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Steady Marangoni flow traveling with chemical fronts
L. Rongya� and A. De Witb�

Service de Chimie Physique et Biologie Théorique and Center for Nonlinear Phenomena
and Complex Systems, CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium

�Received 6 December 2005; accepted 16 February 2006; published online 25 April 2006�

When autocatalytic chemical fronts propagate in thin layers of solution in contact with air, they can
induce capillary flows due to surface tension gradients across the front �Marangoni flows�. We
investigate here such an interplay between autocatalytic reactions, diffusion, and Marangoni effects
with a theoretical model coupling the incompressible Navier-Stokes equations to a conservation
equation for the autocatalytic product concentration in the absence of gravity and for isothermal
conditions. The boundary condition at the open liquid/air interface takes the surface activity of this
product into account and introduces the solutal Marangoni number M representing the intensity of
the coupling between hydrodynamics and reaction-diffusion processes. Positive and negative
Marangoni numbers correspond, respectively, to the cases where the product decreases or increases
surface tension behind the front. We show that, in both cases, such coupled systems reach an
asymptotic dynamics characterized by a steady fluid vortex traveling at a constant speed with the
front and deforming it, with, however, an asymmetry between the results for positive and negative
M. A parametric study shows that increased propagation speed, front deformation, and possible
transient oscillating dynamics occur when the absolute value of M is increased. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2186313�
I. INTRODUCTION

Chemical fronts propagating at constant speed are well-
known examples of pattern formation resulting from the cou-
pling of diffusion and nonlinear reaction kinetics such as
autocatalysis.1–3 Their properties, studied experimentally in
gels to avoid any convection, are nowadays well
characterized.4 However, studies of the propagating veloci-
ties of these waves in aqueous solutions have sometimes
revealed behaviors that cannot be explained solely by
reaction-diffusion processes.

For example, wave fronts of the iodate-arsenous acid
reaction have long been noted to propagate with velocities
increasing with time in a thin layer of solution in contact
with air when iodate is in excess.5,6 Similarly, Bazsa and
Epstein have performed experimental studies of the velocity
of front propagation in the nitric acid-iron�II� reaction in Pe-
tri dishes open to the air.7 They noted that the velocity of the
waves depends on the depth of the solution layers and that
these two-dimensional �2D� waves do not travel at a constant
velocity but accelerate. Increasing the viscosity of the sol-
vent with either fine glass powder or with silica gel results in
constant propagation speed, independent of the geometric
parameters of the setup. Therefore it was suggested that con-
vection resulting from a combination of Marangoni and
buoyancy effects may play an important role in such
systems.8

The role of hydrodynamics in the evolution of chemical
systems driven far from equilibrium has long been empha-
sized in the case of spatial structures generated at diverse
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interfaces.9–13 In the case of chemical front systems, the spa-
tiotemporal distribution of heat and mass resulting from the
front propagation can affect the density, the viscosity, and the
surface tension of the reaction solution, thereby eventually
initiating convection.

Experimentally, convection was shown to influence tran-
sient precipitation patterns of BaSO4 behind the traveling
wave in the chlorite-thiourea-barium chloride reaction sys-
tem. The origin of these patterns is qualitatively discussed in
terms of coupling between thermocapillary �surface tension-
driven� and multicomponent �buoyancy-driven� convections,
via the formation of convective tori at the wave front.14–16

Other studies on hydrodynamic flow associated with chemi-
cal wave propagation are reported both in covered and un-
covered thin layers of the Belousov-Zhabotinskii �BZ� solu-
tion. Some papers report on oscillatory flow induced by
spiral waves and subsequent periodic deformation of these
waves,17–19 sometimes leading to their turbulent
decomposition,20 and to propagation of surface
deformation.21 An accelerating chemical wave, also called
big wave, accompanied by large hydrodynamic motions and
surface deformation propagation has also been experimen-
tally well characterized.22–26 Transduction of these chemi-
cally driven flows into spontaneous motion of an aqueous
droplet of BZ reaction medium on an oil phase has even been
evidenced.27,28 Since the BZ reaction is an exothermic reac-
tion involving surface-active compounds,29,30 inhomogene-
ities in surface tension or in density are supposed to play a
key role in these fluid motions even though detailed under-
standing of the underlying mechanisms and of their paramet-
ric dependence is still lacking.

The complexity of such experimental systems arises

from the fact that it is not always trivial to discriminate be-
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tween surface-tension-driven and buoyancy-driven convec-
tions. In addition, as the kinetics, the composition across the
front, and the heat released due to the exothermicity of the
reaction all depend on the initial concentrations of reactants,
it is clear that the relative importance of Marangoni and
buoyancy flows can vary in the parameter space for a same
reaction. In this framework, theoretical approaches are cru-
cial to discriminate the influence of the various effects thanks
to the analysis of model systems where only one type of
convective flow is active.

Theoretical studies of pure buoyancy-driven flows
around chemical waves propagating horizontally have shown
that these flows lead to a deformation and acceleration of the
front.31–36 Numerical comparison between Marangoni and
buoyancy-driven flows around BZ chemical waves have
been performed by Matthiessen et al. by numerically solving
modified Oregonator model equations coupled to the Navier-
Stokes equations.37 By the same type of approach, Diewald
et al. enlightened the capillary origin of oscillating flows
observed at the passage of BZ waves38 while Kitahata et al.
discussed the periodic motion of a BZ droplet floating on an
oil phase.27 The dynamics resulting from the coupling be-
tween pure Marangoni effects and bulk insoluble reactants
involved in an autocatalytic reaction occurring solely at the
surface has been modeled using lubrication theory by Dagan
and Pismen39 as well as Dagan and Maldarelli.40 Bistable
surface chemical reactions involving a single reactant sup-
plied from the bulk have also been considered theoretically
by Pismen in connection with Marangoni flows.41 In the
same spirit, coupling a bistable chemical reaction taking
place at the interface of a deep fluid and involving an in-
soluble surfactant to diffusion and Stokes equations, Pismen
pointed out the existence of interfacial solitary structures
generated by the reaction and stabilized by Marangoni
flow.42 Such interesting approaches are, however, linked to
reactions occurring only at the surface and fail therefore to
describe the deformations of chemical fronts in the bulk
where reactions also take place.

In this framework, it is the objective of this article to
study numerically the spatiotemporal dynamics of a model
chemical front subjected to solutal capillary forces in the
absence of gravity. Our goal is to characterize quantitatively
the acceleration and deformation of a front traveling in the
bulk of a reactive solution layer open to the air and subjected
to Marangoni flows driven by concentration variations across
the front. As the various chemo-hydrodynamic regimes ob-
served experimentally around propagating chemical waves
can be quite involved, we intentionally study here the sim-
plest possible model in order to understand what type of
dynamics can be expected from pure Marangoni effects in
the absence of gravity. In this regard, we focus on traveling
chemical fronts resulting from a one-variable cubic kinetics
coupled to diffusion. This allows to avoid complex flows
around pulses or wave trains and the necessity of considering
more than one chemical species. In the same spirit, we con-
sider that capillary flows are induced solely by concentration
gradients across the front, i.e., that thermal effects are negli-
gible here so that the reaction is treated as isothermal. This

approach allows us to characterize in detail chemically
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driven Marangoni flows and their dependence on the inten-
sity of the coupling parameter which is the Marangoni num-
ber. We show that, after a given transient, the reaction-
diffusion �RD�-convection system evolves towards an
asymptotic regime in which a steady vortex driven by the
soluto-capillary forces travels with the chemical front and
deforms it. Comparison of the dynamics for, respectively,
positive and negative Marangoni numbers is proposed.

The article is organized as follows. In Sec. II, we intro-
duce a simple model for an autocatalytic reaction producing
a surface-active species and capable of generating propagat-
ing fronts that we couple to molecular diffusion and Ma-
rangoni convection. The influence of concentration gradients
on surface-tension-induced capillary flows is related to the
boundary condition at the open liquid/air interface, introduc-
ing the solutal Marangoni number M increasing with the
intensity of the coupling. In Sec. III, we analyze the charac-
teristics of the capillary-induced flow and the nonlinear dy-
namics of the reaction-diffusion-convection front as a func-
tion of M. We observe the reach of an asymptotic dynamics
characterized by a constant propagation speed of a chemical
front deformed by an asymmetric convection roll. We com-
pare the properties of this asymptotic solitary reactive vortex
when the product decreases �M �0� or increases �M �0� the
surface tension behind the front, showing an asymmetry in
the results. Conclusions are drawn in Sec. IV.

II. MODEL AND NUMERICAL METHOD

A. Equations of motion

We consider a 2D thin aqueous solution layer of length
Lx and height Lz, corresponding to a vertical cut in a Petri
dish �see Fig. 1�. An isothermal planar chemical front pro-
ducing a surface-active species propagates along the x direc-
tion with the surface tension of the products �1 different
from that of the reactants �0. We assume no surface defor-
mation and no evaporation, so that the air layer is not con-
sidered here. We furthermore neglect the possible density
variations due to the chemical reaction and we regard the
solution density as constant in space and time. As a model
system, we consider the autocatalytic reaction

A + 2C → 3C . �1�

The kinetics of this reaction is given by f�c�=kac2 where k is
the rate constant for the reaction and a and c are the chemical
concentrations. This kinetics is capable of sustaining travel-
ing fronts between two different states when coupled to mo-
lecular diffusion and describes chemical systems such as the
iodate-arsenous acid redox reaction.1,6,43 We can reduce this

FIG. 1. Sketch of the system.
autocatalytic kinetics to the simple one-variable cubic ex-
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pression f�c�=kc2�a0−c�, where a0 is the initial reactant con-
centration, thanks to the stoichiometric relation locally valid
between a and c if we assume the diffusion coefficients of
both species to be equal. The only chemical variable is then
the concentration c of the autocatalytic product that we as-
sume to be surface active. The transport phenomena acting
on this species are molecular diffusion and convection of the
fluid. Hence, the governing equations for this system are
obtained by coupling the reaction-diffusion-advection equa-
tion for the surface-active substance to the incompressible
Navier-Stokes equations, namely,

�c

�t
+ �� . �c = D�2c + f�c� , �2�

���

�t
+ �� . ��� = ��2�� −

1

�0
�� p + g� , �3�

div �� = 0, �4�

where �� = �u ,w� is the 2D fluid velocity vector, p denotes the
pressure, and g� = �0,−g� is the gravity acceleration. The so-
lution density �0, the kinematic viscosity �=� /�0, where �
is the dynamic viscosity, and the molecular diffusion coeffi-
cient D are assumed to be constant.

Our rectangular system has rigid side walls, a rigid bot-
tom, and a free upper surface. At each boundary of this do-
main we require zero-flux boundary conditions for the
chemical concentration c. The hydrodynamic boundary con-
ditions at the rigid boundaries are no-slip conditions, u=0
and w=0. At the free surface we require w=0 and we use a
Marangoni boundary condition for the horizontal fluid veloc-
ity u to include the changes in surface tension induced by the
concentration gradient of the surface-active product across
the front:44

�
�u

�z
=

��

�x
at z = Lz, �5�

where � is the surface tension of the solution.
To nondimensionalize the problem, we introduce the di-

mensionless variables c�=c /a0, t�= t /�c, x�=x /Lc, z�=z /Lc,
���=�� /Uc, and p�= p / pc where we use the characteristic
scales of the reaction-diffusion system: for time, �c=1/ka0

2,

for length, Lc=�D�c, and for velocity, Uc=Lc /�c=�D /�c.
Here pc=�0ScD /�c where the dimensionless parameter Sc

=� /D is the Schmidt number. We define in addition a new
hydrostatic pressure gradient incorporating the constant
buoyancy term as ��p�=��p�−�0Lcg� / pc.

Dropping all the primes and incorporating a linear de-
pendence between the surface tension and the surfactant con-
centration, �=�0+ �d� /dc�c with �0 the surface tension of
pure water, we obtain the dimensionless evolution equations

�c

�t
+ �� . �c = �2c + c2�1 − c� , �6�

���
+ �� . ��� = Sc · �− �p + �2��� , �7�
�t
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div �� = 0, �8�

with the following boundary conditions:

�c

�x
= 0 = u = w, x = 0, x = Lx, �9�

�c

�z
= 0 = u = w, z = 0, �10�

�c

�z
= 0 = w, z = Lz, �11�

�u

�z
= − M

�c

�x
, z = Lz �12�

where Lx and Lz now represent, respectively, the dimension-
less length and height of the layer. Condition �12� is the
dimensionless form of Eq. �5� and introduces the dimension-
less solutal Marangoni number M:

M =
− 1

��Dk

d�

dc
. �13�

Notice that the Marangoni number is positive �negative� if
the surface-active product decreases �increases� the surface
tension behind the front. Marangoni numbers are usually de-
fined in the literature using hydrodynamic characteristic
scales but here we have used the characteristic scales of the
reaction-diffusion system so that we obtain a chemical Ma-
rangoni number inversely proportional to the square root of
the kinetic constant k of the chemical reaction. This number
quantifies the coupling strength between the hydrodynamic
motions and the RD processes and is therefore the key pa-
rameter of our model.

The initial condition corresponds to a planar reaction-
diffusion front propagating in a solution in the absence of
any fluid flow. Hence, the initial fluid velocity and the hy-
drostatic pressure gradient are zero everywhere in the sys-
tem. The initial condition for the surface-active product con-
centration is the convectionless RD profile.

In Sec. III we perform the numerical integration of the
dimensionless model ��6�–�12�� in order to characterize the
hydrodynamic motion initiated by the Marangoni effects and
its influence on the RD front dynamics. In this framework,
let us first recall the properties of such a front in the absence
of flow.

B. Reaction-diffusion front

In the absence of flow, i.e., for a Marangoni number
equal to zero, Eq. �6�–�8� with �� =0 reduce to

�c

�t
= �2c + c2�1 − c� . �14�

The c=1 solution is the kinetically stable chemical
steady state corresponding to the reaction products invading
the c=0 solution corresponding to the marginally stable fresh
reactants. Equation �14� allows exact analytical integration

1,6,43
and admits as solution the following propagating front:
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c�x,t� =
1

1 + e�x−�t�/�2
=

1

2
�1 + tanh�−

�2

4
�x − �t��	 ,

�15�

where � is the constant RD speed of the front, equal to

� = �2/2. �16�

The width wRD of this front, arbitrarily defined as the dis-
tance between c=0.99 and c=0.01, equals

wRD = 2�2 ln 99 = 13. �17�

This planar chemical front results from the coupling between
diffusion and autocatalytic reaction �1� and corresponds to
the products �c=1� invading the reactants �c=0� with a con-
stant speed � and a constant width wRD. Let us note that other
definitions of the width of the front could have been used.45

Our definition has the advantage of allowing for an easy
study of the deformation of the front by Marangoni flows in
the depth of the layer by a simple tracking of the c=0.01 and
c=0.99 isoconcentration lines as will be shown in Sec. III.

C. Numerical method and validation studies

To analyze the nonlinear dynamics of a chemical front
propagating in the presence of a Marangoni effect, we inte-
grate the governing equations of our reaction-diffusion-
convection model numerically. Equations �6�–�8� are solved
in primitive variables by a finite-difference method. The do-
main is discretized using a uniform rectangular mesh. For-
ward differences in time and second-order central differences
in space are used to discretize the partial differential equa-
tions. Our numerical code uses a semi-implicit projection
method in which only the pressure gradient term in Eq. �7�
and the continuity equation �8� are treated implicitly. At each
time step, the new product concentration c is calculated and
the computation of the velocity field is split into two sub-
steps. In the first one, a provisional nonsolenoidal velocity
field is calculated neglecting the pressure gradient term in
Eq. �7�. In the second substep, the pressure field is calculated
from a Poisson equation by means of a successive over-
relaxation �SOR� iterative method46 with the boundary con-
ditions prescribed by Gresho and Sani.47 The accuracy of the
solution for the pressure is fixed to 10−6. The provisional
velocity field is next projected onto the space of divergence-
free velocity fields using the computed pressure field.

Our numerical code has been validated through compari-
son with known analytical results. When the Marangoni
number M is equal to zero, we numerically recover the pla-
nar traveling front �15� with the correct speed �16� and width
�17�. To check the accuracy of the integration of the incom-
pressible Navier-Stokes equations we tested that we repro-
duce the analytical results for the return flow that develops in
an infinite thin layer of solution when the temperature of the
free surface is fixed at T=x, where x is the horizontal
coordinate.44

The solutions of Eqs. �6�–�8� were found to converge on
decreasing the temporal and spatial step sizes. Our integra-
tion mesh is rectangular because a higher precision is neces-

sary in the z direction along the thin layer thickness than in
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the front propagation direction x. Indeed, the convective mo-
tions are initiated through boundary condition �12� involving
an important gradient along z, whereas the gradients along x
are less sharp. Typically the spatial step sizes are dx=0.5 and
dz=0.25. The corresponding time step is dt=5.10−6.

III. CHEMICALLY INDUCED MARANGONI
CONVECTION AND INFLUENCE ON THE FRONT
PROPAGATION: NONLINEAR DYNAMICS

In this section, we present the results of the numerical
integration of Eqs. �6�–�8� subjected to the boundary and
initial conditions described in Sec. II A. Our model includes
four dimensionless parameters: two hydrodynamic param-
eters, the Marangoni number M and the Schmidt number Sc,
and two parameters related to the domain geometry, Lx and
Lz. The Marangoni number here is a measure of the interac-
tion strength between the reaction-diffusion processes and
the hydrodynamic flow, and will therefore be progressively
increased to consider an increasingly important coupling. We
compute a typical Schmidt number, Sc=� /�0D, from the vis-
cosity and the density values of water. To work with realistic
values of the diffusion coefficient D of species involved in
autocatalytic reactions,2,43 we use D in the range �0.7–2�
	10−5 cm2/s. This gives a range of Schmidt numbers vary-
ing between 500 and 1500. The numerical results are quan-
titatively the same whatever value we choose between those
limits, which means that we effectively analyze a Stokes
flow. The length of the system, Lx, as well does not influence
the numerical results provided that the system is long enough
for the lateral boundaries not to affect the dynamics. The
value of the dimensionless layer thickness, Lz, is taken as in
the same order of magnitude as the dimensionless width of
the RD front �wRD=13� because we consider a quite thin
layer up to 1 mm in thickness, which is more or less the
order of magnitude of the width of a chemical front.6 There-
fore, Lz was chosen to be equal to 10.

Let us now consider the spatiotemporal evolution of this
system. When M =0, no hydrodynamic motion appears in the
solution and the planar front propagates without any defor-
mation at the constant RD propagation speed �. When the
Marangoni number differs from zero, we need to consider
two different situations according to the sign of M.

A. Positive Marangoni numbers

Let us first consider the case of positive Marangoni num-
bers for which the product decreases the surface tension be-
hind the front. We can then observe the onset of a surface-
tension-driven flow due to the concentration gradient of the
surface-active product across the front. At the surface the
flow is initiated towards the region with larger surface ten-
sion, here the reactants, i.e., in the same direction as the RD
speed. This surface flow towards the right induces a bulk
flow in the opposite direction since we consider an incom-
pressible flow in a closed system. The influence on the
chemical front propagation of such Marangoni-driven con-

vection is shown in Fig. 2 for a Marangoni number equal to
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100. The dynamics is represented by two-dimensional den-
sity plots of the product concentration ranging from c=0
�white� to c=1 �black� for increasing time.

First the front is accelerated at the surface because of the
capillary flow induced by the surface tension gradient. This
surface acceleration is followed by initiation of a return flow
in the bulk. A convection roll develops in the layer and in-
duces a visible distortion of the front into the depth. The
width of the deformation zone increases on the short times
but, quite rapidly, a solitary structure consisting in a flow
vortex surrounding the propagating front reaches an
asymptotic constant speed and steady shape. Typically, after
25 �c, a stationary regime is reached in which the front
propagates at a constant speed V six times larger than the RD
speed � without convection. The front distortion and the fluid
velocity field remain invariant in the comoving frame. Our
numerical results indicate that the asymptotic velocity field
traveling with the front is an asymmetric convection roll lo-
calized in the region of the front. As �� is zero everywhere
else in the system, the focus of Fig. 3 is put only on the
region of the deformed front. This convection roll is asym-
metric along both directions with a pronounced downward
flow of short spatial extent at the tip and a weaker upward
flow distributed over a broader zone at the back. As seen in
Fig. 3, the convection roll is not exactly centered on the front
but slightly shifted forward and localized at the tip of the
front.

Due to the convective motions, the translation symmetry
along the z direction has been broken and the concentration
profiles taken at different heights are more stretched than
those without convection. The asymptotic width wRDC of the

FIG. 2. Propagation of a chemical front in the presence of chemically in-
duced Marangoni convection for M =100 shown from top to bottom from
t=0 up to t=50 with a time interval of �t=5. The aspect ratio between Lx

=350 and Lz=10 is preserved.
Downloaded 26 Apr 2006 to 164.15.129.102. Redistribution subject to
transition zone between the products �at c�0.99� and the
reactants �here with c�0.01� is now a function of z and is
larger than the RD front width wRD �Eq. �17��. Our results
show that wRDC�z� is maximum around z=6.5 for all the
positive Marangoni numbers we have studied. For M =100,
the maximum width is equal to 80.0±0.5, namely, more than
six times the reaction-diffusion front width wRD given by
�17�, this effect increasing with M.

For values of the Marangoni number typically larger
than M =220, several convection rolls initially appear lead-
ing to a wavy-concentration profile �Fig. 4�. The number of
vortices increases at the beginning but they disappear after a
short time as the transient velocity field evolves towards one
final convection roll traveling with the asymptotic front. The
larger M, the more pronounced the oscillations of concentra-
tion and fluid velocity, but for each value of the Marangoni
number we have screened �i.e., 0
M 
1000� the system
reaches an asymptotic dynamics after roughly the same time
�around 25 �c�. Therefore it is interesting to characterize this
asymptotic dynamics as a function of M by comparing the
deformation of the front, its constant propagation speed, and
the asymptotic convection roll traveling with this front.

To do so, the steady 2D concentration field c�x
−V�M�t ,z� traveling at the constant propagation speed V�M�
can be spatially averaged along the z coordinate to yield the
one-dimensional averaged profile

FIG. 3. Focus on the asymptotic
asymmetric convection roll traveling
with the deformed front for M =100.
Due to the thinness of the layer, the
aspect ratio of such plots is not re-
spected here but the z direction has
been magnified in order to see the de-
tails of the velocity field.

FIG. 4. Transient oscillating deformation of a chemical front due to chemi-
cally induced Marangoni convection at high Marangoni number �M
=1000�. The dynamics is shown from top to bottom from t=0 up to t=15
with a time interval of �t=1. The aspect ratio between Lx=350 and Lz

=10 is preserved.
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c�x − V�M�t�� =
1

Lz
�

0

Lz

c�x − V�M�t,z�dz .

This averaged profile can then be used to define the tip and
rear of the deformed front. The tip is chosen arbitrarily as the
position along x in front of which the averaged concentration
is less than 0.01, and the rear corresponds on the other hand
to the position behind which the averaged concentration is
larger than 0.99. The distance between the tip and the rear of
the front can typically characterize the deformation of the
front since it represents the extent of the transition zone be-
tween 
c�=1 and 
c�=0 which we will refer to as the mixing
length. Figure 5�a� shows the mixing lengths computed as a
function of time for various M. If M =0, the mixing length is
constant and corresponds to the width wRD of the RD front
given by �17�. For M �0, the mixing lengths increase on the
short times, representing the initial growth of the deforma-
tion zone. Next, there is saturation to a constant mixing
length W characterizing the extent of the asymptotic defor-
mation of the front. This saturation appears around the same
time for the various Marangoni numbers, but the larger M,
the more important the initial growth, and consequently, the
larger W, as shown in Fig. 5�b�.

Due to the presence of convective motions in the solu-
tion, the deformed front propagates at a constant speed V

FIG. 5. �a� Mixing lengths as a function of time for various positive Ma-
rangoni numbers, M =0, 20, 100, 180, 260, 340, 420, and 500 from bottom
to top and �b� asymptotic mixing length W as a function of the Marangoni
number.
��. This asymptotic speed V, determined as the slope of the
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position of the tip as a function of time in the steady regime,
is seen to increase nonlinearly with M �Fig. 6�.

To characterize the convective motions, we plot the
maximum absolute value of the asymptotic horizontal veloc-
ity u as a function of M �Fig. 7�. The maximum value is
always at the surface where u�0 and is directed towards the
reactants. We can notice that this maximum value is propor-
tional to the square root of M. Another way to describe the
asymptotic convection roll is to compare the velocity profiles
taken at different heights for various M. However, the trav-
eling speed of the roll, V, is a function of M, which makes a
direct comparison difficult. Therefore, we arbitrarily define a
new reference frame by shifting the position of 
c�=0.5 to
the same point x�=0 for all Marangoni numbers. The veloc-
ity and concentration profiles can then be compared in the
same reference frame x−x
c�=0.5 for different M. It also al-
lows us to check the reach of the asymptotic regime by su-
perposing the concentration and velocity profiles at different
times starting from t=25 �c.

Three types of asymptotic fluid velocity profiles �the
horizontal velocity u at the surface and in the middle of the
layer, and the vertical velocity w in the middle of the layer�
are shown in Fig. 8 for different Marangoni numbers in the

FIG. 6. Asymptotic propagation speed V of the chemical front as a function
of the Marangoni number.

FIG. 7. Maximum absolute value of the asymptotic horizontal velocity u as
a function of the Marangoni number. The broken line represents a square

root fit of the numerical data.
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new comoving frame. These figures depict the asymmetry of
the convection roll along both directions: the frontal parts of
the profiles are stiffer than their back along x and the tangen-
tial velocity u is already negative at z=Lz /2, indicating that
the position along z of zero velocity is shifted towards the
surface. The asymmetry along x and the width of the con-
vection roll increase with M, which can be correlated to the
asymptotic averaged and surface concentration profiles,
which are wider and more asymmetric at larger M �see Fig.
9�. On the other hand, the vertical position of zero velocity is
more or less independent of the Marangoni number we took,
as can be seen in Fig. 10 representing the asymptotic profiles
of the horizontal fluid velocity u across the layer. Those ver-
tical cuts are performed at the position along x where u is
maximum for the various M and indicate that the flow
changes its direction around z=2Lz /3 independently of the
value of M. In the same way, the maximum and minimum
values of u are located at the same heights of the layer, i.e.,
respectively, at the surface and at roughly Lz /3. On the con-
trary, the extrema of the u and � profiles along x are further
away from the position of 
c�=0.5 when M increases. This is
due to the fact that the convective motions are generated at
the surface following the gradient of the surface-active prod-
uct concentration. The convection roll is then localized on

FIG. 8. Asymptotic profiles of �a� the horizontal velocity u at the surface
�dashed lines� and in the middle of the layer �solid lines� and of �b� the
vertical velocity w in the middle of the layer represented in the comoving
frame for increasing positive Marangoni numbers between 20 and 500 with
an interval of 80 between two successive curves. The dot-dashed curve
corresponds to M =0 when there is no convection.
the surface front whose distance from the averaged front in-
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creases with M since the deformation of the planar front is
more pronounced at large M. This can be observed in Fig.
9�b� where we see that the larger M, the further the surface
concentration profile from x=x
c�=0.5. A discussion of the

properties of those profiles is given in Sec. III C.

FIG. 9. Asymptotic profiles of �a� the averaged concentration 
c� and of �b�
the surface concentration represented in the comoving frame for increasing
positive Marangoni numbers between 20 and 500 with an interval of 80
between two successive curves. The dot-dashed curve corresponds to the
RD profile.

FIG. 10. Asymptotic profiles of the horizontal fluid velocity u across the
layer at x=xu=umax

for increasing positive Marangoni numbers between 20
and 500 with an interval of 80 between two successive curves. The dot-

dashed curve corresponds to M =0 when there is no convection.
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B. Negative Marangoni numbers

Let us now consider the case of negative Marangoni
numbers for which the product of the reaction increases the
surface tension behind the front. Consequently, the flow is
initiated at the surface towards the region of the products, in
the direction opposite to that of the RD front propagation. In
that case, the system also reaches an asymptotic dynamics,
but earlier than for M �0. After usually roughly 10 �c, the
front already propagates to the right at a constant speed and
with an asymptotic shape �see, for example, Fig. 11 for M
=−100�. The deformation of the planar front is in the oppo-
site direction compared with positive M. The asymptotic
convection roll traveling with this front is also asymmetric in
both directions but rotates now counterclockwise �Fig. 12�.

As for M �0, the translation symmetry along the z di-
rection is broken and hence, the steady width of the transi-
tion zone between the products and the reactants, wRDC, is
also a function of z. But, in this case, the effect of convection
is different in the lower part of the layer where wRDC is
smaller than the RD width wRD. In the upper part, wRDC

�wRD and increases with M. The position of maximum
wRDC is higher than for M �0 and is localized between z
=8.0 and z=9.0.

When we increase the absolute value of M, we do not
observe the transient wavy-concentration profile as for M
�0, but there is an additional deformation of the front that
increases with M �see Fig. 13 for M =−1000�. However, this
deformation does not disappear but corresponds to an
asymptotic modulation in the asymptotic velocity and aver-
aged concentration profiles, presented, respectively, in Figs.
14 and 15�a�. The velocity profiles show that the convection
roll here is constituted of a pronounced upward flow at the
tip and a weaker downward flow at the back with larger

FIG. 11. Propagation of a chemical front in the presence of chemically
induced Marangoni convection for M =−100 shown from top to bottom from
t=0 up to t=50 with a time interval of �t=5. The aspect ratio between Lx

=350 and Lz=10 is preserved.
Downloaded 26 Apr 2006 to 164.15.129.102. Redistribution subject to
spatial extent. This is similar to the situation of positive M,
except for the rotating direction determined by the sign of
the surface tension gradient. This asymmetry along x as well
as the width of the roll increase with M but those effects are
much less pronounced than for M �0. The asymptotic aver-
aged and surface concentration profiles exhibit the same be-
havior but it is noticeable that only the back of these profiles
is affected by the convection in a significant way �see Fig.
15�. To end up with the characterization of the velocity pro-
files along x, let us notice that the global extrema of those
profiles are more or less localized at the same distance from

c�=0.5 for each M �0 which is different from the case of
M �0. Figure 16 represents the asymptotic profiles of u
across the layer, taken at the position along x where u is
maximum for various negative M. We can observe that the
flow changes its direction and reaches its extremum values at
the same heights for the different M and independently of
their sign �cf. Fig. 10�.

We have next made a comparison of the properties of the
asymptotic dynamics for both positive and negative Ma-
rangoni numbers. Figure 17�a� shows that the asymptotic
mixing length W of the front also increases with negative M
but in a less pronounced way. The same observations apply
to the propagation speed V of the nonlinear front and con-
vection roll, but still indicating that the front always propa-
gates faster in the presence of convection than by RD mecha-
nisms, even if this effect is less pronounced for M �0 �see
Fig. 17�b��. On the contrary, when we plot the maximum
absolute value of the asymptotic horizontal velocity u as a
function of M �see Fig. 17�c��, we can observe that the con-
vective motions are more important for M �0. In that case,
the maximum value is also located at the surface where u
�0 and is directed towards the products. Moreover, the

FIG. 12. Focus on the asymptotic
asymmetric convection roll traveling
with the deformed front for M =−100.
The z direction is magnified compared
with the x direction, cf. caption of Fig.
3.

FIG. 13. Propagation of a chemical front in the presence of chemically
induced Marangoni convection with apparition of an additional deformation
for M =−1000. The dynamics is shown from top to bottom from t=0 up to
t=50 with a time interval of �t=5. The aspect ratio between Lx=350 and
Lz=10 is preserved.
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maximum value of u is not proportional to the square root of
M but is a linear function of negative Marangoni numbers
for M 
−60.

C. Discussion

The different characteristics of the dynamics between
M �0 and M �0 could be explained by the fact that the flow
induced at the surface is then, respectively, parallel or anti-
parallel to the propagation direction of the front. Since con-
vection is driven and sustained by forces at the surface, we
expect these two situations to lead to different effects. First
of all, let us recall that increasing the absolute value of M
enhances the deformation of the front, leading to a weaker
concentration gradient at the surface �larger wRDC at z=Lz�.
However, as already observed by Dagan and Pismen in
chemically induced Marangoni convection,39 the intensity of
the total surface force, given by M�cs /�x, where cs=c�z
=Lz�, always increases with M. Furthermore, we have ob-
served that the maximum absolute value of the horizontal
fluid velocity u is proportional to the maximum value of
M�cs /�x. Since the propagation of the front for M �0 op-
poses the direction of the flow, we expect the effects of the
convection on the chemical front properties to be weaker

FIG. 14. Asymptotic profiles of �a� the horizontal velocity u at the surface
�dashed lines� and in the middle of the layer �solid lines� and of �b� the
vertical velocity w in the middle of the layer, represented in the comoving
frame for decreasing negative Marangoni numbers between −20 and −500
with an interval of 80 between two successive curves. The dot-dashed curve
corresponds to M =0 when there is no convection.
than for M �0. In particular, we expect a weaker deforma-

Downloaded 26 Apr 2006 to 164.15.129.102. Redistribution subject to
tion of the front �smaller wRDC at z=Lz�, leading to a larger
surface force and hence to a larger maximum value of u.
Indeed, we have measured that for the same absolute value
of M, the driving force of convection is more important at
M �0, leading to the properties of Fig. 17�c�. This could also
possibly explain the reach of the stationary dynamics in
terms of two opposed processes: the surface force, generated
by the concentration gradient, enhances convection, which in

FIG. 15. Asymptotic profiles of �a� the averaged concentration 
c� and of �b�
the surface concentration, represented in the comoving frame for decreasing
negative Marangoni numbers between −20 and −500 with an interval of 80
between two successive curves. The dot-dashed curve corresponds to the
RD profile.

FIG. 16. Asymptotic profiles of the horizontal fluid velocity u across the
layer at x=xu=umax

for decreasing negative Marangoni numbers between
−20 and −500 with an interval of 80 between two successive curves. The

dot-dashed curve corresponds to M =0 when there is no convection.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



164705-10 L. Rongy and A. De Wit J. Chem. Phys. 124, 164705 �2006�
turn spreads out the front and acts as to decrease the concen-
tration gradient. For M �0, the more direct opposition be-
tween the chemical front propagation to the right and the
surface fluid motion to the left can lead to an earlier reach of
the stationary dynamics. However, different time scales be-
tween hydrodynamics and reaction-diffusion processes cer-
tainly play a role in these behaviors too and should be inves-
tigated in more detail to complete this hypothesis.

The fluid velocity field also exhibits differences follow-
ing the sign of M, but the asymmetry along both the x and z
directions is a common property. The height where the flow
changes its direction is shifted towards the surface, and pre-

FIG. 17. �a� Asymptotic mixing length W, �b� propagation speed V, and �c�
maximum absolute value of the asymptotic horizontal velocity u as a func-
tion of the Marangoni number.
liminary results with different layer thicknesses Lz indicate

Downloaded 26 Apr 2006 to 164.15.129.102. Redistribution subject to
that the position of zero velocity would be located around
z=2Lz /3. The asymmetry along x can be explained by con-
sidering the asymptotic concentration profiles at the surface
�Figs. 9�b� and 15�b��. We have noticed that the position
where the concentration gradient and hence the surface ten-
sion gradient are maximum is at the very tip of the front,
where the concentration of the product is nearly zero. This
leads to an asymmetric profile of the surface force,
M�cs /�x, and therefore to an asymmetry in the velocity
profiles, independently of the sign of M �Figs. 8 and 14�.
However, the extrema of these profiles behave differently in
the two situations. This may also find its origin in the surface
concentration profiles. For positive M, the concentration pro-
file extends further away from 
c�=0.5 when M increases,
leading to a shift of the maximum concentration gradient,
and consequently of the fluid velocity extrema. On the con-
trary, the end of the concentration profile is nearly unaffected
by the variation of negative M, which explains that the ex-
trema of the fluid velocity are localized at the same position
in the comoving frame.

IV. CONCLUSIONS

We have numerically characterized the nonlinear dynam-
ics resulting from the interaction of a chemical front with a
pure solutal Marangoni effect induced by the concentration
gradient at the surface of the solution layer. We find that
when an autocatalytic chemical front propagates in the pres-
ence of chemically induced Marangoni convection, the sys-
tem reaches an asymptotic dynamics characterized by a con-
vection roll surrounding the reaction front and deforming it.
In this asymptotic regime, the front propagates at a constant
speed V, which is larger than the RD speed � and which
increases with the Marangoni number M, measuring here the
intensity of the coupling between RD processes and hydro-
dynamics. The reaction-diffusion-convection front is not pla-
nar anymore but deformed across the layer. However, its
shape as well as the fluid velocity field are steady in a refer-
ence frame moving with velocity V. The steady traveling
velocity field corresponds to an asymmetric convection roll
localized in the region of the front.

We have shown that, for a similar intensity of the cou-
pling, the stationary regime is reached sooner and the con-
vective motions are more important when M �0 �product
increasing the surface tension� than when M �0 �product
decreasing the surface tension�. However, the deformation of
the front and its propagation speed are more important for
M �0. This difference of behavior can mainly be explained
by the fact that the flow induced at the surface is, respec-
tively, parallel �M �0� or antiparallel �M �0� to the direc-
tion of front propagation.

This work calls for further extensions. First of all, it
would be of interest to understand the nature of the transient
oscillatory dynamics arising at large positive Marangoni
numbers, when the product decreases the surface tension be-
hind the front. For M �0, no transient oscillations are ob-
served but a stationary additional deformation propagates
with the front. The difference between these behaviors still

remains to be investigated. After characterizing the interac-
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tion of a chemical front with a pure solutal Marangoni insta-
bility, it would be interesting to see how this system couples
to buoyancy-driven instabilities. In particular, the depen-
dence of the asymptotic dynamics on the layer thickness
should be investigated both for pure Marangoni effect and
for the two coupled hydrodynamic instabilities. Indeed, the
depth dependence of the dynamics has received much inter-
est in various chemical systems.7,8,15,16,24–26 Next, different
effects may be progressively added to the model, such as the
thermal effects linked to the enthalpy of the reaction8,16 or to
evaporative cooling arising in uncovered layers.9
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