ S +Rkez ,

RF = −∇Φ +Rkez ,

(9)

in Ω :={(x,y,z) : (x,y) ∈ Ω⊥ ,0< z<1}. Here R denotes the dimensionless

Rayleigh number defined as

R =
k0H

(θ0 −θr)D0

=
H

(θ0 −θr)/c0

. (10)

Note that the Rayleigh number R is the ratio of the layer thickness and the

capillary length scale (θ0 −θr)/c0.

Substituting Equations (9) into Equation (8) gives three alternative forms

of the Richards equation, namely the pressure head, saturation, and matric

flux potential forms, respectively

(RE)






∂S(Ψ)

∂t
= c(Ψ)

∂Ψ
∂t

= ∇ · (k(Ψ)∇Ψ −Rk(Ψ)ez) ,

∂S

∂t
= ∇ · (D(S)∇ S−Rk(S)ez) ,

∂S(Φ)

∂t
=

1

D(Φ)

∂Φ
∂t

= ∇ · (∇Φ −Rk(Φ)ez) .

Remark 1. Sometimes, alternative forms of these equations are used. For

instance, Kapoor (1996) writes instead of (RE)1, after redefining our pressure

head to his suction head Ψ := −Ψ,

c(−Ψ)
∂Ψ
∂t

= k(−Ψ)∆Ψ+
dk(−Ψ)

dΨ
∇Ψ · (∇Ψ +Rez) .

Introducing c̄(Ψ) :=c(−Ψ), k̄(Ψ) :=k(−Ψ), and b̄(Ψ) :=−dk(−Ψ)

dΨ
, we find

exactly Kapoor’s formulation (3a–b):

c̄(Ψ)
∂Ψ
∂t

+ b̄(Ψ)∇Ψ · (∇Ψ +Rez)− k̄(Ψ)∆Ψ = 0 . (11)
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2.1. CLASSES OF SOILS

In the context of Richards equation, the relationships among the saturation S,

pressure head Ψ, and hydraulic conductivity k define the hydraulic properties

of a soil. Different classes of soils have been identified with different func-

tions approximating the physical properties. In this paper we restrict ourselves

to three typical classes.

One soil class is defined by Broadbridge and White (1988),

(I)






k(S) =
C−1

C−S
S2 ,

D(S) =
(C−1)C

(C−S)2
,

Ψ(S) = 1− 1

S
− 1

C
ln

C−S

(C−1)S
,

Φ(S) =
(C−1)S

C−S
,

where 1<C<∞. This soil class is usually referred to as the versatile nonlinear

model. Note that Ψ(S) has an inflection point at S= 2C
3

, for 1<C6
3
2
.

We also consider the soil class defined by Clothier et al. (1981),

(II)






k(S) = S2 ,

D(S) = 1 ,

Ψ(S) = 1− 1

S
,

Φ(S) = S ,

Note that with (II)1,2 Equation (RE)2 is Burgers equation for inviscid flows.

Therefore we refer to (II) as the Burgers class of soils. For the class of Burgers

soils the saturation and matric flux potential coincide. Note that the Burgers

soil class corresponds to the limiting case C→∞ of the versatile nonlinear

model.

Finally we consider the Gardner class of soils, where

(III)






k(S) =
S2

(1−S)2 +S2
,

D(S) =
1

(1−S)2 +S2
,

Ψ(S) = 1− 1

S
,

Φ(S) = arctan(2S−1)+ π
4

,
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Originally only the k(Ψ) relationship given by (III)1 was introduced to study

steady upward and downward flow for this class of soils (Gardner, 1958;

Raats, 1973). Note that k(S) has an inflection point at S= 1
2
.

3. Steady-state background flows

It is well known that nonlinear evolution equations like (RE) may have multi-

ple steady solutions and each of these solutions has its own stability property.

Once a steady-state is qualified and quantified as being unstable, the system

bifurcates from this solution to a neighboring steady solution, which is com-

pletely different from the first one. Note that this concept of instability only

makes sense when multiple steady solutions exist.

Hence, the first question that needs to be answered is: has Richards’ equa-

tion (RE) subject to given boundary data multiple steady solutions?

In the following subsections we show for Broadbridge–White, Burgers,

and Gardner soils uniqueness and some important properties of the steady

solutions of (RE). In this paper we restrict ourselves to constant boundary

data, which we give in terms of the saturation:

(BC)






S|z=0 = ST

S|z=1 = SB

for all x,y ∈ Ω⊥, t > 0,

and along the vertical boundary we impose ∂S
∂n

= ∇ S ·n=0 for all t >0.

3.1. UNIQUENESS OF STEADY VERTICAL FLOWS

We first note that the different formulations in (RE) are equivalent. For in-

stance, (RE)2 and (RE)3 are equivalent since

Φ = f (S) =
∫ S

0
D(S) dS (D(S)>0) (12)

is strictly increasing. Hence S= f−1(Φ) exists and uniqueness of solutions of

(RE)3 implies uniqueness of solutions of (RE)2. We show here uniqueness

for (RE)3 because for steady flow in the Φ-formulation only the gravity term

is nonlinear. Thus we consider the problem

(P1)






∇ ·
(

∇Φ −Rκ(Φ)ez

)
= 0 in Ω =: Ω⊥× (0,1) ,

∂Φ
∂n

= 0 on ∂Ω⊥× (0,1) ,

Φ = ΦBC = f (SBC) on Ω⊥× ({0}∪{1}) ,
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where κ(Φ) := k(S(Φ)), ∂Φ
∂n

= ∇Φ ·n, with n the outward normal at ∂Ω⊥×
(0,1), and where SBC denotes boundary conditions (BC). In Appendix A we

prove the following general statement:

Theorem 1. Let M := f (1) and let κ(Φ) : [0,M] → [0,∞) be Lipschitz con-

tinuous: i.e. there exists a constant L>0 such that

|κ(Φ1)−κ(Φ2)| 6 L|Φ1 −Φ2| ,

for all 0 6 Φ1,Φ2 6 M. Then problem (P1) has a unique solution for each

R>0. It is given by the one-dimensional profile Φ0 =Φ0(z) satisfying

(P2)






d

dz

(
dΦ0

dz
−Rκ(Φ0)

)
= 0 for 0<z<1 ,

Φ0(0) = f (ST) =: ΦT ,

Φ0(1) = f (SB) =: ΦB .

For Broadbridge–White soils the matric flux potential is given by (I)4.

Hence S = f−1(Φ) = CΦ
Φ+C−1

implying κ(Φ) = CΦ2

Φ+C−1
with 0 6 Φ6 M = 1.

This function is Lipschitz continuous since

|κ(Φ1)−κ(Φ2)| =
∣∣∣∣∣
C

(
Φ1Φ2 +(Φ1 +Φ2)(C−1)

)
(Φ1 −Φ2)

(Φ1 +C−1)(Φ2 +C−1)

∣∣∣∣∣ 6

6
C(2C−1)

(C−1)2
|Φ1 −Φ2| =: L(C)|Φ1 −Φ2| ,

for all 06Φ1,Φ2 61. For 1<C<∞ we have 2<L(C)<∞. Hence the steady

solutions for the Broadbridge–White class of soils, including the Burgers

class of soils as a limiting special case, are unique.

For Gardner class soils the matric flux potential is given by (II)4. Hence

S= f−1(Φ)= 1
1+cot(Φ) , implying κ(Φ) = sin2(Φ) for 06Φ6M = π

2
. Hence

|κ(Φ1)−κ(Φ2)| = 1
2
|cos(2Φ1)− cos(2Φ2)| 6 |Φ1 −Φ2| ,

for all 06Φ1,Φ2 6
π
2
. We conclude that the steady solutions for the Gardner

class of soils are also unique.

The theorem rules out any other stationary solution satisfying the bound-

ary conditions. In particular finger-like solutions, describing steady convec-

tion cells, do not exist. The theorem also suggests that problem (P2) describes

the large time behaviour of transient solutions for any R>0. With the excep-

tion of chaotic or temporally periodic behaviour, what else could be possible

large time behaviour? In the next section we show that indeed problem (P2)
describes the large time behaviour and we give rates of convergence.
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3.2. SOME PROPERTIES OF PROBLEM (P2)

To obtain the steady solution, we integrate (P2)1 with respect to z, i.e.

dΦ0

dz
= R

{
κ(Φ0)−F

}
, (13)

where RF denotes the flux. The solutions of (13) subject to (P2)2 and (P2)3,

can be classified as follows (see also Figure 1):

The case ΦT >ΦB, or equivalently ST >SB.

(1) Downward flow aided by capillarity: for this case Φ′
0(z)<0. From (13),

using the fact that κ(Φ0) is a monotonically increasing function, and

since R>0 we find F >κ(ΦT)>κ(Φ0).

The case ΦT≡ΦB, or equivalently ST≡SB.

(2) Purely gravitational downward flow: for this case we have Φ′
0(z)≡ 0.

From (13) it then follows that F =κ(ΦT)=κ(ΦB).

The case ΦT <ΦB, or equivalently ST <SB.

(3) Downward flow opposed by capillarity: we now have Φ′
0(z) > 0. By

again using (13), the monotonicity of κ(Φ0), and since we still deal with

a downward flow, we obtain 0<F <κ(ΦT )6κ(Φ0). These flows only

exist when ΦT >0.

(4) Equilibrium: for this case F≡0. Note that this case is only possible when

ST <SB. From (13) we derive Φ′
0(z)=Rκ(Φ0).

(5) Upward flow: now we have F <0 and Φ′
0(z)>Rκ(Φ0)>0.

Separation of variables in (13) yields

Rz =
∫ Φ0(z)

ΦT

1

κ(Φ0)−F
dΦ0 . (14)

The solution strategy is as follows. For given boundary condition ΦT and

Rayleigh number R>0, we solve (14). Here F is still unknown. It has to be

chosen such that the second boundary condition Φ=ΦB is satisfied. Again

using (14), such a F can be found by inverting

R = R(F) =
∫ ΦB

ΦT

1

κ(Φ0)−F
dΦ0 . (15)

A typical R(F) relation is depicted in Figure 1. Note that R(F) is a strictly

monotonic decreasing (when ΦT >ΦB) or increasing (when ΦT <ΦB) func-

tion and for every R>0 we find a unique F and hence a steady state.
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R

F
0

κ(   )ΦT
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Φ
  >

 Φ
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 Φ
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 Φ
  

T
B

downward flowupward flow

Figure 1. The Rayleigh number R as function of F .

4. Transient behaviour of perturbations of the matric flux potential

4.1. GENERAL APPROACH

In this section we consider transient solutions Φ=Φ(x,y,z, t) of (RE)3 in Ω
that satisfy the boundary conditions ΦT at {z=0}, ΦB at {z=1}, ∇Φ ·n=0

along the vertical boundaries, and some initial condition Φ|t=0 = Φ(x,y,z).
In particular, we investigate the stability of the steady solution Φ0. For this

purpose we write

Φ = Φ0(z)+ϕ , (16)

where the perturbation ϕ =ϕ(x,y,z, t) vanishes at the top (z=0) and bottom

(z=1) of the flow domain and satisfies ∇ϕ ·n=0 along ∂Ω⊥× (0,1).
We substitute (16) into (RE)3 and disregard nonlinear terms in ϕ. Thus

we investigate linearized stability. A common way, e.g. see Egorov et al.

(2003), is to investigate the spectrum of the linearized operator. Here we

follow a different route. We are going to estimate the weighted L2-norm of

the perturbation ϕ. We prove that this norm is decreasing in time and we give

an estimate of the rate of convergence.

We assume here that κ : [0,M] → [0,∞) is a smooth function satisfying

κ(0)=0, κ(M)=1, and κ′(Φ)>0 for 06Φ6M. Further, κ is possible convex-

concave: i.e. there exists 0<M̂ 6M such that

κ′′(Φ) =

{
> 0 for 06Φ<M̂ ,

< 0 for M̂ <Φ6M .
(17)

With respect to S(Φ) we assume

0<K1 6 S′(Φ) =
1

D(Φ)
6K2 < ∞ for 06Φ6M . (18)
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Then we prove the following stability result:

Theorem 2. Let m∗ :=min{ΦT,M̂}, m∗ :=max{ΦT,M̂}, and let

λ :=






1

2

∫ m∗

0

κ′(m∗)−κ′(φ)

κ(m∗)−κ(φ)
dφ for ST >SB (or ΦT >ΦB) ,

−1

2

∫ M

m∗

κ′(m∗)−κ′(φ)

κ(m∗)−κ(φ)
dφ for ST <SB (or ΦT <ΦB) .

(19)

Further we consider the weighted L2-norm

||ϕ(t)||2 :=
∫

Ω
S′

(
Φ0(x,y,z)

)
ϕ2(x,y,z, t) dx dy dz for t >0 .

If λ <1, then

(A) ||ϕ(t)||2 is strictly decreasing for t >0,

and in particular

(B) ||ϕ(t)||2 6 e−2(1−λ)t/K2 ||ϕ(0)||2 for all t >0.

Hence if λ <1, the steady solution Φ0 is linearly exponentially stable.

Proof. Substitution of (16) in (RE)3 and linearizing the resulting equation

gives for the perturbation ϕ

S′(Φ0)
∂ϕ
∂t

= ∆ϕ−R
∂
∂z

(
κ′(Φ0)ϕ

)
. (20)

To obtain estimates from (20) we use the energy method (Straughan, 1992).

Multiplying (20) by ϕ and integrating the equation over Ω gives

1

2

d

d t
||ϕ2(t)||2 = −

∫
Ω
|∇ϕ |2 −R

∫
Ω

∂
∂z

(
κ′(Φ0)ϕ

)
ϕ , (21)

Integration by parts of the last term in (21) and using the condition that ϕ
vanishes along the horizontal boundaries gives

1

2

d

d t
||ϕ2(t)||2 = −

∫
Ω
|∇ϕ |2 +

R

2

∫
Ω

κ′(Φ0)
∂ϕ2

∂z
=

= −
∫

Ω
|∇ϕ |2 − R

2

∫
Ω

(
κ′′(Φ0)

dΦ0

dz

)
ϕ2 .

Let ST >SB. Then dΦ0

dz
<0. Using this monotonicity and (17) gives

1

2

d

d t
||ϕ2(t)||2 6 −

∫
Ω
|∇ϕ |2 − R

2

∫
Ω∗

(
κ′′(Φ0)

dΦ0

dz

)
ϕ2 , (22)
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where Ω∗ :={(x,y,z) : (x,y) ∈ Ω⊥,z∗ < z<1} and Φ0(z∗)=m∗. To estimate

the sign of the second term on the right-hand side of (22) we use the following

argument. For any fixed (x,y) ∈ Ω⊥ and t >0 we write ϕ(z) :=ϕ(x,y,z, t) and

estimate with Cauchy–Schwarz

ϕ(z) 6 |−ϕ(z)| =
∣∣∣∣
∫ 1

z
ϕ′(ζ) dζ

∣∣∣∣ 6

6

(∫ 1

z
12 dζ

)1/2 (∫ 1

z
(ϕ′(ζ))2 dζ

)1/2

6

6
√

1− z

(∫ 1

0
(ϕ′(ζ))2 dζ

)1/2

. (23)

Then, using Fubini’s Theorem and inequality (23) in (22), we have

1

2

d

d t
||ϕ2(t)||2 6 −

∫
Ω
|∇ϕ |2−

− R

2

{∫ 1

z∗
(1− z)

d

dz
κ′(Φ0) dz

}∫
Ω
|∇ϕ |2 =:

=: −(1−λ)
∫

Ω
|∇ϕ |2 . (24)

For the factor λ in (24) we obtain, using (19) and the fact that m∗6ΦT,

λ = −R

2
(1− z)κ′(Φ0)

∣∣∣∣
1

z∗

− R

2

∫ 1

z∗
κ′(Φ0) dz =

=
R

2

∫ 1

z∗

{
κ′(m∗)−κ′(Φ0)

}
dz =

1

2

∫ m∗

ΦB

κ′(m∗)−κ′(Φ0)

κ(ΦT)−κ(Φ0)
dΦ0 6

6
1

2

∫ m∗

0

κ′(m∗)−κ′(Φ0)

κ(m∗)−κ(Φ0)
dΦ0 < 1

by assumption. Hence, with the Poincaré inequality
∫

Ω ϕ2 6
∫

Ω |∇ϕ |2 (Zei-

dler, 1995) and using (18), we obtain from (24) the estimate

1

2

d

d t
||ϕ2(t)||2 6−(1−λ)

∫
Ω

ϕ2
6−((1−λ)/K2) ||ϕ2(t)||2 6 0 , (25)

which proves (A). Integrating (25) with respect to time t gives

||ϕ2(t)||2 6 e−2(1−λ)t/K2 ||ϕ2(0)||2 , (26)

which proves (B).
The case ST<SB follows in a similar fashion. Its proof is therefore omitted.
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4.2. APPLICATION TO SPECIFIC CLASSES OF SOILS

4.2.1. Broadbridge–White and Burgers classes

First observe that κ(Φ) has no inflection points for 0 6 Φ6 M = 1. Hence

M̂≡M =1 and m∗≡1. This immediately implies that λ≡0 < 1 for the case

ST <SB, and, hence, that in terms of the classification of the steady vertical

flows in Subsection 3.2, downward flows opposed by capillarity, equilibrium,

and upward flows are linearly stable.

For the case ST > SB, i.e. for downward flows aided by capillarity, we

estimate λ. Since 06m∗6M̂ =1 we have

λ =
1

2

∫ m∗

0

κ ′(m∗)−κ ′(φ)

κ(m∗)−κ(φ)
dφ=

=
1

2

[
ln

(
2C−2+m∗
C−1+m∗

)
+

(
C−1

C−1+m∗

)2

ln

(
2C−2+m∗

C−1

)]
6 ln2

for all C>1. Hence λ 6 ln2 < 1 and this implies that Φ0 is linearly stable.

4.2.2. Gardner class

Observe that for this case κ(Φ) has an inflection point at Φ= π
4
. This implies

M̂ = π
4
. We first consider the case ST >SB. Since 06φ6m∗6

π
4

we have

λ =
1

2

∫ m∗

0

κ ′(m∗)−κ ′(φ)

κ(m∗)−κ(φ)
dφ=

=
1

2

∫ m∗

0

(
sin(2m∗)− sin(2φ)

)
(φ+m∗)

sin2(m∗)− sin2(φ)

1

φ+m∗
dφ6

6
2m∗ cos2(m∗)−m∗

sin(m∗)cos(m∗)

∫ m∗

0

1

φ+m∗
dφ6 ln2 < 1 ,

implying that the steady solution Φ0 is linearly stable.

For the case ST<SB we again obtain λ6ln2, and hence, as to be expected,

these steady states are also linearly stable.

5. Saturation estimates

5.1. ESTIMATES THAT MAY INVOLVE TRANSIENT GROWTH

Up to now we have estimates in terms of the matric flux potential perturbation

ϕ. In this subsection we show that estimates for the saturation formulation can

be obtained directly from the estimates derived in the previous section.
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Figure 2. The norm gap may imply transient growth of Es(t), but Es(t) is nevertheless

bounded by Bs(t).

As for the matric flux potential Φ, we write S=S(x,y,z, t) in the form

S = S0(z)+ s ,

where s=s(x,y,z, t) vanishes at the top (z=0) and bottom (z=1) of the flow

domain, and satisfies ∇ s ·n=0 along ∂Ω⊥× (0,1), and where S0 = f−1(Φ0).
The relation between the saturation perturbation s and matric flux potential

perturbation ϕ follows from the expansion

S = S0(z)+ s = S(Φ0 +ϕ) = S(Φ0)+S′(Φ0)ϕ +O(ϕ2) ,

which implies s = S′(Φ0)ϕ =ϕ/D(Φ0) in the linearized sense. Next we use

(26) and (18) to obtain

1

K2

∫
Ω

s2(t) 6

∫
Ω

s2(t)

S′(Φ0)
6 e−2(1−λ)t/K2

∫
Ω

s2(0)

S′(Φ0)
6

6
1

K1

e−2(1−λ)t/K2

∫
Ω

s2(0) ,

or

Es(t) :=
∫

Ω
s2(t) 6

K2

K1

e−2(1−λ)t/K2

∫
Ω

s2(0) =: Bs(t) . (27)

Note that this estimate does not imply
dEs(t)

d t
60. In fact, since Bs(0)= K2

K1
Es(0)

> Es(0), transient growth of Es(t) may occur as sketched in Figure 2. We

discuss this in more detail in Section 7.

Remark 2. For Broadbridge–White soils we derive from (I)4 that

K1 =
C−1

C
6 S′(Φ0) 6

C

C−1
= K2 .
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Using these estimates in (27) gives

∫
Ω

s2(t) 6
C2

(C−1)2
e−

2(C−1)
C

(1−λ)t
∫

Ω
s2(0) . (28)

Note that for the limit C→∞ (Burgers soils), we obtain the sharp estimate

∫
Ω

s2(t) 6 e−2(1−λ)t
∫

Ω
s2(0) . (29)

This means that for Burgers soils Es(t) decreases monotonically in time and

is bounded by an exponential decaying function.

For Gardner soils we obtain from (III)4 the estimates

K1 =
1

2
6 S′(Φ0) 6 1 = K2 .

Subtitution in (27) gives

∫
Ω

s2(t) 6 2e−2(1−λ)t
∫

Ω
s2(0) .

Since Bs(0)=2, this is again not a sharp bound, and transient growth of Es(t)
may occur.

5.2. SHARP ESTIMATES

In some cases a sharp estimate of the saturation perturbation can be obtained

directly from (20). Substituting the relation s=S′(Φ0)ϕ gives the linearised

perturbation equation

∂s

∂t
= ∇ · (D(S0)∇ s)+

∂
∂z

{
D′(S0)

dS0

dz
s−Rk′(S0)s

}
. (30)

Note that this equation is more complex then Equation (20) for ϕ. This is the

main reason why we choose the matric flux potential to study stability.

Multiplying (30) by s and integrating over Ω gives

1

2

d

dt

∫
Ω

s2 = −
∫

Ω
D(S0)|∇ s|2 +

1

2

∫
Ω

(
d2

dz2
D(S0)−R

d

dz
k′(S0)

)
s2

=: −
∫

Ω
D(S0)|∇ s|2 + I . (31)

The expression for I can also be written as:

I =
1

2

∫
Ω

d

dS0

(
dD(S0)

dz
−Rk′(S0)

)
dS0

dz
s2 .
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Observe further that
dD(S0)

dz
= D′(S0)

dS0

dz
= D′(S0)

D(S0)
R
(
k(S0)−F

)
, where we have

used (13). Hence

I =
R

2

∫
Ω

{
d

dS0

(
D′(S0)

D(S0)

(
k(S0)−F

)
− k

′
(S0)

)}
dS0

dz
s2 =:

=:
R

2

∫
Ω

γ(S0)
dS0

dz
s2 . (32)

Expanding γ(S0) in (32) and splitting the result into parts gives

γ(S0) = γ1(S0)+γ2(S0) ,

with

γ1(S0) =
D′(S0)

D(S0)
k′(S0)− k′′(S0) = −D(S0)

(
k′(S0)

D(S0)

)′
, (33a)

γ2(S0) =

(
D′(S0)

D(S0)

)′ (
k(S0 −F)

)
. (33b)

For sharp estimates we want to have

I 6µ

∫
Ω
|∇ s|2 with µ<β and β :=min

S0

D(S0) , (34)

since then, using the Poincaré inequality −(β− µ)
∫

Ω |∇ s|2 6−(β− µ)
∫

Ω s2

in (31), d
d t

∫
Ω s2 <0 and in particular

∫
Ω

s2(t) 6 e−2(β−µ)t
∫

Ω
s2(0) 6

∫
Ω

s2(0) . (35)

This would rule out transient growth as in Figure 2.

In Appendix B we show that for the Gardner class of soils µ≈0.9296 and

β=1. For the Broadbridge–White class of soils, however, we are not able to

prove (34) for the range 1<C<2.5. For the case C → ∞, which corresponds

to the Burgers class of soils, one can show, using techniques from Appendix

B, that µ≡0 and β≡1.

For the Burgers class of soils we obtain even more than linear stability

alone. For this particular case the nonlinear perturbation equation for s is

given by

∂s

∂t
= ∆s−2R

∂
∂z

(S0s)−R
∂s2

∂z
. (36)

Disregarding the quadratic term in (36) gives Equation (30). However, multi-

plying this quadratic term by s and integration over Ω yields

∫
Ω

∂s2

∂z
s = 2

∫
Ω

s2 ∂s

∂z
=

2

3

∫
Ω

∂s3

∂z
= 0 ,
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implying that the steady solutions of the Burgers class of soils are nonlinearly

(unconditionally) stable with respect to arbitrary finite-amplitude perturba-

tions.

6. Non-equilibrium Richards equation

An extension of the Richards equation to take into account dynamic memory

effects was suggested by Hassanizadeh and Gray (1990; 1993). The key point

in their model is the rejection of the equilibrium pressure-saturation relation.

Instead they proposed:

(RE′)






∂S

∂t
= ∇ ·

(
k(S)∇ Ψ̂−Rk(S)ez

)
,

τ
∂S

∂t
= Ψ̂−Ψ(S) ,

where Ψ̂ is the water pressure head and where τ is a dimensionless relaxation

coefficient (taken as a positive constant). Combining the two equations in

(RE′) gives

∂S

∂t
= ∇ ·

(
D(S)∇ S

)
+ τ∇ ·

(
k(S)∇

∂S

∂t

)
+R

∂
∂z

k(S) = 0 . (37)

This equation will be referred to as the extended model.

Remark 3. The steady solutions of (37) do not depend on τ. In fact, the

steady equations are the same for both the standard Richards equation (RE)2

and the extended model (37). So is the uniqueness result from Section 3.

In line with the general approach in Subsection 4.1, the normal procedure

would be to rewrite (37) in terms of the matric flux potential Φ and consider

the associated linearized perturbation equation. Rewriting (37) gives

∂S(Φ)

∂t
= ∆Φ+ τ∇ ·

(
κ(Φ)∇

∂S(Φ)

∂t

)
+R

∂
∂z

κ(Φ) = 0 . (38)

Using the decomposition Φ= Φ0 + ϕ in (38) and linearizing the resulting

equation gives

S′(Φ0)
∂ϕ
∂t

= ∆ϕ + τ∇ ·
(

κ(Φ0)∇
{

S′(Φ0)
∂ϕ
∂t

})
+R

∂
∂z

(
κ′(Φ0)ϕ

)
.

(39)

Following the variational approach, the τ-term in (39) gives an expres-

sion of which the sign is not fixed. Therefore the matric flux potential (Φ)

formulation is unsuitable for analyzing the stability of the (RE′) steady states.
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To circumvent this problem, we consider the saturation perturbation equa-

tion related to (RE′). In the linearized sense we find

∂s

∂t
= ∇ ·

(
D(S0)∇ s

)
+τ∇ ·

(
k(S0)∇

∂s

∂t

)
+

∂
∂z

{
D′(S0)

dS0

dz
s−Rk′(S0)s

}
.

(40)

Multiplying (40) by s, integrating over Ω, and collecting terms with a time

derivative gives for any τ >0

1

2

d

d t

{∫
Ω

s2 + τ
∫

Ω
k(S0)|∇ s|2

}
= −

∫
Ω

D(S0)|∇ s|2 + I ,

where I is given by (32). Now suppose that (34) holds. Then, with
∫

Ω s2 6∫
Ω |∇ s|2,

1

2

d

d t

{∫
Ω

s2 + τ
∫

Ω
k(S0)|∇ s|2

}
6 −

∫
Ω

D(S0)|∇ s|2 +µ

∫
Ω
|∇ s|2 6

6 −(β−µ)
∫

Ω
|∇ s|2 6 −(β−µ)

2τ
τ
∫

Ω
k(S0)|∇ s|2 − (β−µ)

2

∫
Ω

s2
6

6 µ∗
{∫

Ω
s2 + τ

∫
Ω

k(S0)|∇ s|2
}

, (41)

where we have used that k(S0)61 and where, since τ >0,

µ∗ = max

{
−β−µ

2τ
,−β−µ

2

}
< 0 .

Integrating (41) gives

∫
Ω

s2(t) 6

∫
Ω

s2(t)+ τ
∫

Ω
k(S0)|∇ s(t)|2 6

6 eµ∗t

{∫
Ω

s2(0)+ τ
∫

Ω
k(S0)|∇ s(0)|2

}
.

Since µ∗<0, we obtain∫
Ω

s2(t) → 0 as t → ∞.

We conclude that once (34) is satisfied, linear stability of the steady solutions

of both the standard and extended Richards equation is guaranteed. Estimates

for I were listed already in Section 5 following (34).
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7. Different norms and transient growth

In Sections 4 and 5 we considered linearized stability in terms of the (weight-

ed) L2-norms of the perturbations ϕ of the matric flux potential and of the

perturbations s of the saturation. Independent of the chosen variable we ob-

tained stability, but not necessarily time-monotonicity of the chosen norm. In

this section we give an example of transient growth: initial growth of the norm

of a perturbation which decays towards zero as t → ∞, see sketch in Figure

2. We consider Burgers soil for which the steady solution is unconditionally

stable and for which the norms in terms of ϕ and s decay monotonically in

time. We show below that in terms of the pressure head transient growth may

occur.

For Burgers soils the relation between S=Φ and Ψ is explicitly given by

Ψ(S)=1−S−1, or S(Ψ)= 1
1−Ψ . We write Ψ0 =Ψ(S0) and redefine k(Ψ0) :=

k(S(Ψ0)), D(Ψ0) := D(S(Ψ0)) and c(Ψ0) := c(S(Ψ0)). As in Section 4, we

write Ψ=Ψ0(z)+ ψ, where ψ=ψ(x,y,z, t) vanishes along the top and bot-

tom of the flow domain. Linearizing S(Ψ) gives the relation s = S′(Ψ0)ψ=
1

(1−Ψ0)2 ψ=S2
0 ψ.

We consider the case 0<SB <ST 61. Using the relation between s en ψ in

the saturation estimate (29) gives

S4
B

∫
Ω

ψ2(t) 6

∫
Ω

s2(t) 6 e−2(1−λ)t
∫

Ω
s2(0) 6 S4

T e−2(1−λ)t
∫

Ω
ψ2(0) ,

or

Eψ(t) :=
∫

Ω
ψ2(t) 6

(
ST

SB

)4

e−2(1−λ)t
∫

Ω
ψ2(0) =: Bψ(t) , (42)

with λ 6 ln2, see Section 4.2.1 and Remark 2. From (42) we observe that

Bψ(0)→ Eψ(0) as ST/SB → 1 and therefore transient growth of Eψ(t) cannot

occur for purely gravitational flows. However, for ST > SB we can select a

perturbation for which transient growth does occur.

To show this we consider the linearized perturbation equation for ψ. Us-

ing the relation between s and ψ in (30) and using the fact that D(Ψ0) =
k(Ψ0)/c(Ψ0) gives

∂ψ
∂t

=
k′(Ψ0)

c(Ψ0)

[
2

dΨ0

dz
−R

]
∂ψ
∂z

+
k(Ψ0)

c(Ψ0)
∆ψ−

−
[

(k′(Ψ0))
2

k(Ψ0)c(Ψ0)
− k′′(Ψ0)

c(Ψ0)

][(
dΨ0

dz

)2

−R
dΨ0

dz

]
ψ . (43)

We restrict ourselves to x,y-periodic solutions ψ = ψ(z, t)eik·x, where k =
(kx,ky)

T denotes the wave vector and x = (x,y)T . Using k(Ψ) and c(Ψ) in
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Figure 3. Left: a typical picture of the norm Eψ(t). Note that E ′
ψ(0)=σmax >0. Right: neutral

curves (i.e. σ≡0) corresponding to eigenvalue problem (47). The shaded region corresponds

to the case ΨT =0, ΨB =−2.3 (ST =1, SB =0.3) and depicts the region where σmax >0. The

white region corresponds to σmax <0.

(43) gives for the amplitude ψ=ψ(z, t)

∂ψ
∂t

=
∂2ψ
∂z2

− k2ψ+A1(Ψ0)
∂ψ
∂z

+A2(Ψ0)ψ =: A(Ψ0)ψ , (44)

where k= |k| and

A1(Ψ0) =
4Ψ′

0(z)−2R

1−Ψ0

and A2(Ψ0) =
2
(
Ψ′

0(z)
)2 −2RΨ′

0(z)

(1−Ψ0)2
.

Multiplying Equation (44) by ψ and integrating the result gives

1

2

dEψ(t)

d t
:=

1

2

d

d t

∫ 1

0
ψ2(t) dz =

∫ 1

0

(
A(Ψ0)ψ(t)

)
ψ(t) dz . (45)

Transient growth is said to occur if Eψ(t) > Eψ(0) for some t > 0. This

happens, for instance, if 1
Eψ(0)

dEψ(t)
d t

∣∣∣
t=0

> 0, see Figure 3 (left). To find the

maximal initial growth we use (45) and consider

1

2

1

Eψ(0)

dEψ(t)

d t

∣∣∣∣
t=0

=
∫ 1

0

(
A(Ψ0)ψ(0)

)
ψ(0) dz

/∫ 1

0
ψ2(0) dz .

This leads to the maximum problem

σmax = sup
ψ(0)6=0

{∫ 1

0

(
A(Ψ0)ψ(0)

)
ψ(0) dz

/∫ 1

0
ψ2(0) dz

}
. (46)

Farrell and Ioannou (1996), among others, showed that the normalized max-

imal initial slope σmax and the initial perturbation ψ(0) producing this initial
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growth are found from the eigenanalysis of the symmetric part of operator

A(Ψ0), i.e.

1
2

(
A(Ψ0)+A

∗(Ψ0)
)
ψ(0) = σψ(0) , (47)

where ∗ denotes the adjoint operator with respect to the L2-norm. In particular,

the maximal positive eigenvalue and its associated eigenfunction provide the

initial slope of Eψ(t) and the initial perturbation.

Remark 4. The estimates obtained in Sections 4 and 5 imply that the eigen-

values of A(Ψ0) all have negative real parts. Hence if A(Ψ0) were a self-

adjoint operator, then all (real) eigenvalues of (47) would have been negative

as well and no transient growth would occur, see also Reddy and Henningson

(1993).

We solved (47) numerically for fixed ΨT ≡ 0 and various −∞ <ΨB < 0,

and for Rayleigh numbers R and wavenumbers k in relevant ranges. The

result is shown in Figure 3 (right). Given the boundary conditions ΨT,ΨB,

and the Rayleigh number R, we can distinguish grey regions where σmax >0,

indicating initial transient growth, and white regions where σmax <0. We do

note here that since Eψ(t) is bounded by Bψ(t), the growth of the norm is only

a transient phenomenon because Bψ(t) → 0 as t→∞.

8. Discussion

Kapoor (1996) derived stability criteria for the various types of steady vertical

upward and downward flows in homogeneous, unsaturated soils. These crite-

ria are summarized in Figure 4. Based on experimental evidence that observed

fingers often are long and narrow, he assumed that the vertical length scale

of the perturbations is large compared to the horizontal length scale and on

that basis he simplified the linearized equation for the perturbation of the

suction head. Allowing for the sign changes in going from the suction head

to the pressure head, Kapoor (1996) in effect ignored in the right hand side

of equation (43) the entire first term and z-dependent part of the second term.

The results shown in Figure 4 then follow from considering the sign of the

coefficient of ψ in the last term.

Linear stability analysis concerns the process of initiation of the fingers

and in that stage the vertical length scale of the perturbations is still small.

Therefore we reconsidered the stability of steady vertical flows, without ig-

noring the vertical gradients. First, we proved the uniqueness of the solutions

for steady vertical flows. Subsequently we used the so-called energy method

to prove the stability of the steady flows for various classes of soils and

derived estimates of the rate of decay of perturbations. The decay of the
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Figure 4. Overview of Kapoor’s stability results.

perturbation is proportional to exp(−2(1−λ)Dmint), where Dmin is an appro-

priate minimum value of the diffusivity. As is to be expected, an increase of

Dmin or a decrease of H speeds up the decay. The analysis is complicated by

the fact that, depending on the norm used in the analysis, the ultimate decay

may be preceded by transient growth. Contrary to Kapoor’s hypothesis, our

analysis shows that the vertical gradients play an essential stabilizing role.

In the analysis we considered several classes of soils, spanning a wide range

of soil properties. For the Burgers class of soils, we were able to show that

the steady solutions are nonlinearly stable with respect to arbitrary finite-

amplitude perturbations. Finally, we showed that for the Richards equation

extended with a term accounting for dynamic memory effects steady flows

also remain stable.

Appendix A. Proof of Theorem 1

Since (P1)1 is in divergence form, we follow Gilbarg and Trudinger (1977)

to prove a comparison result and uniqueness. For technical reasons we extend

the domain of definition of κ. Let

κ̂(Φ) =






0 for Φ<0 ,

κ(Φ) for 06Φ6M ,

κ(M) = 1 for Φ>M .

The function κ̂ is clearly uniformly Lipschitz continuous on IR. Now suppose

Φ1 and Φ2 are two solutions of Problem (P1), with ordered boundary data:

i.e.

Φ1 > Φ2 at Ω⊥× ({0}∪{1}) .
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We show below that

Φ1 > Φ2 in Ω̄ .

Let δ>0 (fixed) and set

ϕ =
w

δ+w
, w = (Φ1 −Φ2 −δ)+ > 0 ,

where (u)+ =max{u,0}. We test (P1)1 for the difference Φ1 −Φ2 with ϕ:

∫
Ω

{
∇ (Φ1 −Φ2)−R

(
κ̂(Φ1)− κ̂(Φ2)

)
ez

}
· ∇ϕ = 0 .

This gives

δ
∫
{Φ1−Φ2>δ}

|∇ w|2
(δ+w)2

−δR

∫
{Φ1−Φ2>δ}

∂zw

(δ+w)2

(
κ̂(Φ1)− κ̂(Φ2)

)
= 0 .

Since

R

∫
{Φ1−Φ2>δ}

∂zw

(δ+w)2

(
κ̂(Φ1)− κ̂(Φ2)

)
6

6
1

2

∫
{Φ1−Φ2>δ}

|∇ w|2
(δ+w)2

+
R2

2

∫
{Φ1−Φ2>δ}

(
κ̂(Φ1)− κ̂(Φ2)

)2

(δ+w)2
,

and δ+w=Φ1−Φ2 on {Φ1−Φ2−δ>0}, we find

∫
{Φ1−Φ2>δ}

|∇ w|2
(δ+w)2

6 R2

∫
{Φ1−Φ2>δ}

(
κ̂(Φ1)− κ̂(Φ2)

)2

(Φ1 −Φ2)2
.

Since κ̂ is Lipschitz-continuous with constant L, we have

∫
{Φ1−Φ2>δ}

|∇ w|2
(δ+w)2

6 R2 L2 meas(Ω) .

Next we apply the Poincaré inequality to

∣∣∣ln
(

1+
w

δ

)∣∣∣ = |ln(δ+w)− ln(δ)|

and obtain that there exists K >0 such that
∫

Ω

∣∣∣ln
(

1+
w

δ

)∣∣∣
2

6 K (for all δ>0) .

Letting δ→0, we see that w must vanish in Ω, that is Φ1 6Φ2. Since

0 = f (0) 6 Φ 6 f (1) = M ,
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and since constants satisfy the equation, we immediately deduce for any

solution of (P1)

0 6 Φ 6 M in Ω̄ .

As a consequence we can replace κ̂ by κ. Now suppose Φ1 and Φ2 are two so-

lutions of (P1) for the same boundary data. The above comparison argument

then implies both Φ1 6Φ2 and Φ1 >Φ2 in Ω̄. Hence Φ1 =Φ2 in Ω̄.

Appendix B. Saturation estimates for Gardner class soils

First we evaluate the components γ1(S0) and γ2(S0) of γ(S0). This can be done

by direct lengthy computation, using the expressions (II)1 for k(S0) and (II)2

for D(S0) in (33a) and (33b). A simpler procedure is to observe that (II)1,2

imply k′(S0)=(D(S0)−1)D(S0) and D′(S0)=(2−4k(S0))D(S0) so that the

expressions for γ1(S0) and γ2(S0) reduce to

γ1(S0) = −D(S0)D
′(S0) = −1

2

(
D2(S0)

)′
, (48a)

γ2(S0) = 4k′(S0)
(
F − k(S0)

)
. (48b)

We need to estimate

I =
R

2

∫
Ω

γ(S0)
dS0

dz
s2 =

R

2

∫
Ω

(
γ1(S0)+γ2(S0)

)dS0

dz
s2 . (49)

We first consider the downward flow case, i.e. F > k(ST)> k(S0) for every

0 6 SB 6 S0 < ST 6 1. Since dS0

dz
is negative, we want to show that γ(S0) is

positive for all R>0. From (48a) and (48b) it follows that γ2(S0)>0 and

γ1(S0) =





< 0 for 06SB <S0 < 1

2
,

> 0 for 1
2
<S0 <ST 61 .

(50)

We distinguish the following cases:

(1) 06SB < 1
2
6ST 61. Let z∗ be such that S0(z

∗)= 1
2
. Then SB 6S0 < 1

2
for

z ∈ (z∗,1], see also the construction in Figure 5(a). Hence, with (50) and

inequality (24), we obtain

I 6
R

2

∫
Ω∗

γ1(S0)
dS0

dz
s2 =

R

4

∫
Ω∗

(
D2(S0)

)′
(
−dS0

dz

)
s2 =

= −R

4

∫
Ω∗

d

dz

(
D2(S0)

)
s2

6

6

(
−R

4

∫ 1

z∗

d

dz

(
D2(S0)

)
(1− z) dz

)∫
Ω
|∇ s|2 =: µ

∫
Ω
|∇ s|2 .
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Figure 5. Definition of the point z∗ for (a): ST =1 and SB =0, (b): ST =1, SB = 1
2 , z∗=1, and

(c): ST = 1
2 , SB =0, z∗=0.

Integration by parts gives for µ

µ =
[
−R

4
D2

(
S0(z)

)
(1− z)

]1

z∗
− R

4

∫ 1

z∗
D2

(
S0(z)

)
dz =

=
R

4

∫ 1

z∗

[
D2(1

2
)−D2

(
S0(z)

)]
dz =

= 1
4

∫ 1
2

SB

D2(1
2
)−D2(S0)

F − k(S0)
D(S0) dS0 . (51)

The factor µ in (51) can be estimated by using F > k(ST)> k(1
2
) = 1

2
.

This gives, using D′(S) = 2(1−2S)D2(S) and
(
D(1

2
)−D(S)

)
/
(
k(1

2
)−

k(S)
)

= 2(1−2S),

µ < 1
4

∫ 1
2

SB

D2(1
2
)−D2(S0)

k(1
2
)− k(S0)

D(S0) dS0 6

6
1
4

∫ 1
2

0
2(1−2S0)

(
2+D(S0)

)
D(S0) dS0 =

6
1
2

∫ 1
2

0

D′(S0)

D(S0)
dS0 +

1

4

∫ 1
2

0
D′(S0) dS0 = 1

2
(ln2+ 1

2
) =: µ1 ,

with µ1≈0.5966.

(2) SB < ST < 1
2
. For this case we have z∗ = 0, see Figure 5(c). Again we

obtain for µ an expression similar to (51):

µ = 1
4

∫ ST

SB

D2(ST)−D2(S0)

F − k(S0)
D(S0) dS0 . (52)
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Figure 6. Plot of J(ST;ε) for 06ST 6
1
2 and several values of ε. The maximum is located at

ST≈0.2952, and its value is given by 0.9296.

For a given ST, SB and R>0, there exists a ε>0 such that F =k(ST)+ε.

Hence

µ = 1
4

∫ ST

0

D2(ST)−D2(S0)

k(ST)+ ε− k(S0)
D(S0) dS0 =: J(ST;ε) .

Since we could not find a closed form expression for J(ST;ε), we eval-

uate it numerically. This is rather straight forward since the presence

of ε> 0 makes the integral nonsingular. Note that J(ST;ε1)< J(ST;ε2)
when ε1 > ε2 for every 0 < ST < 1

2
. Maximizing J(ST;ε) for 0 < ST < 1

2

and ε↓0 gives µ<0.9296=:µ2 (see Figure 6). For the derivation of this

upperbound for µ, we have only used the soil properties D(S0) and k(S0).
As a consequence, this upperbound is rather crude.

(3) 1
2
6SB <ST 61. Now we have z∗=1, see Figure 5(b). This case is trivial

since γ1(S0)>0 for every 1
2
6SB <S0 6ST 61.

Remark 5. The case ST 6 SB is treated in a similar way. Now dS0

dz
> 0 and

F <k(ST). Hence γ2(S0)
dS0

dz
<0. Further,

γ1(S0) =





< 0 for 06ST <S0 < 1

2
,

> 0 for 1
2
<S0 <SB 61 ,

This implies a repetition of the derivation where now ST is replaced by SB

and vice versa. It gives the same estimates for µ.
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Finally, let µ = max{µ1,µ2}= 0.9296. Using µ and the fact that β= 1 in

(35), we obtain∫
Ω

s2
6 e−2(1−µ)t

∫
Ω

s2(0) 6

∫
Ω

s2(0) , (53)

with −2(1−µ)≈−0.1408.
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