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Steady Movement of Landslides in Fine-Grained Soils- 

A Model for Sliding Over an Irregular Slip Surface

By Rex L. Baum 1 and Arvid M. Johnson"

Abstract

Slip-surface roughness can control the velocity of land 

slides in soils. Field observations indicate that many landslides 

in soils move by gliding on slip surfaces. Slip surfaces have 

asperities, including broad steps, depressions, and bumps that 

can obstruct landslide movement. Landslides typically deform 

at the asperities in order to stay in contact with the slip surface. 

Slip-surface asperities can retard the movement of landslides in 

soils, as asperities retard the movement of temperate glaciers 

sliding on bedrock surfaces.

An irregular slip surface can control the velocity of a 

landslide by causing redistribution of pore water near the slip 

surface. In order to study the effects of this redistribution, we 

have modeled a landslide, moving over an irregular slip sur 

face, as a porous-elastic solid sliding past a wavy rigid surface. 

According to our model, water is forced to flow from zones of 

high pressure at the proximal sides of bumps and is sucked into 

zones of low pressure on the distal sides of bumps. Resistance 

to sliding resulting from the irregularity of the surface augments 

the shear strength of the slip surface. The analysis indicates that 

the resistance to sliding depends on the roughness of the slip 

surface, the velocity of the landslide, the hydraulic conductiv 

ity of the landslide debris, and the wavelength of the bumps. 

Other things being equal, landslides in soils having low 

hydraulic conductivity should move more slowly than land 

slides in soils having moderate or high hydraulic conductivity.

Our model is consistent with the observations of other 

workers who found that the velocity of a landslide increases 

gradually as the water level in the landslide rises. An increasing 

water level generally results in decreased shear strength at the 

slip surface. For example, it is known from the infinite slope 

analysis that the strength of the landslide debris decreases as 

the water table rises, but the driving force is constant. Accord 

ing to our model, the resistance to sliding (due to roughness of 

the slip surface) increases to compensate for the loss in 

strength. For the mechanism of sliding we have analyzed, the 

resistance due to roughness is proportional to the velocity of 

the landslide. Thus, as the water table rises, the landslide

Approved for publication February 26,1992. 
1 U.S. Geological Survey, Box 25046, MS 966, Denver, CO 80225. 
2Dept. of Earth and Atmospheric Sciences, Purdue University, West 

Lafayette, IN 47907.

accelerates until the resistance to sliding over the irregular sur 

face increases sufficiently that it, combined with the strength of 

the slip surface, balance the driving force.

INTRODUCTION

Surface roughness has been recognized as a source of 
sliding resistance in rock slopes (Patton, 1966), glaciers 
(Kamb, 1970) and faults (Byerlee, 1970). However, surface 
roughness has only recently been recognized as a source of 
significant sliding resistance for landslides in soils (Baum, 
1988; Dounias and others, 1988; Mizuno, 1989). The basal 
and lateral slip surfaces of landslides in soils are irregular; 
they have bumps, steps, depressions, and other features. The 
roughness of these surfaces can retard movement of a land 
slide so as to control its velocity.

Observations show that many landslides move for 
weeks, months, or even longer at rates ranging from less than 
a millimeter per day to a few meters per day. Keefer and 
Johnson (1983, p. 44, 45) compiled data from many sources 
on the maximum and average velocities of landslides in 
soils. The average velocities range from 10~5 to 10 m/d 
(meters per day), and the maximum velocities range from 
10~3 to 104 m/d (maximum velocities ranging from 102 to 10 
4 m/d were attained during surges).

Landslides commonly move at constant rates for peri 
ods of several days. These periods are interrupted by shorter 
periods (lasting perhaps several minutes) of acceleration and 
deceleration. However, sustained acceleration resulting in 
very rapid movement rarely occurs (Keefer and Johnson, 
1983, p. 46-48).

Steady movement of landslides cannot be explained in 
terms of slope stability theory, which predicts that a land 
slide will accelerate indefinitely as soon as the driving forces 
exceed the frictional and cohesive resisting forces on the slip 
surface (Keefer and Johnson, 1983, p. 48, 49). For example, 
according to slope-stability theory, a slight increase of pore- 
water pressure at the slip surface of a landslide at limiting

Steady Movement of Landslides in Fine-Grained Soils D1



equilibrium ought to cause the landslide to accelerate with 
out bound.

Field measurements show that velocities of landslides 
increase gradually with increasing pore-water pressures. 
Terzaghi (1950, p. 120) observed a linear relationship 
between water level and velocity in a landslide that was 
about 40 m deep. The velocity increased from about 60 
mm/d when the water level was 3.0 m below the ground sur 
face to about 200 mm/d when the water level was only 1.0m 
below the ground surface. Rybdr (1968, p. 140) observed 
that a landslide, 5.4 m deep, accelerated from rest to about 8 
mm/d as water levels increased by 1 m. The velocity of a 
landslide in Japan increased from about 1 mm/d to 13 mm/d 
as the water level in a borehole rose about 2 to 2.5 m (Japan 
Society of Landslide, 1980, p. 9). Similar findings were 
reported by Iverson (1986).

A popular model used to explain the steady movement 
of landslides is inconsistent with some field observations. In 
the model, the velocity at the basal boundary of the landslide 
is assumed to be zero, and flow of soil is assumed to occur in 
a layer of material above the basal boundary (Ter-Stepanian, 
1965; Yen, 1969; Keefer, 1977; Suhayda and Prior, 1978; 
Craig, 1981; Savage and Chleborad, 1982; Iverson, 1986; 
and others). This model is usually justified on the basis of 
inclinometer profiles; however, deformation of an inclinom 
eter tube might not bear a close resemblance to the deforma 
tion of the soil containing the tube. In fact, field observations 
(Keefer and Johnson, 1983; Hutchinson, 1970; Prior and 
Stephens, 1972; Niigata Laboratory, 1973) indicate that the 
main body of a landslide moves primarily by sliding. Fur 
thermore these observations show that the velocity at the 
basal slip surface nearly equals the velocity at the ground 
surface, and deformation is concentrated near the slip 
surface.

A possible explanation for the steady movement of 
landslides in soils is that strength of material at the slip sur 
face is velocity dependent, although this explanation is dis 
counted by several investigators. Keefer and Johnson (1983) 
determined that the shear strength of a sample of landslide 
slip surface increased linearly with the log of the velocity, so 
that the strength of the material tested increased only 2.5 per 
cent for each tenfold increase in velocity. They concluded 
that such an increase is too small to account for the steady 
movement of landslides. Similar results were obtained by 
Kenney (1968), Ramiah and Purushothamaraj (1971), and 
Mitchell (1976, p. 292), who indicate that shear strength of 
soils generally increases 5 to 10 percent for each tenfold 
increase in rate of deformation. Recently, however, Skemp- 
ton and others (1989) have argued that this small velocity 
dependence of the strength could explain the movements of 
the Mam Tor landslide in England.

In this study, we investigated how roughness might 
control the rate of movement of a landslide that moves 
mainly by sliding on a basal slip surface as an alternative to 
models that attempt to explain steady movement by means of 
viscous flow or rate-dependent shear strength.

Similarities between the movement of glaciers and the 
movement of landslides in soils indicate that the mechanisms 
that control the rate of sliding of temperate glaciers may be 
analogous to that of landslides (Keefer and Johnson, 1983, p. 
53). Both glaciers and landslides move slowly and steadily, 
and some temperate glaciers are known to move by sliding 
over irregular bedrock surfaces (Kamb and LaChapelle, 
1964). Surface roughness (unevenness of the bedrock sur 
face) has been shown to retard movement of temperate gla 
ciers; regelation and plastic deformation of the ice make 
sliding on the rough surfaces possible (Kamb and 
LaChapelle, 1964; Lliboutry, 1968; Budd, 1970a; Kamb, 
1970; Nye, 1969, 1970; Morland, 1976a, 1976b). In regela 
tion, water moves around asperities by melting of ice at the 
proximal sides and refreezing at the distal sides of asperities. 
The rate of regelation is controlled by the rate of heat transfer 
in the ice and in the bedrock. In plastic deformation, solid ice 
flows around asperities. The rate of plastic deformation is 
controlled by the rheological properties of the ice.

Similarly, surface roughness could retard movement 
of landslides. Sliding over a rough surface might cause 
movement of pore fluid, due to consolidation and swelling, 
as well as plastic deformation of landslide debris. Consolida 
tion at the proximal sides and swelling at the distal sides of 
asperities might play a role corresponding to that of regela 
tion in glaciers. The rate of consolidation and swelling is 
controlled by the movement of water, which is related to the 
permeability of the soil. Henceforth, this mechanism is 
called forced circulation, because volume change of the soil 
forces water to circulate from places of high pressure to 
places of low pressure. Plastic deformation around the obsta 
cles might be distributed as plastic flow, or localized on slip 
surfaces that form within the landslide debris. In either case, 
plastic deformation will resist sliding. No matter what the 
mechanism of deformation during sliding, the asymmetric 
pressure distribution that occurs at the slip surface during 
sliding results in a net force opposing sliding of the soil. 
Mizuno (1989) analyzed a possible mechanism of plastic 
deformation by assuming that deformation in an active land 
slide is analogous to deformation that occurs during 
undrained triaxial creep tests, and derived an equation for 
predicting the velocities of landslides in clayey soils. Forced 
circulation of pore fluid around asperities is the model inves 
tigated here, as an alternative rate-dependent process to 
explain the steady movement of landslides. We cannot cou 
ple forced circulation and plastic flow in a simple way, and 
we have neglected plastic deformation in order to make our 
analysis as simple as possible.
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SLIP SURFACES IN LANDSLIDES

The analogy we proposed between the mechanisms 
that control the rate of movement of landslides and the mech 
anisms that control the rate of movement of some temperate 
glaciers is reasonable if landslides move by gliding over 
irregular surfaces, as do the glaciers. We describe slip sur 
faces of landslides in clayey soils in order to show that the 
slip surfaces of many such landslides could be sufficiently 
bumpy to retard landslide movement.

Slip surfaces in clayey materials form in thin layers of 
parallel clay particles where deformation has been concen 
trated. Hutchinson (1983, p. 243) noted that layers contain 
ing slip surfaces are often paper thin, making them difficult 
to locate in samples and exploratory trenches. Mary Riesten- 
berg (College of Mount St. Joseph, oral commun., 1987) 
observed that the slip surfaces of shallow landslides in 
Cincinnati occur in paper-thin layers. Observations made 
using a polarizing microscope (Skempton and Petley, 1968; 
Morgenstern and Tchalenko, 1968) indicate that slip sur 
faces are in layers of strongly oriented clay particles from 
100 to 500 micrometers thick. Typically, the clay within a 
few centimeters of the slip surfaces is deformed or remolded, 
but deformation is concentrated on the slip surfaces.

The existence of slip surfaces in landslides has been 
recognized for more than a century. Collin (1846) was the 
first to document and accurately describe slip surfaces of 
landslides that occurred in clay embankments and cuts in 
clay slopes. During the course of repairing the landslides, the 
debris was cleared away, exposing the basal slip surfaces. 
They were "smooth, slippery and soapy" surfaces.

Summarizing observations of many landslides, 
Skempton and Petley (1968, p. 33) indicated that slip sur 
faces occur in the majority of landslides. They indicate that 
slip surfaces extend over large areas beneath a landslide and 
are polished subplanar surfaces, striated parallel with the 
direction of movement.

Observations and measurements indicate that land 
slides move primarily by gliding on their slip surfaces. Col 
lin (1846, p. 36, 37) was able to show that the basal slip 
surfaces formed as a result of landslide movement and that 
movement occurred primarily by sliding on the basal slip 
surface. He observed that the bedding or layering was tilted 
and offset across the basal slip surface of a landslide.

A sequence of time-lapse photographs by the Niigata 
Laboratory (1973) shows that displacement of the Sarukuy- 
oji landslide occurred primarily on a slip surface. The photo 
graphs show the face of a trench in the landslide. At time 
zero, no slip surface is visible, but after five minutes, the

trace of the slip surface is visible as a faint line across the 
face of trench. After 35 minutes, the shadow cast by the 
overhanging edge of the block of soil above the slip surface 
makes a broad black stripe across the photograph. The pho 
tographs show clearly that the movement of the landslide is 
concentrated on a slip surface. The photographs show no evi 
dence that any other deformation occurred at the face of the 
trench during the 35-minute period.

Similarly, photographs of the face of a pipeline trench 
show that sliding occurred on a surface (fig. Dl). The light 
band of soil in the middle of figure D LA contains the slip sur 
face. Colluvium overlying the slip surface slid 1-2 mm 
downslope after the trench was opened, and the shadow of 
the overhanging material (narrow black line through the cen 
ter of the white band of soil in figure DIB) clearly shows that 
deformation was concentrated at the slip surface.

At a shallow earthflow in California, experiment 
showed that deformation was concentrated on the basal slip 
surface (Keefer and Johnson, 1983, p. 31, 32). A stack of 
wooden disks, shaped like poker chips, was placed in a bore 
hole that penetrated the basal slip surface of the main body 
of the landslide. After the landslide had moved about 0.4 m, 
the disks were recovered by digging a trench next to the 
borehole, and the positions of the disks were mapped. At 
least 94 percent of the movement occurred within 1.3 cm 
(the thickness of one disk) of the basal slip surface. Little 
evidence of deformation outside the slip surface was 
observed.

Ter-Stepanian (1965, p. 577) performed a similar 
experiment with wooden blocks, each 0.2 m high, stacked in 
a borehole. The profile of the blocks was exposed in a trench 
after 5 yr of movement. Total displacement at the ground 
surface was 2.8 m. The block just above the basal slip sur 
face (3.8 m deep) was displaced 2.2 m. The upper 3 m of the 
stack of blocks leaned several degrees downslope, and 
blocks in the lower 0.8 m of the stack were offset or rotated. 
Although part of the displacement was due to internal defor 
mation of the landslide debris, most of the displacement (78 
percent) was concentrated on the basal slip surface.

Displacement at the lateral boundaries of many land 
slides also occurs on slip surfaces. Strike-slip faults having 
slickensided surfaces constituted the lateral boundaries of 
the Aspen Grove landslide in central Utah. Displacement 
measurements at three transverse lines of stakes on the land 
slide showed that displacement at the boundaries was from 
85 to 95 percent of the displacement at the axis of the land 
slide. David Varnes (USGS, oral commun., 1988) reported 
similar findings for the Slumgullion landslide in southern 
Colorado.

Several investigators have reported that some deep 
landslides move on "thick kneaded zones," layers of clay, 
several decimeters thick, that have been strongly sheared and 
remolded (Zaruba and Mencl, 1982, p. 161; Gould, 1960; 
Brunsden, 1984). However, even the kneaded zones are 
bounded by or contain slip surfaces that accommodate most

Steady Movement of Landslides in Fine-Grained Soils D3



Figure D1. Displacement on a slip surface exposed in a pipeline trench in West Virginia. (A) Overview showing location 
of slip surface (in white layer of clay) in the side of the trench. (6) Close-up of slip surface. Displacement of overhanging 
block toward the camera shown by shadow across middle of light-colored layer of clay. Knife handle in both photographs 
is 9 cm long. (Photographs by Robert W. Fleming, U.S. Geological Survey.)
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of the displacement. A horizontal layer of black plastic clay 
(1m thick, thinly laminated and schistose) within less plas 
tic, stony, brown colluvium, was exposed at the base of the 
eroded toe of the Twin Lake landslide (about 30 m deep), 
near Mayfield, Utah. The black clay, evidently part of the 
basal slip zone of the landslide, was divided into almond- 
shaped pieces by a family of anastomosing, subhorizontal 
slip surfaces. A layer of "kneaded" clay exposed in a land 
slide in the south bank of Ephraim Creek, near Ephraim, 
Utah, was bounded at its top by slip surfaces (fig. D2). Sev 
eral meters away, at another exposure, polished slip surfaces 
formed the boundaries between layers of plastic clay and the 
gravel-rich colluvium that they had intruded (figs. D3A and 
B). Thus, movement by gliding on slip surfaces appears to be 
almost universal in landslides.

Slip Surface Irregularities

Slip surfaces deviate from the idealized cylindrical or 
planar shapes assumed in most stability analyses. Steps, 
bumps, depressions, grooves, striations, and other irregular 
ities have been observed on slip surfaces of landslides in 
California, Utah, France, Norway, and Japan (Collin, 1846; 
Stout, 1971; Mizuno, 1989).

Striations and grooves are commonly observed on slip 
surfaces (fig. D4). They form as a result of deformation at 
small irregularities in the slip surface that might retard land 
slide movement slightly. Striations and grooves are parallel 
to the direction of movement of the landslide, so they cannot 
cause significant deformation of the landslide debris; rather, 
they merely increase the area of the slip surface.

Steps, depressions, and bumps are other types of irreg 
ularities on a slip surface and they can obstruct movement. 
Such irregularities are termed asperities. Asperities are 
oblique to the direction of movement so that they can cause 
interlocking or deformation (either distributed or localized 
on faults) of the landslide debris. (See Savage and Smith, 
1986, for a discussion of one style of deformation that can 
occur in landslides.)

Slip surfaces of some landslides in France had stream 
lined bumps that caused them to deviate from idealized 
cycloidal shapes (Collin, 1846, pi. VI, VII, VIII, and others). 
Accurate surveys showed that the bumps were a few meters 
long and a few decimeters high.

The slip surfaces of two landslides in California had 
steps that consisted of rounded treads (flats) and risers 
(ramps) (Stout, 1971). The treads had slopes as low as 4°, 
and the risers had slopes as steep as 41°. The average slope

«**? * *--

Figure D2. Cross-sectional view of a shear (or kneaded) zone exposed in bank of Ephraim Creek near Ephraim, Utah. Dark lens- 

shaped area, A, is part of a slip surface exposed in an overhang and is approximately 30 cm across.
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Figure D4. Slip surface on a thrust fault within the Thistle landslide, Thistle, Utah. The slip surface is covered with grooves and 
striations. (Photograph by IrvingJ. Witkind, U.S. Geological Survey.)

of each slip surface was about 14°. Measured relative to a 
smoothly curving, average slip surface, the steps were from 
3 to 6 m high and tens of meters long (fig. D5).

Steps were also observed in the basal slip surface of a 
quick-clay landslide in Norway (Stout, 1971). About one 
third of the slip surface was exposed, including parts of the 
steps. The steps had rounded noses that separated broad, 
gently sloping treads from steep risers. The treads sloped 
about 0.5° to 2.0°, and the risers sloped as steeply as 50°. The 
risers were from 5 to 7 m high, and the average slope of the 
slip surface (not including the headscarp) was about 5°.

Streamlined bumps are common on the slip surface of 
the Indianola landslide in central Utah. The slip surface is 
roughly a U-shaped (fig. D6A) or V-shaped (fig. D6Z?), 
slightly sinuous channel. Grooves and striations on the sides 
of the channel are approximately parallel to the channel bot 
tom (figs. D6A and E). Larger bumps on the sides of the 
channel are a few meters long and small bumps, each less 
than a meter long, are superimposed on the larger bumps 
(fig. D6A). Many of the smaller bumps are relatively narrow 
features oriented approximately parallel to the direction of 
movement.

Elongate, asymmetrical ridges resembling roches 
moutonnees are exposed in a lateral slip surface of a land 
slide at Cottonwood Spring in Ephraim Canyon, Utah (fig.

D7). All are 15 to 40 cm long, 5 to 15 cm wide, and a few 
centimeters high, and are superimposed on a larger bump 
that is about 1 to 1.5 m long. There are other larger bumps 
nearby.

To summarize, several general observations can be 
made about slip surfaces of landslides. The main body of a 
landslide moves principally by sliding on a single slip sur 
face within a thin (usually less than 1 mm thick) layer of 
strongly oriented clay particles. In many landslides, from at 
least 90 to 95 percent of the displacement observed at the 
ground surface occurs on the basal slip surface; minor defor 
mation occurs in the ground adjacent to the slip surface of 
the main body of a slide; however, significant deformation 
may occur throughout the thickness of the slide in the vicin 
ity of the head, toe, and major asperities in the failure 
surface.

Slip surfaces of landslides in clayey materials are 
irregular. Asperities on slip surfaces comprise bumps that 
resemble flattened domes or roches moutonnees, broad steps 
having steep risers and gently sloping treads, and perhaps 
other forms. Lengths of asperities range from decimeters to 
tens of meters. Generally, the amplitudes or heights are small 
compared to the lengths of the asperities. Mizuno (1989) 
reports that the average ratio of height to length is 0.065. 
Asperities tend to be asymmetrical; distal slopes are gener 
ally steeper than proximal slopes.
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Figure D5. Profiles of stepped slip surfaces of landslides. (Modified from Stout, 1971.)

EQUILIBRIUM OF A LANDSLIDE MASS ON 

AN IRREGULAR SLIP SURFACE

Resistance to sliding on an irregular slip surface is 
determined by the stresses acting on the landslide mass (fig. 
D8). In the following derivation we separate sliding resis 
tance into a shear stress and a normal stress acting on an 
irregular slip surface. The normal stress that acts on the 
irregular slip surface can oppose sliding, as does the shear 
stress of the slip surface. To demonstrate this, we integrate 
the differential equation for equilibrium in the jc-direction,

methods used by several glaciologists (Collins, 1968; Budd, 
1970b; and Kamb, 1986), we integrate with respect to z, 
between the elevation of the basal slip surface, Z=ZQ(X), and 
the elevation of the ground surface, z=z\(x):

dx

fz zx. fz i 
I ~^ dz+ Y, 

Jz0 dz Jzo f
, 1UX since dz = 0. (Ib)

dT
z:~a? + Y, since = 0 ' (la)

(See "List of symbols" on p. IV for definitions of terms.) We 
assume that normal stresses are positive in tension (the nota 
tion for stresses is after Malvern, 1969). Following the

In equations la and Ib, the unit weight of soil, assumed con 
stant with respect to x and z, is Yt, and the counterclockwise 
angle from the Jt-axis to the horizontal is a. We have used the 
convention that normal stresses are positive in tension. Txx is 
the normal component of stress acting parallel to jc, and Tzx 
is the shear stress acting parallel to x.

Equation Ib is related to integrated forms of the equi 
librium equation used to study longitudinal stress and strain 
gradients in glaciers (Collins, 1968; Budd, 1970b; Kamb, 
1986). However, the following analysis differs in that we 
work with the total stresses, whereas the glaciologists cast
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Figure D6. Slip surface of a landslide near Indianola, Utah. (A) The landslide occupied a V-shaped channel or trough. 
Striations on channel wall are parallel to the transport direction. Elongated bumps are transverse to direction of movement. 
(6) Curvature of channel and rounded shapes of bumps on the slip surface are evident in this view.
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Figure D7. A lateral slip surface of the Cottonwood Spring landslide, Ephraim Canyon, Utah. Features resembling roches 

moutonnees are visible near center of photograph. Lens cap is about 5 cm in diameter. Arrow shows direction of landslide move 
ment.

their equations in terms of deviatoric stresses. This is 
because the flow of glacier ice is considered to be indepen 
dent of the hydrostatic or mean stress (Collins, 1968), 
whereas deformation of landslide debris is known to depend 
on the mean stress (Lambe and Whitman, 1969). Conse 
quently, equation Ib is closely related to one of the equations 
of equilibrium used in stability analysis of landslides (Mor- 
genstern and Price, 1965; Janbu, 1973). Mizuno (1989) also 
analyzed equilibrium on a wavy slip surface; however, his 
derivation differs from ours in several ways, so his results 
cannot be readily applied to part of our analysis.

When we evaluate the last two integrals in equation 
Ib, the equation simplifies to

A "\'T1 >»
r r . C/y ^7 T7.llrr c/ll-^ dz =   I

J Z0 OJf <3A^ J Z0

dz l
- [Txx]   i 

 * * z\ dx 7 z0

(Id)

In equation Id, dz\/dx and dzo/dx denote the slope (dzfdx) of 
a line tangent to the ground surface, or slip surface, respec 
tively.

We substitute equation Id into Ic, and move terms 
evaluated at the slip surface, Z=ZQ, to the right side of the 
equation,

^0

dc)

Note that the second term in equation Ib integrates readily 
(Wylie and Barrett, 1982, p. 795-797).

The remaining integral in equation Ib can be evalu 
ated by means of Leibnitz's rule,

dzG
- \T 1  - . l J

^1 f/JC

(le)

We assume that the stresses acting normal, Tnn , and 
tangential, Tns, to the ground surface are zero. Equilibrium

D10 Landslide Processes in Utah



 ? o2-2

:2

c O '. £~ ~ X c

re u <u £
o <u -c E
O Q.- 3;

2 £ E~v
x >- p c
7 -£ **- O
X "> <i> oo
<u > .  c

-£ ft £ fi*-  u _^ u
c re (j re
o ^ O </>
2 D   QJ

vt m U </> m

S^ .9- 5 £ o

S- 3 .S ^
O re O  £

!"^ OJ Q--^
i a; c >- o
.-c «> E o-

-«
= -

oo ai ® Q. o c u  -  jz 
re re ® m m 
<u ^t c a; a; 

 £ 5 2-5 re

 ^ « « u*^ 
> w c <u c

"§ 111 rre <2 c >- o
^ t in »  ^ 

0> 3 '- ^ X

^ "*  - « ^5
J5 Q. x *£ ^i 
^   re 3 N 
5 "» iv K-O 

i .9-.-

 £ ^"re"5 ?
t^ 9-c ° ^
re.2 §r <u
- ^ N re _c<4 o> -z -s *- 

^ oo o ? o
DO *^
c y

_
*- </> re

^ 5 E « =5 
.5 re g ^ ^ 
u x v*- ~o "O

^-Srei
-^ 1 c 2
<s> . in in OO

S-g S^^ 
^^£.E£

. "O Jj TJ

O) 
Q..

,   re o O

Steady Movement of Landslides in Fine-Grained Soils D11



parallel to the jc-direction at the ground surface (fig. D8, 
stresses for X>0) requires that

cosx-[rnj z = [T]
z \

(2a)

In equation 2a, Ss, 8jt, and 8z are small increments par 
allel to s, x, and z, respectively. Note that 8jt/8s=cos X and 
8z/8s=sin X in the limit as 8s, 8*, and 8z become infinitesi 
mals. We divide equation 2a by 8s cos X to obtain

= [T (2b)

In equation 2b, tan X equals (dzi/dx), in the limit as Sue 
becomes infinitesimal. The reader can verify that equation 
2b is correct, whether X is greater or less than zero, by 
observing how the normal stresses change their orientation 
as X changes sign. All stresses shown in figure D8 are posi 
tive, according to the sign convention adopted previously. 
For X>0 (tan X>0), the jc-components of the normal stress act 
in the opposite direction to the ^-components of the corre 
sponding shear stresses. For X<0 (and tan X<0), the jc-com- 
ponents of the normal stresses act in the same direction as the 
^-components of the corresponding shear stresses (fig. D8).

The left side of equation 2b is zero because the stresses 
at the ground surface, [Tnn ]Zl and [Tns ]Z{ , are zero. By substi 
tuting this result into equation le, we determine that

-Zn) sina =

dzQ
IT 1    1 xx*zodx

(3)

Equation 3 is an exact statement of the requirements 
for equilibrium at any position along the slip surface. We 
need an expression for the overall equilibrium of the land 
slide mass. If we assume that the waviness of the slip surface 
of the landslide is periodic, with wavelength L;, that the 
ground surface is stress-free and parallel to the Jt-axis; and 
that the slope has an infinite extent, then we can derive such 
an expression by integrating equation 3 with respect to x, 
over one wavelength, L, and dividing by L,

1

D12

1 C L
T \ t^rr ] dX-
Lj o z* zo 
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*
-T-dx. (4a) 

zo dx

The first term on the left side of equation 4a is zero. The gra-

d fz i
dient of longitudinal force per unit width,   I Trrdz (thedxjz0 xx

integrand of the first term), is a periodic function of jc. The
1 PL d fz, 

average value of the gradient, - \  \ Trrdz dx, must be
'[*'(":

^ J 0 dxj z0

zero so that the longitudinal force per unit width does not 
become infinite at large values of*. For example, if the aver 
age value of the gradient were a (non-zero) constant, then the 
absolute value of the longitudinal force would increase with 
out bound in proportion to x. The second integral on the left 
side can be evaluated explicitly, so that equation 4a simpli 
fies to

j PL i PL dz0 
y(Z sina = - ^ Tz^^dx ~"l\ [T^ ZQ ~^ dx - (4b)

In equation 4b, Z is the average thickness of the landslide 
mass. For convenience, we let

R = (4c)

Equation 4b is an expression for overall equilibrium of 
an infinite slope having a wavy, periodic slip surface. It 
shows that the average shear stress due to weight of the land 
slide debris (left side of equation 4b) is balanced by the aver 
age shear stress at the slip surface (first term on right side of 
equation 4b) and the average resistance (acting parallel to jc) 
due to roughness of the slip surface, R. If the slip surface is 
perfectly smooth, such that (dzo/dx)=0, then the second inte 
gral on the right side of equation 4b, R vanishes, and the 
equation reduces to the well-known expression of equilib 
rium for an infinite slope. Thus, R can be thought of as a cor 
rection term for the effect of roughness.

Roughness can increase the resistance to sliding only 
if the material above the slip surface is stronger than the slip 
surface. Baum (1988) has shown analytically, for a von 
Mises plastic, that resistance to sliding is greater on a rough 
(bumpy) slip surface than on a smooth one, provided that the 
strength of the material is greater than the adhesion of the 
material to the slip surface. Laboratory experiments, in 
progress (Baum, unpub. data) corroborate this analysis. 
However, if strength of the material equals the adhesion to 
the rough slip surface, then sliding must occur on a smooth 
surface within the material because the resistance to sliding 
on the rough surface will exceed the strength of the material.

Roughness of the slip surface contributes to equilib 
rium of a landslide mass because the distribution of normal 
force on the slip surface is asymmetrical. The compressive 
normal stress, Txx, is greater (in absolute value) on the prox 
imal sides of bumps than on the distal sides. The resultant 
force due to the action of the normal stress on the bumps 
opposes downslope movement of the landslide mass.



Thus, in a landslide, normal stress on the slip surface 
contributes to equilibrium in two distinct ways. First, it con 
tributes to equilibrium by determining the shear strength, 5, 
as indicated by the Coulomb-Terzaghi yield criterion,

S = c'-{[Tn (5a).

and second, it contributes to equilibrium through roughness. 
In equation 5a, P is the pore pressure (negative in tension), 
c is the cohesion for effective stress and tan 0' is the coeffi 
cient of friction for effective stress. We assume, hereafter, 
that the average shear stress at the slip surface equals the 
average shear strength when the landslide is active.

The two contributions of normal stress to equilibrium 
can be seen clearly in the equation of equilibrium by trans 
forming stresses at the slip surface in equation 4b to local 
coordinates tangent and normal to the slip surface, and by 
substituting the yield criterion for the slip surface (equation 
5a) into equation 4b. The equation for transformation of 
stress to local coordinates (see fig. D8 and equations 2a and 
2b)is

dzn dzo
r f i f T "\ ___ _ f T 1 f T 1 /<K\ 
L'nr-L ~ L'  ]., ~T~ - L^ 7rJ. ~ I* rrJ . ~3~   (->*>)

Equations 5a and 5b are substituted into equation 4b to 
show the two ways that normal stress at the slip surface con 
tributes to equilibrium

sina = i fV~

(5c)

The first term on the right side of equation 5c deter 
mines the shear strength, and the second term determines the 
resistance to sliding due to roughness. Significantly, the 
effective normal stress (Tnn+P) enters the shear strength 
term, whereas the total normal stress enters the roughness 
term.

The contribution of normal stress to equilibrium, 
through the roughness of the slip surface, may seem unfamil 
iar to some readers. Perhaps it can be visualized by consid 
ering the action of one gear driving another gear in a 
machine. Torque is transferred from one gear to the other 
through the normal stresses acting on the faces of gear teeth 
that are in contact. The gears are lubricated so that shear 
stress on the faces of the teeth is small. Compressive normal 
stress on the leading faces of these gear teeth is greater than 
on the trailing faces. This asymmetrical distribution of stress 
on the gear teeth is similar to the asymmetrical stress distri 
bution that we expect to occur at asperities on the slip surface 
of a landslide.

THE ROLE OF FORCED CIRCULATION IN 

THE EQUILIBRIUM OF A LANDSLIDE

Within the framework of the general theory of slope 
equilibrium just described, we wish to focus on a possible 
mechanism that can explain the observed rate dependence of 
the forces that resist sliding. We have already noted that the 
rate dependence of the shear strength of slip surfaces is too 
weak to explain the steady movement of landslides, because 
the shear strength increases only about 5-10 percent for each 
tenfold increase in the rate of shearing, within the range of 
rates tested (Kenney, 1968; Ramiah and Purushothamaraj, 
1971; Mitchell, 1976; Keefer and Johnson, 1983). Thus, to 
explain the steady movement, we examine a possible mech 
anism of sliding in which R is rate dependent.

The mechanism we propose, in order to explain the 
rate dependence of /?, is forced circulation of pore fluid 
through the landslide debris. As the landslide moves over its 
bumpy slip surface, high compressive normal stress on the 
proximal sides of bumps forces fluid to flow away from the 
proximal sides. Concurrently, low compressive normal 
stress on the proximal sides of bumps allows the soil there to 
swell, causing pore fluid to be drawn toward the distal sides 
of bumps. As we have shown, the distribution of normal 
stress on the slip surface determines R. Energy is dissipated 
by means of the flow process during forced circulation. Slid 
ing by the mechanism of forced circulation is rate dependent, 
because forced circulation is a diffusive and hence a rate- 
dependent process that depends on the hydraulic conductiv 
ity of the soil and the path length of diffusion.

Our model for forced circulation applies to landslides 
that fail in a ductile manner (without sudden loss of 
strength), such as landslides on natural slopes that fail by a 
gradual rise of the water table. Landslides having slip sur 
faces are very common and observations indicate that slip 
surfaces of landslides in clayey materials commonly are 
wavy (Mizuno, 1989, p. 96, 105). Thus, we believe our 
model applies to most landslides that have relatively steady 
motion. Driving forces in natural slopes tend to be near equi 
librium with the residual strength of the soil (Skempton, 
1964). Any strength that is lost in the failure of such slopes 
generally is lost progressively (Bjerrum, 1967; Palmer and 
Rice, 1973). However, in slopes that fail in a brittle manner 
(a sudden or abrupt loss of strength accompanies failure), 
such as rock slopes or slopes underlain by quick clay, driving 
forces are sufficient to overcome the peak strength of the 
material and roughness of the failure surface cannot retard 
sliding to a degree sufficient to prevent acceleration of the 
failed mass.

We have solved a boundary-value problem that mod 
els forced circulation as the deformation and fluid flow 
occurring in a porous elastic solid that is sliding over a wavy, 
impermeable, rigid surface (details of the solution follow in 
succeeding sections of this paper). Solving this problem
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allowed us to determine the normal stress on the slip surface 
and thus compute a formula for R due to forced circulation,

(6)

In equation 6, vx is the mean velocity of the landslide, 
parallel to x; yw is the unit weight of water, A is the amplitude 
of the bumps, K is the hydraulic conductivity of the landslide 
debris, / is the wave number, equal to 2n/L; L is the wave 
length of sinusoidal bumps on the slip surface; (A/), the prod 
uct of the amplitude and the wave number, is the maximum 
local slope of the slip surface with respect to x;, and [I is 
Poisson's ratio for drained deformation of the soil. Hereafter, 
Al is called the roughness.

Equation 6 helps to explain how a landslide can main 
tain equilibrium even when shear strength at the basal slip 
surface decreases due to an increase in the average pore- 
water pressure at the basal slip surface. If equation 6 is sub 
stituted into equation 5c, the following is obtained:

R = - In
na

(8b)

where a and b are constants to be determined from field data, 
a has units of velocity, and b has units of inverse stress.

Mizuno's (1989) corresponding formula for predict 
ing velocity of a landslide from R is

(8c)

Note that Mizuno's (1989) formula indicates an exponential 
relationship between R and vx, whereas our formula (equa 
tion 6) indicates a linear relationship between R and vx.

y Z sina = (cf - { [Tnn ] + [P] } tanf) dx
LjO "" ZQ ZQ

(7)

According to equation 7, if the average shear strength of the 
slip surface (the integral on the right side of equation 7) 
decreases, due to a decrease in effective stress, the landslide 
can stay in equilibrium if R increases. Thus, R can increase 
if the velocity, v^, increases, because other parameters that 
determine R are nearly constant in a given landslide.

Our formula (equation 6) for resistance to sliding of a 
landslide, by the mechanism of forced circulation, is similar 
to the result Kamb (1970) obtained for a temperate glacier 
sliding on a wavy bedrock surface by a mechanism of rate- 
dependent plastic deformation (viscous flow). Kamb's 
(1970) formula for /?, in our notation, is

PRELIMINARY ANALYSIS OF THE EFFECT OF 

FORCED CIRCULATION ON THE 

MOVEMENT OF LANDSLIDES

We model a landslide as a deformable body that slides 
at a constant velocity past a rigid body (fig. D9). The bound 
ary (that is, interface) between the bodies undulates. It is 
assumed that variation of stresses generated by acceleration 
is negligible near the interface and that no cavitation occurs 
at the interface. The undulations are assumed to be wide, 
symmetrical, low-amplitude steps. Movement is assumed 
parallel to the jc-axis, and the undulations are assumed to be 
periodic in x, and independent of y. Consequently, plane 
deformation is assumed to occur. The landslide is repre 
sented as an infinite strip bounded by Z=ZQ and z=z\, and 
moving parallel to the Jt-axis with a mean velocity of vx (fig. 
D9). The basal slip surface, z0, is a sinusoidal perturbation of 
the x-y plane:

R = - 2' (8a) = A sin Ix.

where T| is the viscosity of glacier ice.
However, our equation 6 differs in basic form from the 

formula derived by Mizuno (1989) for resistance to sliding. 
Mizuno (1989) assumed that landslide debris slides over an 
uneven slip surface by the mechanism of soil creep. Creep is 
used in the sense of undrained plastic deformation of a triax- 
ial specimen subject to a constant load that is a fraction of the 
static load needed to cause failure. Mizuno's (1989) formula 
for resistance to sliding (in our notation) is

(9)

In order to investigate the resistance to sliding gener 
ated by forced circulation of pore water in a landslide, and 
the effect of that resistance on the velocity of the landslide, 
we assume that the landslide debris behaves like a fluid-infil 
trated, porous-elastic solid (Biot, 1941; Rice and Cleary, 
1976). We have chosen such a model for material behavior 
because the movement of pore water is considered the pri 
mary cause of time-dependent effects in fine-grained soils 
(Terzaghi, 1925; Wroth and Houlsby, 1985, p. 6).
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Ground surface, z=Zj

Direction of landslide movement

Water is squeezed out 

of soil on upstream 

sides of bumps

Water is sucked into 

swelling soil on down 

stream sides of bumps

Local coordinates

Slip surface, Z= 

zo=A sin (/x)

Figure D9. Features of the model used to analyze the resis 
tance to sliding due to forced circulation. The ground surface is 
a plane, and the x- and z-axes are parallel and perpendicular to 
the ground surface, respectively. Sinusoidal undulations of the 
slip surface have wavelength L and amplitude A. The maximum 
local slope of the slip surface with respect to the x-axis is Al,

where / is the wave number, 2n/L The landslide is moving 
toward the right so that the compressive stress, Tnn (shown by 
heavy arrows), is greater on the upstream sides of the bumps 
than on the downstream sides. The small curved arrows indicate 
that water is flowing away from the upstream sides of the bumps 
and is flowing toward the downstream sides of the bumps.

Perturbation Analysis of Equations Governing 

Stress and Pore-Water Movement

Stress and pore-water movement in the landslide are 
governed by the following equations:

ar ar
r ox dz

since = 0 ,

V2 [r

_Y cosa = 0 ,

~
= o,

(la)

(10a)

(10b)

and

2TO(l-iQ 2

Yw d-2n)

(10c)
Equations la and lOa are the equilibrium equations, 

equation lOb is the compatibility equation for stress diffu 
sion (Rice and Cleary, 1976), and equation lOc is the stress- 
diffusion equation (Rice and Cleary, 1976). In equations lOb

and lOc, P is the pore-water pressure, Kis the hydraulic con 
ductivity, YW is the unit weight of water, G is the shear mod 
ulus, and n is Poisson's ratio for drained deformation. We 
assume that the soil skeleton is incompressible, so the coef 
ficients appearing in lOb and lOc are simpler than their coun 
terparts in Rice and Cleary (1976).

We use perturbation expansions of the field variables 
to determine the stresses and pore pressure caused by defor 
mation near the wavy slip surface. The expansions are in 
powers of Al, which is the maximum local slope of the slip 
surface (with respect to x); Al, is small compared to unity. 
Then (Al)2 must be small compared to Al. The pressure, P,
and the stress components; T 
by the following expansions:

P =

, T, and T; are determined^,

(Ha) 

(lib) 

(He)

and

ZZ ~ ZZ ' * ZZ ' '-'v**/ » V-I--I-W

Steady Movement of Landslides in Fine-Grained Soils D15



where O(Al)2 is the remainder term on the order of (A/)2 .
The zero-order components of the stresses are known 

from the infinite slope analysis and solutions for problems in 
elasticity (Lambe and Whitman, 1969, p. 353-356; Jaeger 
and Cook, 1969, p. 356),

(12a) 

(12b)
* *

\.i 
Txx - T\  rY,U-£i) cosa. (12c)

= y/ (z 1 -z)sina, 

H

Likewise, the zero-order pore pressure for slope-parallel 
flow (we assume that the slip surface is impermeable) is 
determined by the following:

P = ,cosa; z<h. (13a)

The pore pressure is part of the head, //, that drives ground- 
water flow. The complete expansion for the head is

; z<h. (13b)

In equation 13b, 70 is the elevation of the origin of the x-z 
coordinate system above some arbitrary datum, and h is the 
height of the water table above the x axis.

We note that the zero-order stresses and pore pressure 
are independent of x and t. By substituting equations lla, 
lib, lie, lid, 12a, 12b, 12c, and 13a into equations la and 
lOa, lOb, and lOc, we derive the following for the first-order 
variables:

(14a)
3z

(14d)

To simplify our analysis of the mechanism of forced 
circulation, we assume the landslide is moving at a steady 
rate, vx, and introduce a new system of coordinates that 
moves parallel with x in order to make the problem indepen 
dent of time (Rosenthal, 1946). Only two independent vari 
ables, ^ and z, remain after transforming the coordinates. Let

(15a)

and

0 = t. (15b)

We use the chain rule for partial differentiation to obtain for 
mulas for transforming partial derivatives to the £-z coordi 
nate system,

dx

30
"37 J30' (15c)

and

__ 
31 3/ 3r J30-

(15d)

The partial derivatives of £ and 0, appearing in equa 
tions 15c and 15d, are obtained by differentiating equations 
15a and 15b with respect to x and t. The derivatives are 
3£/3jt=l, 3£/3r=- vx, 30/3jt=0, and 30/3r=l. Note that 
3/30=0, because a steady state of deformation is observed in 
the new coordinate system. Equations 15c and 15d reduce to 
the following when the values of the derivatives are substi 
tuted into the equations:

37
_ 

3* 3z
(14b)

(15e)

and

= 0, (14c)

and

31 = ~^3T (15f)

The field equation, 14d, for stress diffusion can be 
rewritten as
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c V2 ( Tx = ( Txx 2P), (16a) a2;
(17c)

(Rice and Cleary, 1976, p. 230).

The diffusion constant, c, in equation 16a is deter 
mined by

2GK

l-2n (16b)

where 7^=9.8 kN/m3 (Freeze and Cherry, 1979).

The field equation for stress diffusion in the new £- 
coordinate system is

(16c)

The term on the right side of equation 16c accounts for 
advection (conveyance) of water by the landslide debris.

If the absolute value of the coefficient, vx/c, is small 
compared to 1, then advection can be neglected (Kamb, 
1970). For steady landslides in which vx/K<\OQ and the 
debris has typical values for G and (j (G=107 Pa, |a=0.3; 
Lambe and Whitman, 1969), the coefficient on the right side 
of equation 16c is small compared to 1; |-v,/c| <0.03. 
Advection causes a small phase shift in the solution 
for (7^ + T,. + 2P) that has a negligible effect on the 
magnitude of (7^ + 7^ + 2P). Thus, Laplace's equation 
is a good approximation of the diffusion equation (16c):

= 0. (16d)

Equation 16d, together with the compatibility equa 
tion, the equilibrium equations, the constitutive equations, 
and the boundary conditions govern the problem in the new 
coordinate system. Transformation of equations 14a, 14b, 
and 14c is accomplished by simply replacing the x's with £'s.

Airy's stress function (Malvern, 1969) facilitates solu 
tion of equations 14a, 14b, 14c, and 16d. The stress function 
automatically satisfies the equilibrium equations; the follow 
ing relationships hold between the stress components and the 
stress function:

(17a)
a

When the stress function is substituted into the simplified 
diffusion equation (16d) and the compatibility equation 
(14c), two equations relating the stress function and the pore- 
pressure function are obtained,

and

V2 [V2 <j>

V2 <j>

= 0 (18a)

2uv~l 
~ l = (18b)

The Laplacian, V2, is a linear operator and the quanti 
ties in square brackets in equations 18a and 18b satisfy 
Laplace's equation; therefore, any linear combination of 
these quantities also satisfy Laplace's equation. Equations 
18a and 18b can be combined algebraically to show that P 
satisfies Laplace's equation and <j> satisfies the biharmonic 
equation:

= 0

V4ij> = 0

(18c) 

(18d)

Thus, we solve equations 18c and 18d subject to boundary 
conditions at the slip surface, in order to determine the rela 
tionship between the rate of movement and the resistance to 
sliding due to forced circulation.

Derivation of Boundary Conditions for 
Sliding and Forced Circulation

We have made several assumptions in setting up a 
boundary value problem that describes forced circulation of 
water as a landslide moves over its slip surface. Many of the 
assumptions are embodied in the boundary conditions.

A boundary condition on ZQ is that sliding is tangential

(19a)

and

3
= T-- (17b)

This assumption is consistent with our observations of slip 
surfaces and with the observations of others (for example, 
Lambe and Whitman, 1969) that soil subject to constant nor 
mal load shears at constant volume once the residual strength
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is attained. This assumption (equation 19a) would be vio 
lated if our model included (Coulomb-type) plastic deforma 
tion, because dilation would occur at the slip surface (Savage 
and Smith, 1986)

The velocity, vn, can be written in terms of the x and z 
components of velocity, vx and vz,

sin9+[vz ] cos9. (19b)

In equation 19b, 9 is the counterclockwise angle between the 
x-axis and a line tangent to ZQ\ thus,

tan9 = ~dx (19c)

If we set vn equal to zero in equation 19b and solve for vz, we 
determine that

tone. (19d)

We can expand the components of the velocity in a 
perturbation series as we have done for the stresses,

the mean slope of the slip surface. The term Vx(dzQ/dx) is 
second order because it is the product of two first order quan 
tities, Vx and (dzo/dx). By dropping terms higher than first 
order, the relationship between [vj, and [vz], reduces to

[vz ], = v,(~r). 
z zo x dx

(21)

Formulas similar to equation 21 have been used by Nye 
(1969), Kamb (1970), and Morland (I976a). The geometry 
of the slip surface enters the solution of equations 18c and 
18d through equation 21.

A second boundary condition concerns the shear stress 
at the slip surface. The obvious assumption is that the shear 
stress is determined by the yield criterion (equation 5a). The 
normal stress [T^J^, shear stress [T^]^ and pore water 
pressure [P],, can be expanded (as in equations lla, lib, 
1 Ic, and 1 Id) in the yield criterion,

= c - 0 (A/) 2 ] Zo tanf . (22a)

and

(20a) Equation 22a can be resolved into two equations by collect 
ing terms of zero and first order and deleting terms of second 
order,

V = V + Vz z vz O(A/) (20b) (22b)

but and

vx = constant, (20c) (22c)

and

vz = 0, (20d)

where vx is the constant rate of sliding in the absence of slip- 
surface irregularities; vz is zero because sliding is assumed 
to be parallel to the x-axis.

When equations 19c, 20a, and 20b are substituted into 
equation 19d, a boundary condition for Vz results:

(v
z0

= [v -. 
zo dx

We previously defined vz and v^ to be constants, 
independent of x and z (equations 20c, 20d); vz is zero 
because the average movement is parallel to the jc-axis and

The zero-order shear stress is a constant. In the zero- 
order approximation, the slip surface is a plane parallel to the 
x-axis so (? ],= [Ty]^ and [^^=[7^. Thus, the zero- 
order shear stress is determined by substituting equations 13 
and 17a into equation 22b,

(cosa) ') . (22d)

We have analyzed and attempted to solve a boundary- 
value problem that models forced circulation with Coulomb 
friction at the boundary (first-order shear stress determined 
by equation 22c). However, we were unable to determine an 
appropriate boundary condition to replace equations 19a or 
21, because Coulomb friction at the boundary would cause 
dilation and contraction at the slip surface.
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In order to overcome the difficulties connected with 
using equation 22c as a boundary condition, we have 
assumed that the first-order shear stress is zero everywhere 
on the boundary,

In equation 26, qn is the component of the specific discharge 
that is normal to the slip surface. We can rewrite equation 26 
in terms of qx and qz by expanding them in terms of pertur 
bation series,

=0. (23) (27a)

This assumption is equivalent to letting the coefficient of 
friction in equation 22c be zero. The coefficient of residual 
friction of clayey materials ranges from 0.08 to 0.36 
(Skempton, 1964; Lambe and Whitman, 1969). This 
assumption results in the constants being determined by a 
system of linear equations that are readily solved.

We use the standard equations for transformation of 
stress (Hill, 1950, p. 347) to put equation 23 in terms of

and

47 = (27b)

By following steps similar to those used in deriving equation 
21 from equation 19a, we determine that

Tns ~ (Tzz -Txx)sinQ cos9

(24a)

Leading terms in the Taylor series expansions of cos 9, sin 
9, and tan 9 are 1,9, and 9, respectively. If we neglect higher 
order terms in the Taylor expansions, we can write

7x'' (27c)

In equations 27a and 27b

q = -K tana, a constant, (27d)

and

Recall that tan 9=A/ cos (/jc), and that for small 9, 9= tan 9; 
thus 9 = A/ cos (Ix). Making this substitution of tan 9 for 9 
shows that the right side of equation 24b consists of one first- 
order term, 71r, and some second-order terms,

(24c)

Thus, we replace equation 23 with

(25a)

or in the moving coordinate system,

q? = 0, (27e)

because mean flow is assumed to be parallel to the slope. For 
landslides on gentle to moderate slopes (a<15°), tan o= 
O(A/). Thus, substituting equation 27d into 27c, shows that 
[<7Z], = O(A/)2 , so that it can be neglected in the continuity 
equation, thus

(270

To relate the components of flow to the volumetric 
strains at the slip surface, we use a form of the continuity 
equation derived by combining equations A2.9, A2.10, and 
A2.12 of Freeze and Cherry (1979, p. 532).

[Tz$] = 0. (25b)

The velocity of the landslide also enters the solution of 
equations 18c and 18d through the flow at the wavy bound 
ary. We assume that the slip surface is impermeable to water, 
so that

=0, (26)

Dt dz
(28)

In equation 28, P represents the compressibility of water, n 
represents the porosity of the soil, qx and qz are components 
of the specific discharge vector or Darcy velocity vector of 
the fluid relative to the grains, vx and vz are components of 
the velocity vector of the solid, and DPIDt is the total-time 
or material-time derivative,
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DP = dP_ 

Dt Vx dx ^dz

Equation 28 is a mathematical statement of the law of con 
servation of mass for the fluid and solids that constitute the 
landslide material. The equation ensures that the change in 
mass of fluid within a representative elemental volume of the 
material is balanced by flow of water and solids into or out 
of the element.

When equations 1 la, 13a, 20a, 20b, 20c, 20d, and 27a, 
27b, 27d, 27e, and 27f are substituted into equation 28 and 
terms of O(A/)2 are dropped, the expression becomes

equation 33 into equation 32 and neglect the first term on the 
right side to derive

(34)

Equation 34 relates fluid flow to volume change at the 
slip surface. Equations 21,25b, and 34 determine the bound 
ary conditions needed to solve the boundary-value problem 
that models forced circulation.

Solution for the Stresses and Velocities in the 
Porous-Elastic Material

dx

3P
_ n I   "" ~ "' I A ~ £
- "P I Vr   + VZ   + ^7 I + "gj + -5^

We use the first-order approximations of the boundary 
conditions (equations 21, 25b, and 34) to guess the form of 
the pore-pressure function, P, which satisfies equation 18c 
and the stress function, <j>, which satisfies equation 18d,

because the x and t derivatives of the zero-order quantities 
qx, qz, P, Vj, and vz , are zero (the zero order quantities are 
all constants with respect to x and r.) 

Let

dv de
(30)

for small strains, where e is the volumetric strain, and 
is the rate of volumetric strain. In equation 30,

e = (31)

where f^. and ^ are the normal components of strain.
When equations 30, 15c, and 15f are combined with 

equation 29, it simplifies to

. oP _ de
- n\jV? -=:   ^ r '=\K  f1^\

z dz x ot   (32)

However, the quantity «P is small compared to A/, so that the 
first term on the right side of equation 32 can be neglected in 
a first-order analysis.

The specific discharge, q^, is determined by Darcy's 
law,

3P
(33)

The elevation head does not appear in equation 33, because 
the elevation head is a zero-order quantity. We substitute

and

P = exp(-/z) [cj

= (c3 + c4/z) exp (-/z) [c5 cos

(35a)

(35b)

Note that equation 35b is an incomplete solution of equation 
18d. In a complete solution., exp(-/z) would be replaced by 
[exp(-/z)+c7 exp(/z)]. We can neglect the exp(/z) part of the 
solution because the effects of forced circulation are greatest 
near the slip surface and we expect them to be undetectable 
at heights above the slip surface where z is greater than L.

We proceed to solve equations 35a and 35b together 
with the boundary conditions for the velocities, stresses, and 
the pore pressure. Then we compute the resistance to sliding 
from the solution for the normal stress, 7W.

The free-slip boundary condition (equation 25) in 
terms of <j> and the quasi-static coordinate system is,

= 0, (36)

where 32(j>/3£3z is determined by

c4 (/z-l)]exp(-/z)

(-c5 sin (37)
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When equation 36 is substituted into equation 37, and 
z is set equal to zero, we determine that (41)

c, = C A (38)

Thus, c3 and c4 can be set equal to unity and their numerical 
value can be absorbed into c5 and c6.

To apply the velocity boundary condition, equation 
21, we use the definition of vz and transform coordinates; 
thus,

v, = 3 df
= -v

du

We compute MZ by integrating the constitutive equation 
relating Tzz and EK .

The constitutive equations that govern the behavior of 
the porous-elastic solid are listed in Rice and Cleary (1976). 
We have assumed that the soil particles are incompressible, 
so that the pore-pressure coefficient, B (Skempton, 1954; 
Lambe and Whitman, 1969), is equal to one, and Poisson's 
ratio for undrained loading, nu, is 0.5. For this assumption, 
the constitutive equations of Rice and Cleary (1976, p. 229) 
simplify to the following equations (in terms of the new 
coordinate system, equations 31):

, (39a)

<39b)

and

2GEZZ = Tzz - . (39c)

After making the appropriate substitutions for the 
stress function into equation 39c, we integrate to derive an 
expression for vz:

(l-2\i)P \dz

(40)

In equation 40, fit) must be zero, because vz-»0 as 
. We perform the operations indicated in equation 40 to 

obtain an expression for vz,

 -exp(-/z) {- /z)c5 -2/nc5

In equation 41, z is set equal to zero, and the velocity 
boundary condition (equation 21) is used to solve for the 
constants; thus, by collecting sine and cosine terms, two 
expressions relating the constants are obtained

0 = 2/c5 -2/jic5-(l-2ji) j (42a)

and

v// = -

Equations 42a and 42b simplify to

. (42b)

(43a)

and

(43b)

Now we use the boundary condition given by equation 
34 to solve for c5 and c6. To compute £, we use equations 
39a and 39c, and the definition of e:

Thus,

and

(44)

[-c5 sin

+ c6cos /£] +21 exp(-/z) [-CjSi

+ c2 cos (45)

We differentiate equation 35a to compute an expression for
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- = -/ exp(-/z) {c,cos (46) R = -
(50)

Equations 45 and 46 are substituted into equation 34, 
the no-flow condition at the boundary, to obtain two more 
equations relating the unknown constants. When z is set 
equal to zero and the sine and cosine terms are collected, the 
following expressions are obtained.

v v (l-2n)x'w

KG
(47)

[rcs - Cl ] . (48)

Equations 43a, 43b, 47, and 48 constitute a system of four 
algebraic equations that can be solved simultaneously for the 
unknown constants, c t , c2, c5, and c6.

The constant c5 is determined by solving equations 
43a, 43b, 47 and 48 simultaneously:

. (51)

1+

The formula for R can now be written out fully by substitut 
ing equation 51 into 50:.

R =
-vx (Al)\(l-2\i) 2

1 +
\2KGl(I-\i)

. (52)

Resistance to Sliding Due to 
Forced Circulation

We can now compute the resistance to sliding due to 
forced circulation, using equations 4c, 12b, 17a, and35b. 
Resistance to sliding due to roughness results only from the 
first order normal stress. The resistance to sliding due to the 
zero-order normal stress is zero, because (dzQldx) is periodic, 
\TXX\ZQ i s a constant, and the average value of (dzjdx) is zero,

0 =
1 PL _ (zQ 

= 7 [7«] - \7T-
£>JO ^{dx

Thus, the resistance to sliding, /?, is determined by substitut 
ing equations 3 1 into equation 4c

L ~

(49b)

On the boundary, the normal stress, [7^.]^, due to forced cir 
culation is determined by substituting equations 35b and 38 
into 17a,

ZQ = -I2 [c5 cos . (49c)

Equations 49c and 9 are substituted into equation 49b to 
compute R,

An approximate formula for R that applies when 
vr/A"<100 is derived by neglecting part of equation 52.

For combinations of vx, \i, G, and K typical for silty

and clayey soils, the term (in the denomi-
\2KGl (\ -\i) J 

nator of equation 52) is small compared to 1. The resistance, 
/?, is approximately

R ~
-v, (A/) \Q-2n) 2 

4*7(1-n) 2
(53)

The corresponding expression for resistance to sliding 
due to plastic deformation at the base of a glacier (Kamb, 
1970) is

R = -±vx (Al) 2 lr\. (54)

In equation 54, T| is the viscosity of glacier ice. The negative 
sign in the right hand side of equations 50, 51, 52,53, and 54 
are a result of the sign convention used in computing the 
stresses. When R is substituted into equation 4b, it is clear 
that the resistance to sliding due to forced circulation aug 
ments the shear strength of the slip surface, because the neg 
ative sign preceding R in equation 4b cancels the negative 
sign in the formula for R.

For short wavelengths, the resistance due to forced cir 
culation is small, and it increases with increasing wave 
length, so that forced circulation will occur at short (perhaps
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less than 10 m) wavelength bumps on the slip surface. This 
result is consistent with the fact that diffusion becomes more 
difficult as the path length, which is proportional to the 
wavelength, increases. At sufficiently long wavelengths, the 
resistance to sliding caused by forced circulation might 
become so great that some other mechanism of deformation 
becomes active near the slip surface, in much the same way 
that regelation gives way to viscous drag as the wavelength 
increases (Kamb, 1970). In glaciers, viscous drag is active at 
long wavelengths, because the viscous drag decreases with 
increasing wavelength (at constant roughness, equation 55). 
We do not know what mechanism in landslides might corre 
spond to viscous drag in glaciers. One possibility is the creep 
deformation analyzed by Mizuno (1989); however, it 
appears to be independent of wavelength.

Equations 52 and 54 were derived for the case where 
the boundary is impermeable. If the boundary is permeable, 
pore-fluid diffusion is active at asperities having longer 
wavelengths (other things being equal), because the water 
flows through material beneath the landslide as well as 
through the slide, effectively reducing the resistance to flow 
of water. A permeable boundary has the same effect on the 
resistance to sliding, or the velocity of the landslide, as does 
increasing the permeability of the soil above the slip surface.

DISCUSSION AND CONCLUSION

Roughness of slip surfaces can affect the velocity of 
landslides. We have shown that forced circulation of water 
around asperities can control the velocity of a landslide.

We have not observed forced circulation occurring in 
landslides, but forced circulation is a plausible mechanism 
for the slow movement of landslides in clayey soils because 
most rate-dependent properties of soils have been attributed 
to the movement of pore water, and landslides move by slid 
ing on uneven slip surfaces. Consolidation is considered the 
primary cause of time-dependent effects in fine-grained soils 
(Terzaghi, 1925; Wroth and Houlsby, 1985, p. 6). This sug 
gests that movement of pore water might play an important 
role in controlling the velocities of landslides.

The mechanism of forced circulation is consistent 
with the observed linear relationship between landslide 
velocity and the average height of the water table (Terzaghi, 
1950). In a wide, thin landslide where the water table is 
unconfined and flow is parallel to the ground surface, R is 
proportional to the mean pressure head at the slip surface, h 
cos a. The velocity dependent resistance to sliding, /?, 
needed to maintain equilibrium is determined by the differ 
ence between the shear stress due to weight of the debris and 
the shear strength at the slip surface. An expression for R is 
determined by substituting equations 4c, 22d, and 49b into 
4b and rearranging:

!- h^ ( cosa) (fcnf)} -c'.R = Zy{ { since-

(55)
Equation 55 indicates that as the average pore pressure 

(/ryw ) at the slip surface rises, the shear strength due to fric 
tion on the slip surface decreases in proportion to the change 
in h, but the driving forces remain constant. Consequently, R 
must increase linearly as h increases, in order to provide 
enough resistance at the slip surface to compensate for the 
loss of shear strength and balance the driving forces acting 
on the landslide. This increase in R causes a corresponding 
increase in the velocity of the landslide.

For the mechanism of forced circulation, the velocity 
of the landslide, vx, is proportional to R. Rearranging equa 
tion 53 yields

(56)
(A/)\(l-2|a) 2

In equation 56, R is determined by equation 55. Thus, 
according to the mechanism of forced circulation (equations 
55 and 56), the steady velocity increases linearly with the 
mean height of the water table. Furthermore, equations 55 
and 56 indicate that the maximum velocity of a given land 
slide is determined by the maximum height attained by the 
average pressure head at the slip surface.

The relationship between velocity, shear stress, avail 
able shear strength, and resistance to sliding due to forced 
circulation are shown in figure DIG. The shear stress tending 
to cause sliding is approximately constant, as indicated by 
the horizontal line in figure DIG (assuming that the total unit 
weight of soil does not change significantly through time). 
Sliding occurs when the water table exceeds its critical 
height, hcr. When the critical height is exceeded, the shear 
stress exceeds the available shear strength, and sliding 
begins. However, the resistance to sliding due to forced cir 
culation, R, augments the shear strength to exactly balance 
the shear stress and maintain equilibrium. If the average 
water table reaches some steady height, ~h (fig. D10), the 
slide will reach a steady velocity, vx, consistent with R.

The amount of resistance to sliding that can result 
from forced circulation is shown in figure Dl 1. Figure Dl 1A 
shows R graphed as a function of vx/K for typical values of 
L, Al, n, and yw. The graph shows R only for values 
of vx/K<\00 because we have neglected advective transport 
of water in deriving equation 54. Errors in R, due to neglect 
ing advection, should become significant when vxIK is 
greater than a few hundred. Figure Dl 1A indicates that R is 
less than 5 kPa if vx/K<lQQ.

We expect the steady velocities of landslides in clayey 
soils to be correlated with the average hydraulic conductivity 
of the landslide material. Figure D11B shows /?/Zyf sin a 
(where Zyt sin a is the shearing stress due to the weight of the
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Figure D10. Relationship between shear strength, 
shear stress, the resistance to sliding due to roughness 

(R), mean height of water table above the slip surface 

(h), and the velocity of a landslide ( ~vx). No movement 

occurs when h<hcr, because the available shear 

strength exceeds the average shear stress. Movement

occurs at velocity vx when the water table is at a height, 

h, between the critical height and the maximum height 

(hc^h<Z)t so that R plus the shear strength equals the 

average shear stress. The height of the shaded triangular 

area along any vertical line h - vx is R.

landslide material) graphed as a function of vx/K. Of course, 
R must be less than or equal to the shear stress, Zyr sin a, and 
we expect it to be less than 10 percent of the shear stress in 
most cases. Figure Dl 15 indicates that the maximum steady 
velocities of landslides should range from about one tenth to 
a few thousand times the hydraulic conductivity, assuming 
that R/Zyt sin a rarely exceeds 0.1. Thus, a scatter plot of 
velocity versus hydraulic conductivity for various landslides 
should show a trend of landslides with higher hydraulic con 
ductivity having greater velocities than those with lower 
conductivity.

The large range of velocities of steady landslides 
might be explained by the mechanism of forced circulation. 
The velocity of the landslide is proportional to the hydraulic 
conductivity, K, of the soil (equation 50). The conductivity 
of fine-grained soils ranges over several orders of magni 
tude, from 10~ 12 to 10~5 m/s (Freeze and Cherry, 1979, p. 
29). The average velocities of steadily moving landslides in 
fine-grained soils also range over several orders of

magnitude, from 10~ 10 to 10 3 m/s (Keefer and Johnson, 
1983). A few landslides in clayey soils may actually move 
much faster than 10~3 m/s (R.M. Iverson, USGS, written 
commun., 1988). However, observations indicate that most 
landslides in clay soils, which have very low permeability, 
move steadily and slowly. For example, debris of the Aspen 
Grove landslide, near Ephraim, Utah, was clay and silty clay 
that presumably had a low permeability. The peak velocity 
of the landslide (Baum, 1988), which occurred when the 
water table was at the ground surface, was only 20 cm/day 
(2.3X10"6 m/s). The peak velocity of the Thistle landslide 
(Duncan and others, 1986, p. 11) was 48 m/day (5.6x10^ 
m/s). Of landslides in clayey soils that were active in central 
Utah during 1983 and 1984, the Thistle landslide moved 
faster than any others we know of and the Aspen Grove land 
slide moved at a speed we consider typical of the landslides 
in central Utah.

Forced circulation will produce a complicated pattern 
of seepage within a moving landslide. For example, figure
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Figure D11. Graphs showing resistance to sliding due to 

forced circulation, R (computed using equation 53). (A) R is 

plotted against vx/Kfor typical field values of the parameters; 

H=0.3, 7^=9.80 kN/m3 (Lambe and Whitman, 1 969); values of 

Al and L indicated on the graph are from Mizuno (1989). (B) R

D12 shows contours of total head in a landslide in which 
flow, due to forced circulation, is superposed on flow 
parallel to the slope with the water table at the ground sur 
face. Total head, H, in figure D12, is determined by the 
formula,

H = cos a-x sin
A

exp(-/z)cos Ix, (57)

which is derived by substituting equation 35a into equation 
13b. In equation 57, H is the head, z\ is the height of the 
water table (and the ground surface) above the x-axis, a is 
the slope of the ground surface, and v^A/Kis the constant q 
(equation 35a) divided by the unit weight of water, yw, for 
the case where (a is zero. The following parameters were 
used in equation 57 to determine the contours of head shown 
in figure D12: vx/K is unity, / is 1 nT1 , A is 0.1 m, and z\ is 
2 m. For this combination of parameters, c2 in equation 35a 
is approximately 0.0005 q, and, therefore, is negligible.

Although the details of the flow pattern resulting from 
forced circulation vary with the choice of parameters, some 
general features are illustrated by figure D12. Upward- 
directed flow, emanating from the proximal sides of the sinu 
soidal bumps, fans outward and some of the water seeps out 
of the ground surface along roughly horizontal flow lines 
(flow lines are perpendicular to contours of head). A small 
amount of water, emanating from the proximal side of a 
bump, flows upslope toward the zone of suction and dilation 
at the distal side of the neighboring bump. However, flow 
directed upslope might not occur in all cases. Flow near the

10 

(dimensionless)

100 1000

divided by the shear stress, Zyf sin a, is plotted against vx//Cfor 

typical field values of the parameters: Z ranges from 1 to 30 m, 

yf=18.8 kN/m3, 7^=9.8 kN/m3, ^1=0.3 (Lambe and Whitman, 

1969), cc=15°, A/=0.2, and L ranges from 1 to 10 m.

distal sides of bumps is directed downward, and some water 
infiltrates from the ground surface in these areas.

The water level in observation wells (open tubes), or 
the pore pressure measured by piezometers, will depend on 
the position of the instrument with respect to the slip surface. 
The pore pressure near the distal sides of bumps ought to be 
lower than average, whereas the pore pressure near proximal 
sides of the bumps ought to be higher than average. How 
ever, testing the hypothesis of forced circulation by measur 
ing pore pressure in an active landslide might have 
ambiguous results, because one needs to know the shape of 
the failure surface and the general pattern of groundwater 
flow in the slope in order to interpret the measurements.

We do not have enough field data to verify the mech 
anism of forced circulation, but at the Minor Creek landslide 
in northern California, the hydraulic conductivity is known 
well enough to use equation 53 to estimate the velocity. This 
landslide has an average hydraulic conductivity, K, of 
5x10~8 m/s (Iverson and Major, 1987) and a maximum 
velocity of a few decimeters per month (Iverson, 1986), or 
from about 4xlO~8 to 2xlO~7 m/s. Using data from a stability 
analysis by Iverson and Major (1987), we calculate that R 
equals 0.13 kPa when the landslide is moving at its maxi 
mum velocity. Using this value for R and assuming that the 
wavelength, L, is between 1 and 10m (range of wavelengths 
reported by Mizuno, 1989); the roughness, A/, is 0.2 (the 
average field value determined by Mizuno, 1989), and (a is 
0.3; we calculate a maximum velocity for the Minor Creek 
landslide of 1.3xlO~7 m/s (for L=l m) or 1.3xlO~8 m/s (for 
L=10 m). Our calculated velocities are of the same order of
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Figure D12. Cross section showing contours of total head, H, in a hypothetical landslide. The pattern of head results from 
the superposition of slope-parallel flow and forced circulation due to sliding on the uneven slip surface.

magnitude as the maximum velocity observed by Iverson 
(1986).

We expect our analysis of the mechanism of forced 
circulation to poorly represent operation of the mechanism in 
landslides that have been displaced less than one wave 
length, and to represent the operation of forced circulation 
with acceptable accuracy in landslides that have been dis 
placed at least a few wavelengths. Nonlinear deformation of 
soil, such as irreversible deformation that results in hystere 
sis during repeated cycles of loading and unloading, was not 
considered in our analysis. However, permanent deforma 
tion is greatest during the first cycle of loading and unload 
ing, which would correspond to displacement of the 
landslide over one wavelength. Hysteresis diminishes during 
repeated cycles of loading and unloading of clay samples, or 
in other words, loading and unloading curves tend toward 
each other (Lambe and Whitman, 1969, p. 321) so that the 
modulus for unloading (swell index) approximately equals

the modulus for loading (compression index). Thus, after a 
landslide has been displaced several wavelengths, hysteresis 
should be negligible, and equation 53 should determine the 
resistance due to forced circulation with fair accuracy.
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