
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXI, NUMBER 3

SEPTEMBER 2013, PAGES 455–487

S 0033-569X(2013)01293-8

Article electronically published on May 16, 2013

STEADY PERIODIC WAVES BIFURCATING

FOR FIXED-DEPTH ROTATIONAL FLOWS

By

DAVID HENRY

School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

Abstract. We consider steady periodic water waves for rotational flows with a spec-

ified fixed depth over a flat bed. We construct a modified height function, which ex-

plicitly introduces the mean depth into the rotational water wave problem, and use the

Crandall-Rabinowitz local bifurcation theorem to establish the existence of solutions of

the resulting problem.

1. Introduction. In the following, we prove the existence of steady periodic water

waves for rotational flows with a specified fixed depth over a flat bed. Until recently,

most of the rigorous analytical work concerning existence for water waves focused on

the irrotational case; see [51] for a survey of much of this work. While irrotational

flows may be regarded as being suitable for modelling waves which enter a body of still

water [37, 42], more physically complicated and realistic flows generally possess vorticity,

for example flows which model wave-current interactions [38, 47] or flows generated by

wind-shear [39] (see [8] for a comprehensive discussion on this topic).

In 1802, Gerstner [28] found an explicit solution to the full water wave equations,

which determined a periodic travelling wave, and where the resulting underlying flow

was rotational with a very specific vorticity distribution (see [5, 33] for a modern treat-

ment of Gerstner’s wave, and [6] for an adapted flow which describes edge-waves). In

1934, Dubreil-Jacotin [23] used power series to demonstrate the existence of waves of

small amplitude; however, a rigorous proof of the existence of large amplitude waves

proved elusive until the breakthrough paper in 2004 by Constantin and Strauss [14] (a

noteworthy first approach to addressing this question, using numerical simulations, is

given in [22]). Constantin and Strauss used local and global bifurcation methods to es-

tablish the existence of a global continuum of solutions to the water wave problem for

periodic steady flows with general vorticity. This breakthrough was followed by a wide

body of work on flows with vorticity, establishing such properties as stability of solutions
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[16], the symmetry of solutions [10, 11, 12], the analyticity of the surface profile and

the streamlines for waves with vorticity [13, 35, 34, 44, 45] and extending the proof of

the existence of solutions to more general rotational flows, such as flows which experi-

ence surface tension, have critical layers or stagnation points, or flows with discontinuous

vorticity [4, 15, 18, 19, 43, 49, 50].

In this paper we wish to determine the local existence of solutions for the water wave

problem with a general vorticity distribution over a fixed mean depth d. This differs

markedly from the approach in [14], where the mass-flux p0 was fixed and the existence

of small and large amplitude waves was proven for the resulting water wave problem.

In order to fix the depth, we use a novel reformulation of the water wave problem for

rotational flows whereby we introduce what we call a “modified height function”. Fixing

the depth rather than the mass-flux is the more quintessentially physical approach, since

for any given body of water it is naturally easier to measure the mean depth of the flow

than the mass-flux. It is important to note that fixing the mass-flux p0 does not fix the

depth d; in fact recently it was noticed in [40, 41] that, for any fixed p0, the depth d

varies along the bifurcation curve of solutions established in [14]. The mean depth of a

mass of water over a flat bed is an inherent property which we can directly determine,

whereas the mass-flux is a more opaque and variable characteristic. These considerations

are the motivating factors behind the current paper.

2. Governing equations. We consider two-dimensional steady periodic travelling

surface waves propagating over water of a fixed depth d > 0, where d is fixed. We

allow for rotational flow, and the dominant external restoration force is gravity. The

presence of vorticity severely complicates the mathematical problem for water waves,

but it is a physically far more relevant scenario [8, 14, 37, 42], since rotational flows

model wave-current interaction [38, 47], among other complicated phenomena, whereas

irrotational flows generally occur only for waves propagating on the surface of a body

of water which was initially undisturbed [37, 42]. The two-dimensional nature of water

waves is commonly observed for many flows, such as swell propagating on the surface of

the ocean, and for such flows we can restrict our analysis to a cross section of the flow

which is perpendicular to the wave crest line [37, 42]. Indeed, it was recently shown in

[8] that for waves with nonzero constant vorticity the flow must be two-dimensional. We

present three equivalent formulations of the gravity water wave problem: the standard

physical form of the governing equations, which describes the flow in terms of the velocity

field and pressure distribution function, which we then formulate in terms of the stream

function, and by applying the Dubreil-Jacotin [23] semi-hodograph transformation to the

variables, and introducing a modified height function in the new variables, we finally get

the modified height form of the governing equations. It is this form of the equations to

which we apply local bifurcation methods to show the existence of waves.

We finally note that the local bifurcation approach bestows an additional benefit, in

that following the linearisation it provides detailed information about the entire flow,

and can thus be used to study the particle paths in waves of small amplitude, as was

done in [20, 25, 32, 48]. Results of this type are sometimes even indicative of the pattern

in waves of large amplitude, as was proved for irrotational flows in [7, 17, 31].
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2.1. Standard governing equations. We use the Cartesian (x, y)-coordinates to formu-

late the standard governing equations in a frame moving alongside the wave. If the

undisturbed mass of water has a depth d > 0 and we take y = 0 to represent the location

of the undisturbed water surface, then the flat bed is located at y = −d. Suppose the

wave has period 2L. Then basic physical considerations coupled with periodicity imply

that for any fixed time t0, ∫ L

−L

η(x, t0)dx = 0,

where η(x, t) is the wave surface profile. In the following we take L = π for convenience,

and in doing so we lose no generality since our analysis is equally applicable to waves

of any set period following scaling arguments. If we denote the constant speed of the

travelling waves by c > 0, then the velocity field takes the form (u(x− ct, y), v(x− ct, y))

and the wave surface profile is given by η(x−ct). The wave profile η is a free surface since

it is a priori undetermined and thus represents an unknown in the problem. Dealing with

steady travelling waves enables us simplify matters by transforming to a new reference

frame moving alongside the wave, with constant speed c > 0, by using the change of

coordinates (x− ct, y) �→ (x, y). In this frame the flow is steady and we are now working

with a time-independent problem.

We denote the closure of the fluid domain by Dη = {(x, y) ∈ R2 : −d ≤ y ≤ η(x)}.
The Eulerian governing equations of motion then take the following form in the moving

frame coordinates. The assumption of incompressibility of the fluid leads to the equation

of mass conservation,

ux + vy = 0, (2.1)

and the equations of motion for inviscid fluids experiencing the external restorational

force of gravity are given by Euler’s equations,{
(u− c)ux + vuy = −Px,

(u− c)vx + vvy = −Py − g,
(2.2)

which hold throughout the domain Dη. Here P = P (x, y) is the pressure distribution

function and g is the gravitational constant. Since the free boundary of the fluid domain

always consists of the same particles we have the kinematic surface condition

v = (u− c)ηx on y = η(x). (2.3)

At the surface, the dynamic boundary condition which decouples the motion of the air

from that of the free surface particles is given by

P = Patm on y = η(x), (2.4)

where Patm is the constant atmospheric pressure. On the flat bed we have the kinematic

boundary condition

v = 0 on y = −d, (2.5)

which tells us that the rigid bed is impenetrable. The Eulerian governing equations for

the gravity water wave problem are embodied by the nonlinear free boundary problem

(2.1)–(2.5) [37, 42] along with the equation which describes vorticity

ω = uy − vx. (2.6)
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We make the additional assumption that

u < c, (2.7)

throughout the fluid. Physically, it is known that the assumption (2.7) is valid for flows

which are not near breaking, a claim which is supported by field evidence [37, 42]. These

flows do not contain any stagnation points, and the individual fluid particles move with

a horizontal velocity which is less than the speed with which the surface wave propa-

gates. Mathematically this assumption is of fundamental importance in permitting us to

perform the Dubreil-Jacotin transformation in Section 2.3 below. In the following we con-

sider solutions (u, v, P, η) of (2.1)-(2.6) in the class C2+α
per (Dη)×C2+α

per (Dη)×C2+α
per (Dη)×

C3+α
per (R) of Hölder continuously differentiable functions, with Hölder exponent α ∈ (0, 1),

and where the per subscript indicates that our solutions are 2π−periodic. Furthermore,

our solutions will have a single crest located at x = 0 and troughs located at x = ±π,

and the condition (2.7) on u and c will hold.

2.2. The stream function formulation. We define the stream function ψ up to a con-

stant by

ψy = u− c, ψx = −v, (2.8)

and we fix the constant by setting ψ = 0 on y = η(x). Relations (2.3) and (2.5) tell us

that ψ is constant on both boundaries of Dη, and so it follows from integrating (2.8) and

using (2.7) that ψ = −p0 on y = −d, where

p0 =

∫ η(x)

−d

(u(x, y)− c)dy < 0.

The above expression is usually referred to as the relative mass flux. From writing

ψ(x, y) = −p0 +

∫ y

−d

(u(x, s)− c)ds,

we can see that ψ is also periodic, with period 2L. We can deduce from (2.8) that

the level sets of the stream function ψ(x, y) are the streamlines of the fluid motion.

Mathematically, the assumption (2.7) is vital for a number of reasons, primarily in as

far as we are concerned because it enables us to apply the semi-hodograph change of

variables which we introduce in Section 2.3 below. We can see by direct calculation,

using (2.6) and (2.8), that

Δψ = ω.

Setting

Γ̃(p) =

∫ p

0

p0γ(s)ds,

where γ is the vorticity function, which we will define below using relation (2.14), then

upon integrating (2.2) and using various other manipulations we derive Bernoulli’s law,

which states that the expression

E :=
(u− c)2 + v2

2
+ g(y + d) + P − Γ̃(

ψ

p0
)
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is constant throughout the fluid domain Dη. We can reformulate the governing equations

in the moving frame in terms of the stream function as follows:

Δψ = ω in −d < y < η(x), (2.9a)

|∇ψ|2 + 2g(y + d) = Q on y = η(x), (2.9b)

ψ = 0 on y = η(x), (2.9c)

ψ = −p0 on y = −d. (2.9d)

2.3. The modified height function formulation. The next step is to introduce the semi-

hodograph transformation of Dubreil-Jacotin [23] given by{
q = x,

p = ψ(x,y)
p0

.
(2.10)

It is now obvious that the assumption (2.7) of there being no stagnation points is vital,

in order to ensure that the change of variables represents an isomorphism. The semi-

hodograph transformation has the advantage of transforming the fluid domain Dη, with

the a priori unknown free boundary η, into the fixed semi-infinite rectangular strip R =

R× [−1, 0].

y= η (x)

p
0

ψ

q= x

y= −d

y= 0

p=−1

p=0

p=

Next we define the modified height function in the (q, p)-variables,

h(q, p) =
y

d
− p. (2.11)

Here y = y(q, p) is regarded as a function of the new variables. The nomenclature

“modified height function” expresses the fundamental difference between the approach

here and the approach taken by Constantin and Strauss [14]. In [14] the mass-flux p0 was

fixed and the existence of small and large amplitude waves was proven for the resulting

water wave problem. In this paper we wish to determine the local existence of solutions

for the water wave problem over a fixed depth d. This is the more quintessentially

physical approach, since for any given body of water it is naturally easier to measure

the mean depth of the flow than the mass-flux. It is important to note that fixing the

mass-flux p0 does not fix the depth d; indeed it was observed in [41] that, for any fixed

p0, the depth d varies along the bifurcation curve of solutions. Additionally, for a wave

with a given mass-flux p0, it is not trivial to directly determine the resulting mean depth

d of the flow, as we will see from the relations we establish in Section 7 for flows with
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constant vorticity. We can directly determine the mean depth of a mass of water over

a flat bed whereas the mass-flux is a more variable characteristic for any given flow.

Therefore we aim to recast the water wave problem in such a fashion as to allow us to fix

the mean depth. This requires a marked difference in approaches from that of [14] where

the choice of the height function h = y eliminates the parameter d from the problem.

Here we have chosen the particular form of the modified height function (2.11) in order

to introduce the depth d into the water wave problem while retaining two very important

characteristics, namely ∫ π

−π

h(q, 0)dq = 0 (2.12)

and

h(q,−1) = 0.

We note the following relations:

∂x =
ψx

p0
∂p + ∂q, ∂y =

ψy

p0
∂p, (2.13)

∂p =
p0

u− c
∂y =

p0
ψy

∂y, ∂q = ∂x +
v

u− c
∂y = ∂x − ψx

ψy
∂y,

and we see from taking the curl of the Euler equations (2.2) that

∂qω = ωx +
v

u− c
ωy = 0. (2.14)

It follows that the vorticity is a function of p alone; hence ω = γ(p), where γ will be

referred to as the vorticity function. We use the above relations to reformulate Bernouilli’s

condition (2.9b) on the surface in terms of h as

1

d2
+ h2

q +
(hp + 1)2

p20
[2gd(h+ 1)−Q] = 0 on p = 0.

Composing further x and y derivatives in terms of the new variables we can reexpress

(2.9a) as

(
1

d2
+ h2

q

)
hpp − 2hqhpq(hp + 1) + hqq(hp + 1)2 +

γ(p)

p0
(hp + 1)3 = 0.

Furthermore, we can see that the condition which excludes stagnation points (2.7) is

equivalent to

hp + 1 > 0. (2.15)

To summarise, the semi-hodograph change of variables (2.10) transforms the stream func-

tion system of equations (2.9a)-(2.9d) on an unknown domain into the following modified

height function system of equations. We are seeking a solution h(q, p) ∈ C3+α(R) of the
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equations(
1

d2
+ h2

q

)
hpp − 2hq(hp + 1)hpq + (hp + 1)2hqq +

γ(p)

p0
(hp + 1)3 = 0,

in − 1 < p < 0, (2.16a)

1

d2
+ h2

q +
(hp + 1)2

p20
[2gd(h+ 1)−Q] = 0, p = 0, (2.16b)

h = 0, p = −1, (2.16c)

where h is even and 2π−periodic in q, and conditions (2.15)–(2.12) hold.

2.4. Equivalency of the systems. It is known that the standard system of governing

equations (2.1)–(2.5) is equivalent to the stream function form of the governing equations

(2.9); cf. [14] for a detailed proof. What we now propose to show is that the modified

height system (2.16) is also equivalent to the stream function system (2.9), and we

will achieve this by showing that if we are given a solution h(q, p) of (2.16), for fixed

d > 0, p0 < 0, then we can recover a solution ψ̃(x, y) for the system (2.9).

We see immediately that the free surface is given by η(x) = dh(x, 0), since q = x.

For a fixed x in the fluid domain, given p ∈ [−1, 0] we wish to recover y ∈ [−d, η(x)] by

solving

y = d[h(x, p) + p] (2.17)

for p ∈ [−1, 0]. When p = 0 we get y = η(x), and y = −d when p = −1. Differentiating,

we see that

∂p(d[h(x, p) + p]) = d[hp + 1] > 0

and so (2.17) defines a homeomorphism from [−1, 0] to [−d, η(x)]. In particular, we can

regard p as being a function of the variables x and y. This allows us to define a new

function in x and y as

ψ̃(x, y) = p0p(x, y) for x ∈ R,−d ≤ y ≤ η(x). (2.18)

We will show that the function (2.18) solves the system (2.9). It follows directly from

(2.11) that

ψ̃(x,−d) = p0(−1) = −p0

and

ψ̃(x, η(x)) = p0(0) = 0,

and so ψ̃ satisfies the boundary data (2.9c)-(2.9d). Differentiating (2.17) we get

yx = 0 = d[hq + hppx + px] ⇒ px = − hq

1 + hp
, (2.19)

yy = 1 = d[hppy + py] ⇒ py =
1

d(1 + hp)
, (2.20)
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and so from (2.16b), (2.18), (2.19) and (2.20) we get

ψ̃x = − p0hq

hp + 1
, ψ̃y =

p0
d(hp + 1)

,

|∇ψ̃|2 + 2g(y + d) =
p20h

2
q

(hp + 1)2
+

p20
d2(hp + 1)2

+ 2gd(1 +
y

d
)

=

(
1

d2
+ h2

q

)
p20

(hp + 1)2
+ 2gd(1 + h+ p) = Q on y = η(x).

This shows that ψ̃ satisfies (2.9b). Finally, by direct calculation we have

Δψ̃ =

(
hq

hp + 1
∂p − ∂q

)
p0hq

hp + 1
+

(
1

d(hp + 1)
∂p

)
p0

d(hp + 1)
= γ(p).

3. The bifurcation setting. The Crandall-Rabinowitz [21] local bifurcation theo-

rem will be used to prove the existence of nontrivial solutions to (2.16):

Theorem 3.1 (Crandall-Rabinowitz). Let X,Y be Banach spaces and let F ∈ Ck(X ×
R, Y ) with k ≥ 2 satisfy:

(1) F(0, λ) = 0 for all λ ∈ R.

(2) The Fréchet derivative Fx(0, λ
∗) is a Fredholm operator of index zero with a

one-dimensional kernel:

ker(Fx(0, λ
∗)) = {sx0 : s ∈ R, 0 	= x0 ∈ X}.

(3) The tranversality condition holds:

Fλx(0, λ
∗)[(x0, 1)] 	∈ range(Fx(0, λ

∗)).

Then λ∗ is a bifurcation point in the sense that there exists ε0 > 0 and a branch of

solutions

{(x, λ) = {(sχ(s),Λ(s)) : s ∈ R, |s| < ε0} ⊂ X × R},
with F(x, λ) = 0, Λ(0) = 0, χ(0) = x0, and the maps

s �→ Λ(s) ∈ R, s �→ sχ(s) ∈ X,

are of class Ck−1 on (−ε0, ε0). Furthermore there exists an open set U0 ∈ X × R with

(0, λ0) ∈ U0 and

{(x, λ) ∈ U0 : F(x, λ) = 0, x 	= 0} = {(sχ(s),Λ(s)) : 0 < |s| < ε0}.

We remark that the Crandall-Rabinowitz theorem as stated above does not actually

require the X-component to be zero; it applies equally to the point (λ∗, x̃): if all three

conditions, appropriately adapted, in Theorem 3.1 hold at the point (λ∗, x̃), then local

bifurcation occurs at this point. We refer to [2] for a detailed discussion of local and

global bifurcation theory, including a proof of Theorem 3.1.

The plan for implementing the Crandall-Rabinowitz theorem in the context of the

water wave problem (2.16) goes as follows. Firstly, we regard the system (2.16) as an

operator F(h, λ) : X × R → Y , where the exact form of the Banach spaces X,Y is

a delicate matter which we will deal with later on in Section 6. In Section 4 we find

the laminar flow solutions H(p) = H(p, λ) of the system (2.16), and it turns out that a
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suitable bifurcation parameter λ is suggested naturally by the structure of the laminar

flow solutions. What then remains is to check, for the water wave problem (2.16), whether

there exists a value λ∗ for which each of the three conditions in Theorem 3.1 hold at

the point (H(p), λ∗). The local bifurcation curve at this point will then consist of non-

laminar water waves, thus proving local existence of water waves. Whether such a value

λ∗ exists will depend on the form of the vorticity function, as we will see.

4. Laminar flow solutions of (2.16). We wish to find laminar flow solutions of the

modified height system (2.16), that is, solutions H(p) which have no q−dependence and

where the streamlines of the resulting flow are horizontal. Therefore such an H(p) solves

Hpp

(Hp + 1)3
= −d2γ(p)

p0
in − 1 < p < 0,

(Hp(0) + 1)2 =
p20
d2

[Q− 2gd(H(0) + 1)]−1, p = 0,

H = 0, p = −1.

If

Γ(p) = 2

∫ p

0

d2γ(s)

p0
ds, −1 ≤ p ≤ 0, λ =

1

(1 +Hp)2

∣∣∣∣
p=0

,

with

Γmin = min
p∈[−1,0]

Γ(p) ≤ 0, (4.1)

then for λ > −Γmin we solve to get

H(p) =

∫ p

0

ds√
λ+ Γ(s)

+
1

2gd

[
Q− p20

d2
λ

]
− (p+ 1), −1 < p ≤ 0,

=

∫ p

−1

ds√
λ+ Γ(s)

− (p+ 1), −1 < p ≤ 0,

H(−1) = 0 =

∫ −1

0

ds√
λ+ Γ(s)

+
1

2gd

[
Q− p20

d2
λ

]
.

From

Q(λ) = 2gd

∫ 0

−1

ds√
λ+ Γ(s)

+
p20
d2

λ > 0,

we can determine that Q is a positive, convex function of λ, with minimum occurring at

the unique value λ0 > 0, where

p20
gd3

=

∫ 0

−1

ds

(λ0 + Γ(s))
3
2

. (4.2)

It follows that Q(λ) is monotonically decreasing for −Γmin < λ < λ0 and monotonically

increasing for λ > λ0. With this in mind we choose λ as our bifurcation parameter. For

all λ > −Γmin we have F(H(p), λ) = 0, where F is the operator associated to (2.16),

and so the first condition in Theorem 3.1 is satisfied. We now need to find whether a

value λ∗ exists such that the second and third conditions of Theorem 3.1 hold. If so the
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curve of laminar solutions bifurcates in the sense of Crandall and Rabinowitz, giving us

a local curve of nonlaminar solutions.

We will actually identify this bifurcation value λ∗ by first carefully examining what

it would mean for the final two conditions of Theorem 3.1 to hold for the water wave

problem (2.16a)–(2.16c).

5. The Fréchet derivative Fx(h, λ). Checking the second condition of Theorem 3.1

involves calculating the Fréchet derivative Fx(H(p), λ), where F is the operator defining

the water wave problem (2.16). We must check, for some value λ∗, that Fx(H(p), λ) has

a one-dimensional kernel and a range with codimension one.

In order to calculate the Fréchet derivative we look at the linearisation of the problem.

We look for solutions of (2.16) of the form h(q, p) = H(p;λ) + εm(q, p), where m ∈
C3+α

per (R) is even in q, and study the equations with ε at the first order. The resulting

equations look like

1

d2
mpp + (Hp + 1)2mqq +

γ(p)

p0
3(Hp + 1)2mp = 0, (q, p) ∈ D, (5.1a)

2
(Hp + 1)

p20
mp[2gd(H + 1)−Q] +

(Hp + 1)2

p20
2gdm = 0, p = 0, (5.1b)

m = 0 p = −1. (5.1c)

Setting a(p;λ) = 1
Hp+1 =

√
λ+ Γ(p), for λ > −Γmin, we have ap = d2

p0
γ(p)a−1, and so

we rewrite (5.1) as

(a3mp)p + d2amqq = 0, (q, p) ∈ D, (5.2a)

a3mp =
gd3

p20
m, p = 0, (5.2b)

m = 0 p = −1. (5.2c)

From standard Fourier analysis [9, 24] we can assume that the even function m has the

Fourier series representation

m(q, p) =

∞∑
k=0

mk(p) cos(kq) ∈ C2
per(R), (5.3)

with C3+α[−1, 0] coefficients

m0(p) =
1

2π

∫ π

−π

m(q, p)dq, mk(p) =
1

π

∫ π

−π

m(q, p) cos(kq)dq, k ≥ 1.

and so m is a solution to (5.2) if and only if for each value k the function mk(p) solves

the following Sturm-Liouville problem:

(a3mp)p = k2d2am, −1 < p < 0, (5.4a)

a3mp =
gd3

p20
m, p = 0, (5.4b)

m = 0 p = −1, (5.4c)
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where the q−dependency of m is assured if mk 	= 0 for some k ≥ 1. Since we wish to

find solutions m(p) ∈ C3+α[−1, 0] of (5.4) which have period 2π, we deal only with the

case k = 1 in (5.4). Such a solution m would represent a 2π−periodic solution of the

linearisation of the water wave problem (2.16) with Fx(H(p), λ)m = 0.

5.1. The variational approach to solving (5.4). We prove the existence of solutions to

the Sturm-Liouville problem (5.4) by recasting it in the variational setting. Supposing

we have a solution m of (5.4), if we multiply equation (5.4a) by m and integrate we get

∫ 0

−1

(a3mp)pmdp =
[
a3mpm

]0
−1

−
∫ 0

−1

a3m2
pdp =

∫ 0

−1

d2am2dp,

[
gd3

p20
m2(0)

]
−
∫ 0

−1

a3m2
pdp =

∫ 0

−1

d2am2dp,

−gd3m2(0) + p20
∫ 0

−1
a3m2

pdp

p20d
2
∫ 0

−1
am2dp

= −1.

We now associate to (5.4) the minimisation problem

μ(λ) = inf
φ∈H1(−1,0), φ(−1)=0, φ �≡0

F(φ, λ), (5.5)

with F(φ, λ) =
−gd3φ2(0) + p20

∫ 0

−1
a3φ2

pdp

p20d
2
∫ 0

−1
aφ2dp

.

Here the Hilbert space H1(−1, 0) is the standard Sobolev space of square summable

functions on [−1, 0] whose first derivative is also square summable [26]. We wish to

show that μ(λ∗) = −1 for some value λ∗ and that the value μ(λ∗) = F(m,λ∗) = −1 is

attained by some m ∈ C3+α[−1, 0]. It then follows [14] that m is also a solution of the

corresponding Sturm-Liouville problem (5.4).

We begin by showing that the variational problem is well-posed, that is, μ(λ) > −∞.

If we denote ε(λ) = infp∈[−1,0] a(p, λ) > 0, then we have

2gd3φ2(0) = 2gd3
∫ 0

−1

(φ2)pdp = 4gd3
∫ 0

−1

φφpdp

≤ p20

∫ 0

−1

ε3φ2
pdp+

∫ 0

−1

4
g2d6

ε3p20
φ2dp ≤ p20

∫ 0

−1

a3φ2
pdp+ 4

g2d6

ε4p20

∫ 0

−1

aφ2dp,

and hence we have the strict inequality

μ(λ) =
−gd3φ2(0) + p20

∫ 0

−1
a3φ2

pdp

p20d
2
∫ 0

−1
aφ2dp

> −C, for C = (2g)2
(

d

εp0

)4

> 0.

5.1.1. The limit μ(λ) is attained by φ = M . We now show that the limit in (5.5) is

always attained, that is, μ(λ) = F(M,λ) for someM ∈ H1(−1, 0). Let φn be a minimising

sequence satisfying limn→∞ F(φn) → μ(λ). Since we can see from the definition of (5.5)

that F(tφ, λ) = F(φ, λ) for any t 	= 0, we can normalise the sequence {φn} by setting
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p20d
2
∫ 0

−1
aφ2

ndp = 1 for each n. We infer that

F(φn) = −gd3φ2
n(0) + p20

∫ 0

−1

a3(∂pφn)
2dp

≥ p20
2

∫ 0

−1

a3(∂pφn)
2dp− C

2
≥ ε(λ)3

2

∫ 0

−1

(∂pφn)
2dp− C

2
,

and since F(φn, λ) → μ(λ) it follows that the sequence
{∫ 0

−1
(∂pφn)

2dp
}
n≥1

is bounded.

Furthermore since ∫ 0

−1

φ2
ndp ≤ 1

ε(λ)

∫ 0

−1

aφ2
ndp =

1

ε(p0d)2
,

it follows that {φn}n≥1 is bounded in H1(−1, 0). We know [26] that {φn}n≥1 must have

a weakly convergent subsequence {φnk
} with limit M ∈ H1(p0, 0). Since ∂pφnk

⇀ Mp

in L2(−1, 0) and φnk
(−1) = 0 it follows that

φnk
(p) =

∫ p

−1

∂pφnk
(s)ds →

∫ p

−1

Mp(s)ds = M(p) for each p ∈ [−1, 0].

Showing the strong pointwise convergence of the p−derivatives of the sequence is more

tricky. It follows from∫ 0

−1

a3(∂pφnk
)2dp−

∫ 0

−1

a3M2
pdp

=

∫ 0

−1

a3(∂pφnk
−Mp)

2dp+ 2

∫ 0

−1

a3(∂pφnk
)Mpdp− 2

∫ 0

−1

a3M2
pdp, (5.6)

where the first term in (5.6) is positive, and the last two converge to zero by weak

convergence, that

−gM2(0) +

∫ 0

−1

a3M2
pdp ≤ lim inf

k→∞
{−gφ2

nk
(0) +

∫ 0

−1

a3(∂pφnk
)2dp}.

Since the sequence {φnk
} is minimising for F(·, λ), it follows that the infimum μ(λ) is in

fact a minimum which is attained by M ∈ H1(−1, 0).

5.1.2. M is in C3,α[−1, 0]. We now show that M is in C3,α[−1, 0]. Firstly, as a

minimum value, M satisfies the Euler-Lagrange equation [29], where

d

dε
F(M + εφ, λ)

∣∣∣∣
ε=0

= 0 (5.7)

for every φ ∈ H1(−1, 0) with φ(−1) = 0. We know that F(M,λ) = μ(λ), and furthermore∫ 0

−1
aM2dp = 1 follows from the renormalisation procedure on φnk

together with the

dominated convergence theorem. This enables us to express relation (5.7) in the form

−gd3φ(0)M(0) + p20

∫ 0

−1

a3φp(p)Mp(p)dp = μ(λ)d2p20

∫ 0

−1

aφ(p)M(p)dp. (5.8)

Choosing φ to be smooth and with compact support, this implies that

(a3Mp)p = −μd2aM in H−1(−1, 0). (5.9)

Since a ∈ C2,α[−1, 0] ⊂ H2(−1, 0) it follows that aM ∈ H1(−1, 0) on the right-hand side

of (5.9). Therefore a3Mp ∈ H2(−1, 0) on the left-hand side of (5.9) and consequently
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Mp ∈ H2(−1, 0) implies that M ∈ H3(−1, 0) ⊂ C2[−1, 0]. We deduce that (5.9) holds

classically, and the fact that a ∈ C2,α[−1, 0] allows us to differentiate both sides of (5.9)

once more, and we see that M ∈ C3,α[−1, 0]. If we multiply (5.9) by any φ ∈ H1(−1, 0)

with φ(−1) = 0 and integrate we get

−a3(0)Mp(0)φp(0) +

∫ 0

−1

a3(s)Mp(s)φp(s)ds = μd2
∫ 0

−1

aM,

and choosing φ(p) = p+ 1 above and in (5.8) we get

a3Mp = gM on p = 0.

Putting this all together, the minimiser M ∈ C3,α[−1, 0] of the variational problem (5.5)

is a classical solution of the weighted Sturm-Liouville problem

(a3Mp)p = −μd2aM for s ∈ (−1, 0), (5.10a)

a3Mp =
gd3

p20
M on p = 0, (5.10b)

M = 0 on p = −1. (5.10c)

5.2. The groundstate μ dependence on λ. We will now prove the real-analytic depen-

dence of the groundstate μ(λ) on the parameter λ, and the monotonicity of the ground-

state when μ(λ) < 0. Therefore, any value λ for which μ(λ) = −1 is unique. We then

show that for any vorticity function γ we can find λ such that μ(λ) > −1. It follows that

a sufficient condition for bifurcation to occur is to prove that μ(λ) < −1 for some value of

λ. We finish this section with a condition on the vorticity function γ which ensures that

μ(λ) < −1 for some λ, thereby ensuring that the linearised system (5.4) has a solution,

and also showing that, for sufficiently negative constant vorticity, no such solution exists.

5.2.1. Analyticity of λ �→ μ(λ). We transform the weighted Sturm-Liouville problem

(5.10) into an equivalent standard Sturm-Liouville problem as follows. We introduce the

new variable s by the C3,α−map

p �→ s := g(p) =
1

I

∫ p

−1

dτ

a(τ, λ)
, (5.11)

where I(λ) =
∫ 0

−1
dτ

a(τ,λ) is a real-analytic function in λ. The function s = g(p) is a

diffeomorphism from [−1, 0] to [−1, 0], and we denote the inverse diffeomorphism by

f(s). The C3,α map f(s) satisfies

f ′(s) = I(λ)a(p), f ′′(s) = I2(λ)ap(p)a(p),

f ′′′(s) = I3(λ)
(
app(p)a

2(p) + a2p(p)a(p)
)
.

If we define the C2,α[−1, 0] function θ(s) by

θ(s) = f ′(s)M(f(s)), (5.12)

then we can calculate

θ′(s) = f ′′(s)M(f(s)) + f ′(s)2M ′(f(s)),

θ′′(s) = f ′′′(s)M(f(s)) + 3f ′(s)f ′′(s)M ′(f(s)) + f ′(s)3M ′′(f(s)),
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and we can transform the weighted Sturm-Liouville problem (5.10) into the equivalent

problem

θ′′(s)−A(s, λ)θ = −d2μ(λ)I2(λ)θ(s) for s ∈ (−1, 0), (5.13a)

θ′(s) = β(λ)θ(s) on s = 0, (5.13b)

θ = 0 on s = −1. (5.13c)

Here we have

A(s, λ) =
f ′′′(s)

f ′(s)
= [app(p, λ)a(p, λ) + a2p(p, λ)]I2(λ),

β(λ) =
f ′′(0)

f ′(0)
+ g

d3I3(λ)

p20f
′(0)2

= I(λ)
[
−d2γ(0)√

λp0
+

gd3

p20λ

]
.

Analogous to (5.5) we associate to (5.13) the minimisation problem

inf
θ∈H1(−1,0),θ(−1)=0,θ �≡0

{
−βθ2(0) +

∫ 0

−1
(θ′)2ds+

∫ 0

−1
A(s)θ2ds∫ 0

−1
θ2ds

}
,

and we can easily see from (5.12) that the above expression equals d2I2(λ)F(M,λ). Since

β(λ) could be zero for values of λ if γ(0) < 0, we perform a further change of variables

w(s) = θ(s)e−βs, s ∈ [−1, 0],

which transforms (5.13) into the equivalent problem

−w′′(s)− 2β(λ)w′(s) + [A(s, λ)− β2(s)]w(s) = d2μ(λ)I2(λ)w(s)

for s ∈ (−1, 0), (5.14a)

w′(s) = 0 on s = 0, (5.14b)

w(s) = 0 on s = −1. (5.14c)

The system (5.14) is a standard Sturm-Liouville problem with spectral parameter

d2μ(λ)I2(λ). For λ > 0 we associate to (5.14) the operator

Lλ = −∂2
s − 2β(λ)∂s + [A(s, λ)− β2(s)], (5.15a)

D(Lλ) = {w ∈ H2(−1, 0) : w(−1) = 0, w′(0) = 0}, (5.15b)

whose domain is independent of λ, while to (5.13) we associate the selfadjoint operator

Sλ = −∂2
s + A(s, λ), (5.16a)

D(Sλ) = {w ∈ H2(−1, 0) : w(−1) = 0, w′(0) = β(λ)w(0)}, (5.16b)

whose domain is dependent on λ due to the presence of β. The spectral theory of self-

adjoint operators is well known [46], and we will exploit the best features of the operators

Lλ and Sλ, namely independence of domain and selfadjointness respectively, by using

the conjugacy relation

Lλ = MβSλM−β, (5.17)

where Ms is the linear isomorphism of L2[−1, 0] given by

(Msθ)(s) = θ(s)e−ms, s ∈ [−1, 0],
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with inverse M−1
s = M−s. The relation (5.17) implies that Lλ and Sλ have the same

eigenvalues. Establishing the following relations,

|w(s)| =
∣∣∣∣
∫ s

−1

w′(τ )dτ

∣∣∣∣ ≤ ‖w′‖L∞[−1,0], s ∈ [−1, 0],

and ∫ 0

−1

(w′)2dτ = −
∫ 0

−1

ww′′dτ ≤ ε2

2

∫ 0

−1

(w′′)2dτ +
1

2ε2

∫ 0

−1

w2dτ,

with

[w′(s)]2 = −2

∫ 0

s

w′w′′dτ ≤ 2

∫ 0

−1

w′w′′dτ ≤ ε

∫ 0

−1

(w′′)2dτ +
1

ε2

∫ 0

−1

(w′)2dτ

≤ 3

2
ε‖w′′‖2L2[−1,0] +

1

2ε3
‖w‖2L2[−1,0],

we have

‖w‖2L∞[−1,0] ≤ ‖w′‖2L∞[−1,0] ≤
3

2
ε‖w′′‖2L2[−1,0] +

1

2ε3
‖w‖2L2[−1,0].

Defining the operator Eλ : D(Lλ) → L2[−1, 0] by

Eλ = Lλ + e(λ),

where e(λ) is a constant, then the above inequalities ensure that

‖Eλw‖L2[−1,0] ≥ ‖w‖H2(−1,0), w ∈ D(Lλ), (5.18)

for a sufficiently large constant e(λ) > 0. This implies that Eλ is injective as an operator

from the closed Banach subspaceD(Lλ) ofH
2(−1, 0) into L2[−1, 0]. Since Eλ = Mβ(Sλ+

e(λ))M−β, and the range of the selfadjoint operator Sλ + e(λ) is dense, it follows that

the range of Eλ is dense in L2[−1, 0]. Therefore we will have proven the bijectivity of

the operator Eλ if we show that its range is closed. In order to do this let us suppose

that the sequence xn ∈ D(Lλ) is such that Eλxn → y in L2[−1, 0]. Then (5.18) ensures

that the xn form a Cauchy sequence, with limit x say. Then by the completeness of the

Banach spaces we have Eλxn → Eλx = y. This shows that the range of Eλ is closed

and therefore the operator Eλ = Lλ + e(λ) is invertible. Now E−1
λ is an operator from

L2[−1, 0] → H2(−1, 0) and the compactness of the embedding H2(−1, 0) ⊂ L2[−1, 0]

ensures that E−1
λ is a compact operator from L2[−1, 0] → L2[−1, 0]. Since E−1

λ =

Mβ(Sλ + e(λ))−1M−β we have that (Sλ + e(λ))−1 is a compact selfadjoint operator.

The spectral theory of selfadjoint compact operators is well known [46]: there is a

discrete collection of positive eigenvalues whose only accumulation point is zero, and

the eigenfunctions form an orthonormal set in L2[−1, 0]. Now, the conjugacy relation

(5.17) implies that (Sλ + e(λ))−1 and E−1
λ must have the same spectrum (although

the associated eigenfunctions may be different). Therefore the spectrum of Eλ consists

precisely of the inverses of these eigenvalues, and furthermore the spectrum of Lλ is

obtained by subtracting e(λ) from the spectrum of Eλ. Therefore the spectrum of Lλ

consists of isolated eigenvalues with the lowest one being (by (5.14a))

ν(λ) = d2μ(λ)I2(λ).
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We notice that since the differential equation in (5.14a) is linear and w(−1) = 0, the

eigenfunctions are therefore uniquely determined by the value of w′(−1): the eigenspace

of each eigenvalue is one-dimensional.

Since I(λ) is a nonzero real-analytic function of λ, we will prove that the mapping

λ �→ μ(λ) is real-analytic for λ > −Γmin by showing that ν(λ) is a real-analytic function

in λ. Fixing λ0 > −Γmin ≥ 0, we let ρ(Lλ) ⊂ C denote the resolvent set of the operator

Lλ on L2[−1, 0].

Lemma 5.1. Let O ⊂ C be a bounded open set such that O ⊂ ρ(Lλ0
), that is, (z−Lλ0

)−1

exists for z ∈ O. Then for λ ∈ R with |λ− λ0| sufficiently small we have O ⊂ ρ(Lλ), i.e.

(z − Lλ)
−1 also exists.

Proof. For z ∈ O we have

z − Lλ = z − Lλ0
+ Lλ0

− Lλ =
(
1− (Lλ − Lλ0

)(z − Lλ0
)−1
)
(z − Lλ0

)

and if ε > 0 is small enough so that

‖(Lλ − Lλ0
)(z − Lλ0

)−1‖B(L2[−1,0]) ≤ C < 1

for |λ0 − λ| < ε, then (z − Lλ)
−1 exists and is given by the formula

(z − Lλ)
−1 = (z − Lλ0

)−1
∞∑
k=0

(
(Lλ0

− Lλ)(z − Lλ0
)−1
)k

,

where the right-hand side converges absolutely in B(L2[−1, 0]). �

Corollary 5.2. For z ∈ O ⊂ ρ(Lλ0
) the map λ �→ (z − Lλ)

−1 is real-analytic with

values in B(L2[−1, 0]).

We now use the fact that ν(λ0) is an isolated eigenvalue of Lλ0
, together with the

previous lemma, to choose r > 0 such that ν(λ0) is the only eigenvalue of Lλ0
enclosed

by the contour

Cr = {z ∈ C : |z − ν(λ0)| = r},
and ε > 0 such that

Cr ⊂ ρ(Lλ) for all |λ− λ0| < ε with λ ∈ R.

We use the selfadjointness of Sλ to define the Riesz projections [36]

Pλ =
1

2π

∮
Cr

(z − Sλ)
−1dz, λ ∈ R, |λ− λ0| < ε.

It is well known that each Pλ is the orthogonal projection onto the direct sum of the

orthogonal spaces ker(Sλ − ζk), where the ζk are the finite number of eigenvalues of Sλ

(and hence also Lλ) contained inside Cr. Since ‖Pλ−Pλ0
‖B(L2[−1,0]) → 0 as λ → λ0, and

we know that the range of Pλ0
is, by the choice of Cr, the one-dimensional eigenspace

ker(Sλ0
− ν(λ0)), it follows that the range of Pλ is also one-dimensional for |λ−λ0| < ε∗,

say. It follows that the operator Sλ has exactly one eigenvalue ζ(λ) in Cr for |λ−λ0| < ε∗,

and Pλ is the orthogonal projection onto ker(Sλ − ζ(λ)).
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We now choose w ∈ D(Lλ) with ‖M−β(λ0)w‖L2[−1,0] = 1 and Lλ0
w = ν(λ0)w. Then

θλ = M−β(λ)w is real-analytic in λ > 0, and Sλ0
θλ0

= ν(λ0)θλ0
. Since Pλ is the

orthogonal projection onto the one-dimensional space ker(Sλ − ζ(λ)) we have

SλPλθλ = ζ(λ)Pλθλ for |λ− λ0| < ε∗, λ ∈ R.

Since the set Ar = {z : 0 < |z − ζ(λ)| < r} ⊂ ρ(Lλ) = ρ(Sλ) we have

(z − Sλ)
−1Pλθλ =

1

z − ζ(λ)
Pλθλ, z ∈ Ar,

from which it follows that∫ 0

−1

θλ
(
(z − Sλ)

−1Pλθλ
)
ds =

1

z − ζ(λ)

∫ 0

−1

θλ (Pλθλ) ds.

Now for |λ − λ0| < ε∗ the terms θλ, (z − Sλ)
−1 and Pλ are each in turn analytic in

λ. Therefore both integral terms are analytic in λ and since the second integral term

is nonzero (because
∫ 0

−1
θλ (Pλθλ) ds → 1 as λ → λ0, since Pλθλ → Pλ0

θλ0
= θλ0

and

ν(λ0) = ζ(λ0)) it follows that λ �→ ζ(λ) is analytic near λ0, with ν(λ0) = ζ(λ0). The

previous argument can be applied to each eigenvalue of Lλ0
, with the eigenvalues ordered

at a fixed λ with ν(λ) the lowest; therefore we have ν(λ) = ζ(λ) for each λ. This proves

that λ �→ μ(λ) is real-analytic for λ > −Γmin.

5.2.2. Monotonicity of the ground state. Since we have shown that the mapping λ �→
μ(λ) is real-analytic, it follows from the smooth dependence of solutions on parameters

that the mapping λ �→ M(·, λ) is smooth, since M(p, λ) = φ(p, λ, μ(λ)) is the unique

solution of the linear differential equation

(a3φp)p = −μaφ in (−1, 0),

with initial data φ(0) = 1, φ′(0) = g
a3(0) . If ȧ is the derivative of a with respect to λ,

then we have the relations

ȧ =
∂a

∂λ
=

1

2a
, ȧp = − ap

2a2
= −d2γ(p)

2p0a3
.

Differentiating equations (5.10) we get

(a3Ṁp)p +
3

2
(aMp)p = −μ̇d2aM − μ

d2M

2a
− μd2aṀ, p ∈ (−1, 0), (5.19a)

3

2
aMp + a3Ṁp =

gd3

p20
Ṁ, p = 0, (5.19b)

Ṁ = 0, p = −1. (5.19c)

Multiplying the above equation by M and (5.10a)–(5.10b) by Ṁ , integrating both equa-

tions on (−1, 0) and subtracting the outcomes we obtain

μ̇

∫ 0

−1

aM2dp = −μ

∫ 0

−1

M2

2a
dp+

3

2d2

∫ 0

−1

aM2
pdp.

Proposition 5.3. The map λ �→ μ(λ) is increasing on any interval where it is negative,

and therefore the solution λ∗ to μ(λ) = −1, if it exists, is unique.
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5.2.3. Given any γ,μ(λ) > −1 for λ sufficiently large. For λ + Γmin > g d2

p2
0
we have

a >
√
g d
|p0| , and also

M2(0)gd3 ≤
∫ 0

−1

g2d4

p40a
4
(d2p20)aM

2(s)ds+

∫ 0

−1

p20a
3Mp(s)ds,

F(M,λ) = μ(λ) > −C, where 0 < C =
g2d4

p40a
4
< 1. (5.20)

Therefore for such a λ we have μ(λ) > −1. It follows from Proposition 5.3 that

Corollary 5.4. A solution λ∗ to μ(λ) = −1 exists if and only if limλ↓Γmin
μ(λ) < −1.

5.2.4. Remark: for some γ < 0 we always have μ(λ) > −1. We now give an example

of a flow where μ(λ) > −1 for all λ, and so bifurcation does not occur. Let the constant

negative vorticity γ < 0 be such that

|γ| > g
2
3

2|p0|
1
3

+
25g2

8|p0|3
,

where p0 is the mass-flux of the resulting flow. We have the following expressions:

Γ(p) =
2d2γ

p0
p, λ > −Γmin =

2d2γ

p0
, a =

√
λ+ Γ(p) >

(
2d2γ

p0

) 1
2

(1 + p)
1
2 ,

and we have∫ 0

−1

a3φ2
pdp+ d2

∫ 0

−1

aφ2dp

>
gd3

p20

(
p0

2d2γ

) 3
2
∫ 0

−1

a3φ2
pdp+

5gd3

2p20

(
p0

2d2γ

) 1
2
∫ 0

−1

aφ2dp

>
gd3

p20

∫ 0

−1

(1 + p)
3
2φ2

pdp+
5gd3

2p20

∫ 0

−1

(1 + p)
1
2φ2dp

>
gd3

p20

{∫ 0

−1

(1 + p)
3
2 (φ2

p + φ2)dp+
3

2

∫ 0

−1

(1 + p)
1
2φ2dp

}

>
gd3

p20

{∫ 0

−1

(1 + p)
3
2 2φφpdp+

3

2

∫ 0

−1

(1 + p)
1
2φ2dp

}
=

gd3

p20
φ2(0).

Therefore μ(λ) > −1 for all λ and bifurcation cannot occur for these flows. We will

discuss in more detail the existence of bifurcation curves for various constant vorticities

within the context of dispersion relations in Section 7.

5.3. Existence of nonlinear waves of small amplitude. For vorticity functions γ which

satisfy condition (5.21), the following proposition, together with Corollary 5.4, proves the

existence of values λ∗ such that μ(λ∗) = −1, thereby proving the existence of solutions

to the linearisation (5.4) of the water wave problem (2.16).

Proposition 5.5. Suppose that
√
2

3
γ

3
2∞|p0|

1
2 |p1|

1
2 +

2
√
2

5
γ

1
2∞|p0|

3
2 |p1|

3
2 < g, (5.21)
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where γ∞ = ‖γ‖C[−1,0] and p1 = min{p ∈ [−1, 0] : Γ(p) = Γmin}, where Γmin is defined

in (4.1). Then there exist nontrivial solutions to the linearised problem (5.10).

Remark 5.6. We note that p1 = 0 for γ ≥ 0 and so in this case we easily see that

(5.21) holds.

Proof. Define for k > 1
2 and n ≥ 2 the function

φn(p) =

{
0, −1 ≤ p ≤ pn,

(p− pn)
k, pn ≤ p ≤ 0,

where pn = (1 − 1
n )p1 −

1
n < 0. We see that φn(0) = |pn|k, φn(p) → 0 as k → ∞, and

φn(p) ↘ 0 as n → ∞. Then

a(−Γmin, p) =
√
−Γmin + Γ(p) =

√
−Γ(p1) + Γ(p)

=
√

2d2

p0

∫ p

p1
γ(s)ds ≤

√
2d2

|p0| (p− p1)γ∞,

a(−Γmin, p) ≤ d
√

2γ∞
|p0| · |p− p1!

1
2 .

Then if we let c1 = d3(2γ∞)
3
2 |p0|

1
2 and c2 = d3(2γ∞)

1
2 |p0|

3
2 we have

p20

∫ 0

−1

a3(∂pφn)
2dp+ p20d

2

∫ 0

−1

a(φn)
2dp

= c1k
2

∫ 0

pn

|p− p1|
3
2 (p− pn)

2k−2dp+ c2

∫ 0

pn

|p− p1|
1
2 (p− pn)

2kdp

= c1k
2

∫ p1

pn

|p− p1|
3
2 (p− pn)

2k−2dp+ c1k
2

∫ 0

p1

|p− p1|
3
2 (p− pn)

2k−2dp

+ c2

∫ p1

pn

|p− p1|
1
2 (p− pn)

2kdp+ c2

∫ 0

p1

|p− p1|
1
2 (p− pn)

2kdp

≤ 3c1k
2(p1 − pn)

2k+ 1
2

(2k − 1)(4k + 1)
+

c1k
2|pn|2k+

1
2

2k + 1
2

+
3c2(p1 − pn)

2k+ 3
2

(2k + 1)(4k + 3)
+

c2|pn|2k+
3
2

2k + 3
2

= φ2
n(0)

{
c1k

2|pn|
1
2

2k + 1
2

+
c2|pn|

3
2

2k + 3
2

}
(5.22)

+ φ2
n(0)

{
3c1k

2(p1 − pn)
2k+ 1

2

|pn|2k(2k − 1)(4k + 1)
+

3c2(p1 − pn)
2k+ 3

2

|pn|2k(2k + 1)(4k + 3)

}
. (5.23)

We can see that |pn| → |p1|, 2K + 1
2 > 3

2 , 2k + 3
2 > 5

2 ,
(p1−pn)

2k

|pn|2k ≤ 1, and so, for some

ε > 0, we can choose n large enough and k close enough to 1
2 , and using condition (5.21)

we have that{
d3(2γ∞)

3
2 |p0|

1
2 k2|pn|

1
2

2k + 1
2

+
d3(2γ∞)

1
2 |p0|

3
2 |pn|

3
2

2k + 3
2

}
< d3(g − ε).

We can find n large enough that the large bracket in (5.23) is less than ε, which implies

that the sum of quantities in (5.22) and (5.23) has value less than φ2
n(0)d

3g. Therefore,

for large enough n ∈ N, we have F(−Γmin) < −1, and so by continuity in λ we have

F(φn, λ) < −1 for some λ > −Γmin, and at this λ we have μ(λ) < −1. �
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6. Local bifurcation setting. We represent the top and the bottom of the closed

rectangle R by

T = {(q, p) : q ∈ [−π, π], p = 0}, B = {(q, p) : q ∈ [−π, π], p = p0},

and we define the Banach spaces

X = {w ∈ C3,α
per (R) : w = 0 on B}, Y = C1,α

per (R)× C2,α
per (T ),

where the subscript per represents periodicity and evenness in the q−variable. If H(p, λ)

are the laminar flows, set

h(q, p) = H(p, λ) + w(q, p) with w ∈ X,

and for λ > −Γmin the system (2.16) can be expressed in operator form

F(w, λ) = 0 with w ∈ X,

where F = (F1,F2) : X × (−Γmin,∞) → Y is given by

F1(w, λ) =

(
1

d2
+ w2

q

)
(Hpp + wpp)− 2wqwqp(Hp + wp + 1)

+wqq(Hp + wp + 1)2 +
γ(p)

p0
(Hp + wp + 1)3,

F2(w, λ) =
1

d2
+ w2

q +
(Hp + wp + 1)2

p20
[2gd(H + w + 1)−Q].

We have F(0, λ) = 0 for λ > −Γmin since H satisfies the equation for laminar flow. The

linearised operator Fw = (F1w,F2w), formed by taking the Fréchet derivative of F with

respect to w, is given at w = 0 by

F1w(0, λ) =
1

d2
∂pp + (Hp + 1)2∂2

q +
3γ(p)

p0
(Hp + 1)2∂p in R, (6.1)

F2w(0, λ) = 2

(
gd

p20
λ−1 − λ

1
2

d2
∂p

)∣∣∣∣∣
T

. (6.2)

We see from (5.1) that a solution m to the linear eigenvalue problem (5.10) belongs to

the nullspace of Fw(0, λ).

6.1. The null space of Fw. We have shown in Section 5 that once (5.21) holds, there

is a unique λ∗ > −Γmin with μ(λ∗) = −1. It follows that the null space of Fw(0, λ
∗)

contains at least one element m∗(q, p) = M(p) cos(q), where M ∈ C3,α[−1, 0] is the

unique eigenfunction of (5.10) corresponding to the eigenvalue μ(λ∗) = −1. We now

show that the null space is one-dimensional. Suppose m ∈ C3,α
per (R) belongs to the null

space. Then its Fourier coefficients mk satisfy (5.4), and so m1(p) is a constant multiple

of M(p) while mk ≡ 0 for all k ≥ 2, for if not we would have

F(mk, λ) =
−gd3m2

k(0) + p20
∫ 0

−1
a3(∂pmk)

2dp

p20d
2
∫ 0

−1
am2

kdp
= −k2 < −1,

which contradicts the minimising value of μ(λ∗) = −1.
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For m0, using (5.4) with k = 0 we get

m0(p) =
gd3

p20
m0(0)

∫ p

−1

a−3(λ, s)ds,

and setting p = 0 we get

(†) m0(0) =
gd3

p20
m0(0)

∫ 0

−1

a−3(λ, s)ds ⇒
∫ 0

−1

a−3(λ, s)ds =
p20
gd3

,

but this relation holds only for the unique value λ = λ0 where the function Q(λ) attains

its minimum; see (4.2). We use the monotonicity of the function λ �→ μ(λ) to prove that

λ∗ < λ0. This in turn proves that the null space is one-dimensional since it follows that

(†) cannot hold.
First we note that μ(λ∗) = −1. Now, if we choose ψ(p) =

∫ p

−1
a−3(s, λ0)ds, then

ψp = a−3(p, λ0) and ψ(0) =
p2
0

gd3 =
∫ 0

−1
a−3(s, λ)ds. It follows that

F(ψ, λ) =
− p4

0

gd3 + p20
∫ 0

−1
a−3(λ0, s)ds

p20d
2
∫ 0

−1
aφ(p)2dp

= 0. (6.3)

Therefore μ(λ0) ≤ 0 by the minimising property of μ(λ). However, for any φ ∈ H1(−1, 0)

such that φ(−1) = 0, we get

gd3φ2(0) = gd3
(∫ 0

−1

φp(s)ds

)2

= gd3
(∫ 0

−1

a
3
2 (s, λ0)φp(s)a

− 3
2 (s, λ0)ds

)2

≤
(
gd3

p20

∫ 0

−1

a−3(s, λ0)ds

)(
p20

∫ 0

−1

a3(s, λ0)φ
2
p(s)ds

)

=

(
p20

∫ 0

−1

a3(s, λ0)φ
2
p(s)ds

)
,

from which it follows that F(φ, λ0) ≥ 0 and thus μ(λ0) ≥ 0. Therefore μ(λ0) = 0.

6.2. The range. This section is dedicated to proving the following elegant characteri-

sation for the range of the operator Fw(0, λ
∗) : X → Y :

Proposition 6.1. The pair (A,B) ∈ Y belong to the range of Fw(0, λ
∗) if and only if

they satisfy the orthogonality condition∫∫
R

A(q, p)a3(p, λ∗)ϕ∗(q, p)dqdp+
1

2

∫
T

B(q)a2(0, λ∗)ϕ∗(q, 0)dq = 0, (6.4)

where

ϕ∗(q, p) = M(p) cos(q) ∈ X

generates ker{Fw(0, λ
∗)}.

A consequence of the above proposition is that the range R(Fw(0, λ
∗)) is clearly

closed in Y . Also, if we use the fact that a(·, λ∗) > 0 implies that M(0) 	= 0, since

a2(0, λ∗) = λ∗ and otherwise we could not have F(M,λ∗) = −1, it follows that (0, cos q)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



476 DAVID HENRY

does not satisfy the condition (6.4); therefore (0, cos q) 	∈ R(Fw(0, λ
∗)). Let us suppose

(A1,B1), (A2,B2) ∈ Y \R(Fw(0, λ
∗)). Then we have

(A1,B1)− c(A2,B2) ∈ R(Fw(0, λ
∗))

for the constant

c =

∫∫
R
A1a

3ϕ∗dqdp+ 1
2

∫
T
B1a

2ϕ∗dq∫∫
R
A2a3ϕ∗dqdp+ 1

2

∫
T
B2a2ϕ∗dq

.

We have shown that R(Fw(0, λ
∗)) has codimension one.

Proof. Let Fw(0, λ
∗)φ = (A,B). Then multiplying

A = F1w(0, λ
∗)φ =

1

d2
φpp + (Hp + 1)2φqq +

3γ(p)

p0
(Hp + 1)2φp

by a3ϕ∗ and integrating over R, using integration by parts and the fact that

B = F2w(0, λ
∗)φ = 2

(
gd

λ∗p20
φ(q, 0)− λ∗ 1

2

d2
φp(q, 0)

)

we find, from the relations Hp+1 = 1
a , ap = d2

p0
γ(p)a−1, a(0) =

√
λ∗, that condition (6.4)

holds.

The proof of the sufficiency is more technically complicated. We define the closed

subspaces

X0 = {φ ∈ X :

∫ π

−π

φ(q, p)dq = 0 for all p ∈ [−1, 0]} ⊂ X,

Y0 = {(A,B) ∈ Y :

∫ π

−π

A(q, p)dq = 0 for all p ∈ [−1, 0],

∫
T

Bdq = 0} ⊂ Y.

We note that it is now necessary to split X into X0 and its topological complement,

which corresponds to the zero Fourier mode, to ensure that a coercivity condition holds

on X0 further on in this proof. Given a pair (A,B) ∈ Y such that (6.4) holds we can

see upon calculation that (A,B) ∈ R(Fw(0, λ
∗)), that is, (A,B) = Fw(0, λ

∗)φ for some

φ ∈ X if and only if

(a3φ′
0)

′ = d2a3A0 in R, (6.5a)

gd

p20
φ0 −

a3

d2
φ′
0 =

1

2
a2B0 for p = 0, (6.5b)

φ0 = 0 for p = −1, (6.5c)

for

B0 =
1

2π

∫
T

Bdq, A0(p) =
1

2π

∫ π

−π

A(q, p)dq, φ0(p) =
1

2π

∫ π

−π

φ(q, p)dq,

where B0 ∈ R, A0(p) ∈ C1,α[−1, 0], φ0(p) ∈ C3,α[−1, 0], and

(a3ϕp)p + ad2ϕqq = d2a3(A−A0) in R, (6.6a)

gd

p20
ϕ− a3

d2
ϕp =

1

2
a2(B − B0) on T, (6.6b)

ϕ = 0 on B, (6.6c)

for ϕ = φ− φ0 ∈ X0 and (A−A0,B − B0) ∈ Y0.
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Lemma 6.2. For any (A0,B0) ∈ C1,α[−1, 0]×R the problem (6.5) has a unique solution

φ0 ∈ C3,α[−1, 0].

Proof. We see from equation (6.5a) that, for all p ∈ [−1, 0],

a3(p, λ∗)φ′
0(p) = C +

∫ p

−1

d2a3(s, λ∗)A0(s)ds

for some constant C, and then

φ0(p) = C

∫ p

−1

a−3(r, λ∗)dr +

∫ p

−1

a−3(r, λ∗)

(∫ r

−1

d2a3(s, λ∗)A0(s)ds

)
dr.

Evaluating the boundary condition at p = 0 we get

gd

p20
φ0(0)−

a3

d2
φ′
0(0) =

1

2
a2B0

=
gd

p20

(
C

∫ 0

−1

a−3(r, λ∗)dr +

∫ 0

−1

a−3(r, λ∗)

(∫ r

−1

d2a3(s, λ∗)A0(s)ds

)
dr

)

−C

d2
−
∫ 0

−1

a3(s, λ∗)A0(s)ds

⇒ C

(∫ 0

−1

a−3(r, λ∗)dr − p20
gd3

)

=
p20
2gd

a2(0, λ∗)B0 +
p20
gd

∫ 0

−1

a3(0, λ∗)(s, λ∗)A0(s)ds

−
∫ 0

−1

a−3(r, λ∗)

(∫ r

−1

d2a3(s, λ∗)A0(s)ds

)
dr.

We saw in the analysis of the null space (6.3) that

p20
gd3

=

∫ 0

−1

a−3(r, λ0)dr <

∫ 0

−1

a−3(r, λ∗)dr

and so the constant C is always uniquely determined; therefore a solution of (6.5) always

exists. �
It follows from our discussion prior to Lemma 6.2 that sufficiency in the statement

(6.4) will be proven if we show that (6.4) implies the existence of a solution ϕ ∈ X0

to (6.6). It suffices to check this just for (A,B) ∈ Y0 ⊂ Y since (A0,B0) automatically

satisfies the orthogonality condition (6.4). Our proof will be complete following the next

two lemmas.

Lemma 6.3. For (A,B) ∈ Y0 and any ε ∈ (0, 1) there exists a unique solution v(ε) ∈ X0

to the approximate problem⎧⎪⎪⎨
⎪⎪⎩

−εa3v(ε) + (1 + ε)
(
a3v

(ε)
p

)
p
+ (1 + ε)d2av

(ε)
qq = d2a3A in R,

gd
p2
0
v(ε) − (1 + ε)a

3

d2 v
(ε)
p = 1

2a
2B on T,

v(ε) = 0 on B,

(6.7)

where a = a(p, λ∗).
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Proof. We introduce the space

H =

{
ϕ ∈ H1

per(R) : ϕ even in q,

∫ π

−π

ϕ(q, p)dq = 0 a.e. in [−1, 0],

φ = 0 a.e. on B

}
.

We can see that H is a Hilbert space in its own right, since it is a closed subspace of the

Hilbert space H1
per(R). A function ϕ is a weak solution of (6.7) if

(1 + ε)

∫∫
R

a3ϕpφpdpdq + (1 + ε)d2
∫∫

R

aϕqφqdpdq + ε

∫∫
R

a3ϕφdpdq (6.8)

−gd3

p20

∫
T

ϕφdq = −d2

2

∫
T

a2Bφdq − d2
∫∫

R

a3Aφdpdq

for all φ ∈ H. For ϕ ∈ H ∩ C3
per(R) we have

ϕ(q, p) =

∞∑
k=1

ϕk(p) cos(kq) in C3
per(R),

where ϕk ∈ C3[−1, 0] is given by

ϕk(p) =
1

π

∫ π

−π

ϕ(q, p) cos(kq)dq, p ∈ [−1, 0], k ≥ 1.

We have ϕk(−1) = 0 for all k ≥ 1, and∫∫
R

a3(∂pϕ)
2dqdp = π

∞∑
k=1

∫ 0

−1

a3(∂pϕk)
2dp,

∫∫
R

a(∂qϕ)
2dqdp = π

∞∑
k=1

k2
∫ 0

−1

aϕ2
kdp,

∫
T

ϕ2dq = π

∞∑
k=1

ϕ2
k(0).

We infer from the minimisation problem that∫∫
R

a3ϕ2
pdpdq + d2

∫∫
R

aϕ2
qdpdq ≥ π

∞∑
k=1

∫ 0

−1

[a3(∂pϕk)
2 + d2aϕ2

k]dp

≥ gd3

p20
π

∞∑
k=1

ϕ2
k(0) =

gd3

p20

∫
T

ϕ2dq,

and therefore, since H ∩ C3
per(R) is dense in H and infp∈[−1,0]{a(p, λ∗)} > 0, we see

that the left-hand side of (6.8) defines a bounded and coercive bilinear form on H.

Furthermore, the right-hand side defines a bounded linear functional on H, and therefore

an application of the Lax-Milgram theorem [30] gives the existence and uniqueness of

a weak solution v(ε) ∈ H to (6.7). From standard elliptic regularity theory we have

v(ε) ∈ X0 and we also note the Schauder estimates

‖v(ε)‖C1,α
per(R) ≤ C

(
‖a‖C1,α

per(R) + ‖A‖C1,α
per(R) + ‖B‖C1,α

per(T ) + ‖v(ε)‖L∞(R)

)
, (6.9)

where the constant C depends only on ‖a‖C1,α
per(R); see [30]. �
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Lemma 6.4. If (A,B) ∈ Y0 satisfy (6.4), then for any sequence εk ↓ 0 the sequence

{v(εk)}k≥1 is bounded in C1,α
per (R).

Proof. We prove the claim by contradiction. Suppose that for the sequence εk ↓ 0

we have ‖v(εk)‖C1,α
per

(R) → ∞. Then by (6.9) it follows that ‖v(εk)‖L∞(R) → ∞ and the

sequence vk = v(εk)/‖v(εk)‖L∞(R) is bounded in C1,α
per (R). Since we have the compact

embedding C1,α
per(R) ⊂ C1

per(R) we can find a subsequence {vnk
} which converges in

C1
per(R) to some v with ‖v‖L∞(R) = 1. If we consider (6.8) for ε = εnk

and ϕ = v(εnk
),

then dividing by ‖v(εnk
)‖L∞(R) and passing to the limit nk → ∞ we get∫∫

R

a3vpφpdpdq + d2
∫∫

R

avqφqdpdq =
gd3

p20

∫
T

ϕφdq, φ ∈ H. (6.10)

Therefore v is a weak solution in H of the problem

(a3vp)p + d2avqq = 0, (q, p) ∈ R, (6.11a)

a3vp =
gd3

p20
v, p = 0, (6.11b)

v = 0, p = −1, (6.11c)

and using standard elliptic regularity theory [30] we have v ∈ X0. It follows from (5.2)

that v ∈ ker{Fw(0, λ
∗)}, which we know to be one-dimensional and therefore v = Cϕ∗,

where C ∈ R is a constant and ϕ∗(q, p) = M(p) cos(q), where M ∈ C3,α[−1, 0] is the

eigenfunction of (5.10) for μ(λ∗) = −1. If we now set ε = εnk
, ϕ = v(εnk

), φ = ϕ∗, then

evaluating (6.8) using the relations (6.4) and (6.10) we get∫∫
R

a3v(εnk
)ϕ∗dpdq +

gd3

p20

∫
T

v(εnk
)ϕ∗dq = 0.

If we follow the limiting procedure of dividing by ‖v(εnk
)‖L∞(R) and passing to the limit

nk → ∞ we get ∫∫
R

a3ϕ∗2dpdq +
gd3

p20

∫
T

ϕ∗2dq = 0,

which gives us a contradiction since ϕ∗ 	≡ 0. �
Since C1,α

per (R) is compactly embedded in C1
per(R) it follows from Lemma 6.4 that there

exists a subsequence {v(εnk
)} which converges to some limit v ∈ C1

per(R). Taking the

limit in (6.8) we see that v is a weak solution of

(a3vp)p + ad2vqq = d2a3A in R,

gd

p20
v − a3

d2
vp =

1

2
a2B on T,

v = 0 on B,

which is exactly (6.6). By standard elliptic regularity theory [30] we can further say that

v ∈ X0 and so it is in fact a classical solution. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



480 DAVID HENRY

6.3. Transversality condition. To apply the Crandall-Rabinowitz theorem we show

that

Fλw(0, λ
∗)[(ϕ∗, 1)] 	∈ R(Fw(0, λ

∗)),

where

Fλw(0, λ
∗)[(1, ϕ∗)]

= −
(
a−4ϕ∗

qq +
3

d2
apa

−3ϕ∗
p, 2

gd

(p0λ∗)2
ϕ∗(q, 0) +

1

d2
√
λ∗

ϕ∗
p(q, 0)

)
	= 0.

In order to do this we show that Fλw(0, λ
∗)[(ϕ∗, 1)] doesn’t satisfy the orthogonality

condition (6.4). Using the relations a(0, λ) =
√
λ and 3apϕ

∗
p = d2a−1ϕ∗ − aϕ∗

pp (which

come from (5.10a)) we get∫∫
R

apϕ
∗ϕ∗

pdqdp =
1

2

∫∫
R

{a(ϕ∗
p)

2 + d2a−1(ϕ∗)2}dqdp− 1

2

∫
T

aϕ∗ϕ∗
pdq,

and we use this relation together with ϕ∗
qq = −ϕ∗ to compute∫∫

R

{a−1ϕ∗ϕ∗
qq +

3

d2
apϕ

∗ϕ∗
p}dqdp+

∫
T

{
gd

p20λ
∗ϕ

∗ϕ∗ +

√
λ∗

2d2
ϕ∗
pϕ

∗

}
dq

=

∫∫
R

{−a−1(ϕ∗)2 +
3

2d2
a(ϕ∗

p)
2 +

3

2
a−1(ϕ∗)2}dqdp

− 3

2d2

∫
T

aϕ∗ϕ∗
pdq +

∫
T

{
gd

p20λ
∗ϕ

∗ϕ∗ +

√
λ∗

2d2
ϕ∗
pϕ

∗

}
dq

=

∫∫
R

{−a−1(ϕ∗)2 +
3

2
a(ϕ∗

p)
2 +

3

2
d2a−1(ϕ∗)2}dqdp

−3

2

∫
T

gd

λ∗p20
(ϕ∗)2dq +

∫
T

{
gd

p20λ
∗ϕ

∗ϕ∗ +

√
λ∗

2d2
ϕ∗
pϕ

∗

}
dq

=

∫∫
R

{
1

2
d2a−1(ϕ∗)2 +

3

2
a(ϕ∗

p)
2

}
dqdp+

∫
T

{√
λ∗

2d2
ϕ∗
pϕ

∗ − gd

2p20λ
∗ϕ

∗ϕ∗

}
dq

(5.10b)
=

∫∫
R

{
1

2
d2a−1(ϕ∗)2 +

3

2
a(ϕ∗

p)
2

}
dqdp > 0.

Therefore Fλw(0, λ
∗)[(1, ϕ∗)] does not satisfy the orthogonality condition, and so we have

proven the transversality condition required for the Crandall-Rabinowitz theorem.

It follows that if condition (5.21) holds, then the conditions of Theorem 3.1 are satisfied

for the unique value λ∗ such that μ(λ∗) = −1. Therefore for this critical value λ∗ local

bifurcation occurs at the point (H(p, λ∗), λ∗) and the points on the resulting bifurcation

curve represent small-amplitude solutions of the water wave problem (2.16).

7. Dispersion relations. Since for laminar flows we have (by (2.13))

√
λ =

1

Hp + 1

∣∣∣∣
p=0

=
d(u− c)

p0

∣∣∣∣
on the flat surface

, (7.1)
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we see that small-amplitude waves occur when the speed of the laminar flows reaches the

critical value

u∗ − c =
p0
√
λ∗

d
, (7.2)

where c−u∗ denotes the speed of the laminar flow at the surface. For some simple forms

of the vorticity function, namely constant vorticity, we can calculate λ∗ in an explicit

form which depends on the mean depth d, and this allows us to express the critical value

c− u∗ in terms of d.

7.1. Irrotational flows. Irrotational flow occurs when γ ≡ 0, and so to compute the

value of λ∗ explicity in this case, since a(p;λ) ≡
√
λ in (5.4) we look for nontrivial

solutions of

Mpp = d2λ−1M, −1 < p < 0,

Mp = g
d3

p20
λ−3/2M, p = 0,

M = 0, p = −1.

A general solution for the differential equation which solves the condition on p = −1 is

given by

M(p) = δ sinh

(
d√
λ
(p+ 1)

)
, −1 < p < 0,

and for δ 	= 0 the condition at p = 0 implies that

tanh

(
d√
λ

)
− p20

gd2
λ = 0.

This equation has a unique solution, which must be λ∗. Integrating equation (7.2) with

respect to −d ≤ y ≤ 0, we get λ∗ = 1, and therefore from (7.2) it follows that

c− u∗ =
p0
d

=
√
g tanh (d). (7.3)

This is the standard dispersion relation for irrotational flow [37]. We see in the shallow

water limit, d → 0, that

c− u∗ = lim
d→0

√
gd

tanh (d)

d
=
√
gd,

and so in shallow irrotational water all waves travel with the same speed. The term

“dispersion relation” comes from the fact that if we were dealing with water waves of

wavelength L in the governing equations (2.1)–(2.5), then after performing the following

scaling of variables

(x, y, t, g, ω, η, u, v, P, c) �→ (κx, κy, κt, κ−1g, κ−1ω, κη, u, v, P, c),

where κ = 2π
L is the wavenumber, we end up with a 2π−periodic system in the new vari-

ables identical to (2.1)–(2.5) except that g, ω are replaced by κ−1g, κ−1ω. The dispersion

relation (7.3) becomes

c− u∗ =

√
g

κ
tanh (κd),

and we see that waves of different lengths travel at different speeds. This is the dispersive

effect.
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In the deep-water limit, limd→∞ tanh (κd) = 1, and therefore the dispersion relation

in the deep-water limit becomes

c− u∗ =

√
gL

2π
.

So, in the deep-ocean, waves with long wavelengths travel faster than those with shorter

wavelengths, a situation which is seen in the case of the rapid propagation speeds of such

exceptionally long waves as tsunamis.

7.2. Constant vorticity flows. For flows with constant vorticity, γ(p) = γ 	= 0 is a

constant and Γ(p) = αp, where α = 2d2

p0
γ. Therefore a(p;λ) = 1

Hp+1 =
√
λ+ αp and

ap = −α(2a)−1 in (5.4). It follows upon substituting

M(p) = a−1M0

(a
c

)
,

for c = d
p0
γ = α

2d into the differential equations (5.4) that we get M ′′
0 = M0, with

M(−1) = 0. The general solution of such an equation is

M(p) =
1√

λ+ αp
sinh

(
p0
(√

λ+ αp−
√
λ− α

)
dγ

)
,

with a =
√
λ on p = 0. The boundary condition at p = 0 holds if

tanh

⎛
⎝p0

(√
λ−

√
λ− 2d2

p0
γ
)

dγ

⎞
⎠ =

p20λ

gd2 + dp0γλ
1
2

(7.4)

for a unique critical value λ∗, and if (7.4) holds, then (H(p, λ∗), λ∗) is a bifurcation point,

where the bifurcating laminar flow is given by

H(p, λ∗) = 2

√
λ∗ + αp−

√
λ∗ − α

α
− p− 1, −1 < p < 0.

In the physical coordinates, for laminar flow with constant vorticity, we have v = 0 and

uy = γ, and

∫ 0

y

uydy = −γy ⇒ u(y)− c =
p0
√
λ

d
+ γy, (7.5)

p0 =

(
γd2

2(
√
λ− 1)

)
, (7.6)

√
λ = 1 +

γd2

2p0
, (7.7)

λ− 2γ
d2

p0
= λ− 4

√
λ+ 4 = (

√
λ− 2)2. (7.8)
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It appears from (7.8) that we can formulate the left-hand side of (7.4) as

tanh

⎛
⎝p0(

√
λ−

√
λ− 2d2

p0
γ)

dγ

⎞
⎠ = tanh

(
p0(

√
λ± (

√
λ− 2)

dγ

)
(7.9)

=

⎧⎨
⎩

tanh
(

p0(2
√
λ−2)

dγ

)
= tanh(d),

tanh
(

2p0

dγ

)
.

(7.10)

Now the first term in (7.9) implies that λ− 2d2

p0
γ ≥ 0. This relation holds universally for

γ > 0. In this case, we have

0 < tanh

⎛
⎝p0(

√
λ−

√
λ− 2d2

p0
γ)

dγ

⎞
⎠ 	≡ tanh

(
2p0
dγ

)
< 0,

and therefore the second possibility in (7.10) does not exist for γ > 0.

For γ < 0 we evaluate (7.5) at y = −d, giving us the relation p0

√
λ

d < γd. Together

with (7.7) this implies that

1 +
γd2

2p0
=

√
λ >

d2γ

p0
, (*)

which means that
√
λ < 2. However, if the second alternative in relation (7.10) were to

hold, we would get

p0(
√
λ−

√
λ− 2d2

p0
γ)

dγ
=

2p0
dγ

,

which implies that
√
λ ≥ 2, giving us a contradiction. Therefore (7.4) can be re-

formulated as
p20λ

∗

gd2 + dp0γλ∗ 1
2

= tanh(d)

or

p20λ
∗ − dp0γλ

∗ 1
2 tanh(d)− gd2 tanh(d) = 0. (7.11)

We can solve (7.11) to get

√
λ∗ =

dp0γ tanh(d)±
√
d2p20γ

2 tanh2(d) + 4p20gd
2 tanh(d)

2p20
,

and so we obtain the dispersion relation

c− u∗ = −γ

2
tanh(d) +

1

2

√
γ2 tanh2(d) + 4g tanh(d),

where we make the choice of sign above guided by the criteria u∗ − c < 0. Similar to the

irrotational case (Section 7.1) the dispersion relation for waves with wavelength L takes

the form

c− u∗ = − γ

2κ
tanh(κd) +

1

2κ

√
γ2 tanh2(κd) + 4g tanh(κd). (7.12)
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Note that setting γ = 0 here gives us the appropriate irrotational dispersion relation

(7.3). The right-hand side of (7.12) is a strictly decreasing function of γ. Therefore the

wave speed c− u∗ > 0 is larger for γ < 0 than for γ > 0. We see from (7.5) that

u− c|y=0 =
p0
d

√
λ∗, u− c|y=−d =

p0
d

√
λ∗ − γd =

p0
d

√
λ∗ − 2

d2γ

p0
,

and so u − c is smaller on the flat bed than on the surface for γ < 0, while it is larger

on the bottom than on the top for γ > 0. The case γ < 0 therefore corresponds to an

adverse current while γ > 0 is a favourable current.

7.2.1. Existence of small-amplitude solutions for constant vorticity. To establish nec-

essary and sufficient conditions for the existence of nonlinear bifurcating solutions for

constant vorticity we examine the roots of the function

f(λ) = tanh(d)− γ2d2λ

4g(
√
λ− 1)2 + 2dγ2

√
λ(
√
λ− 1)

= tanh(d)− γ2d2

r( 1√
λ
)
,

where r(s) = 4gs2− (8g+2dγ2)s+(4g+2dγ2), and for a given γ the point of bifurcation

λ∗ is located at the roots of f(λ). We note that the sign of γ has a bearing on the

function f due to the fact that λ < 1 for positive vorticty, while λ > 1 for negative

vorticity, and it follows that we will learn much about the existence of roots for f(λ) by

studying the behaviour of r(
√
λ).

In order to do this let us solve the quadratic equation

4gs2 − (8g + 2dγ2)s+ (4g + 2dγ2) = 0,

and find that the roots of r( 1√
λ
) are given by 1√

λ
= 1, 1 + dγ2

2g (
√
λ = 2g

2g+dγ2 , 1). We

further calculate

r′(s) = 8gs− (8g + 2dγ2),

and see that r( 1√
λ
) has its minimum at 1√

λmin
= 1 + dγ2

4g , or
√
λmin = 4g

4g+dγ2 , giving us

rmin = −d2γ4

4g
.

Now we can get an insight into what is happening with f(λ) from the two pictures in

Figure 1.

For γ > 0 the bifurcation parameter λ < 1, by (7.7), and therefore 1
λ > 1. We are

dealing with the region to the right of the heavy-dotted line in the second graph, and we

can easily see that for every fixed d and γ > 0 there exists a unique
√
λ < 2g

2g+dγ2 such that

f(λ) = 0. This follows immediately from the limiting values lim√
λ↗ 2g

2g+dγ2
f(λ) = −∞

and limλ↘0 f(λ) = tanh(d). Therefore, bifurcation occurs for each fixed d and γ > 0.

For γ < 0 we see that f(λ) = 0 if and only if the curve r( 1√
λ
) to the left of the

heavy-dotted line in the second picture attains the value tanh(d)
γ2d2 for some λ. It follows

from relation (*) that
√
λ < 2, which implies that 1/

√
λ > 1/2. This fact, combined

with the monotone nature of the curve, implies that bifurcation occurs if and only if

tanh(d) > γ2d2/r(1/2), that is,

γ2d2 < (g + γ2d) tanh(d). (7.13)
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1
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γ 2
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2g

 d 

1

λ

γ 4
 d 2−

4g
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1
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γ 2 d 

4g
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γ 2 d 4g + 2
1
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(   )r

1
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2 γ 4

4g
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1

λ
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γ 2 d 
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1

λ
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1
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1

λ

γ 2
= 1 + 

2g

 d 

Fig. 1. The first graph plots r(1/
√
λ) while the second graph plots

1/r(1/
√
λ). Small-amplitude waves exist when γ and d are such that

tanh(d)/γ2d2 equals 1/r(1/
√
λ).

7.2.2. Nonconstant vorticity. For general nonconstant vorticity there are very few

qualitative results available, but among these results are the Burns condition for shallow

water waves [1, 3, 27], where
√
λ∗ = c− u∗ must solve∫ 0

−d

dy

(U(y)−
√
λ∗)2

=
1

g
, (7.14)

where (U(y), 0) is the unique current which generates the given vorticity with U(0) = 0,

and also U(y) <
√
λ∗ by (2.7). If we find U(y), the bifurcating laminar flow is then given

by (U(y)−
√
λ∗, 0). We now check how the Burns condition approach compares to that

of Section 7.2 when γ is a constant. If γ is constant, then U(y) = γy and the Burns

condition (7.14) becomes
1

γ
√
λ∗

− 1

γ(γd+
√
λ∗)

=
1

g
,

which we regard as a quadratic equation in
√
λ∗ and solve to get

√
λ∗ =

−γd+
√
γ2d2 + 4gd

2
,

where we take the absence of stagnation points into account. But, since limt→0
sinh(t)

t = 1,

this is precisely the shallow water limit (d → 0) of the dispersion relation (7.12).
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