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STEADY-STATE AND PERIODIC EXPONENTIAL TURNPIKE

PROPERTY FOR OPTIMAL CONTROL PROBLEMS IN HILBERT

SPACES∗

EMMANUEL TRÉLAT† , CAN ZHANG‡ , AND ENRIQUE ZUAZUA§

Abstract. In this work, we study the steady-state (or periodic) exponential turnpike property
of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to
the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle,
reflects the fact that, in large control time horizons, the optimal state and control and adjoint state
remain most of the time close to an optimal steady-state. A similar statement holds true as well when
replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design
an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov
equations. We illustrate our results with examples including linear heat and wave equations with
periodic tracking terms.
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1. Introduction. The turnpike property of optimal trajectories was first ob-
served and investigated by economists for finite-dimensional discrete-time optimal
control problems (see, e.g., [25]). The turnpike property reflects the fact that, for
an optimal control problem for which the time horizon is large enough, its optimal
solution remains most of the time close to a referred turnpike, which is usually the
optimal solution of a corresponding “static” optimal control problem. In the last
decades, several turnpike theorems for optimal control problems have been obtained
in a large number of works (see, for instance, [1, 3, 7, 8, 9, 10, 11, 14, 16, 23, 25, 27,
28, 30, 37, 46, 47, 48, 51] and references therein) for discrete-time or continuous-time
problems involving control systems in finite dimension.

The usual turnpike property is somehow a qualitative feature for the limiting
structure of optimal solutions to the optimal control problem as the time horizon
tends to infinity. The exponential turnpike property is a quantitative version (see,
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e.g., [9, 27, 37]) ensuring that the optimal solution remains exponentially close to the
referred turnpike for a sufficiently large time interval contained in the time horizon
frame. In a different context, the authors of [6] proved that the long-time averages of
the solution for a mean field game system converge exponentially to the solution of
the associated stationary ergodic mean field game.

In the recent work [27], the exponential turnpike property has been established
for linear quadratic optimal control problems in finite dimension under the Kalman
controllability rank condition, as well as for linear infinite-dimensional systems, in-
cluding the cases of linear heat and wave equations with internal controls under some
observability inequality assumptions. A local version, for semilinear heat equations,
has been obtained in [28], under a smallness condition on the target to be tracked.

The authors of [37] established the exponential turnpike property for general
finite-dimensional nonlinear control systems with general terminal constraint condi-
tions, under some appropriate controllability and smallness assumptions. The main
ingredient in [37] is an exponential dichotomy transformation early established in
[43] to uncouple the two-point boundary value problem coming from the Pontryagin
maximum principle, reflecting the hyperbolicity feature of the Hamiltonian system.

In [27, 28, 37], not only the optimal state and control, but also the corresponding
adjoint vector, resulting from the application of the Pontryagin maximum principle,
were shown to remain exponentially close to an extremal triple for the corresponding
static optimal control problem, except at the extremities of the time frame. The
latter property is particularly useful in order to implement and initialize successfully
a numerical shooting method for solving the optimality system (see [37]).

The objective of the present paper is to establish the exponential turnpike prop-
erty for general infinite-dimensional nonlinear optimal control problems under expo-
nential stabilizability and detectability assumptions, as well as some smallness as-
sumptions. This extends to an abstract Hilbert space setting the main results in [28]
and [37]. The result implies that, except at the beginning and at the end of the time
frame, the optimal trajectory remains exponentially close to a steady-state, which is
itself characterized as being a minimizer for the associated “static optimal control
problem.”

As a second main result, we consider linear quadratic optimal control problems
with periodic tracking trajectories, i.e., linear autonomous control systems (still in
Hilbert spaces) with a quadratic cost in which the integrand involves a periodic track-
ing term. We prove that, under exponential stabilizability and detectability assump-
tions, the optimal trajectory (also, control and adjoint state) remains exponentially
close, except at the beginning and the end of the time frame, to a periodic optimal
trajectory, which is characterized as being the optimal solution of an associated pe-
riodic optimal control problem. We are not aware of any general result establishing
such a periodic exponential turnpike property, even in the finite-dimensional case.
Note however that Samuelson established in [34] a periodic turnpike property for a
specific optimal growth problem in economics in which the integrand of the minimiza-
tion functional is periodic. Periodic turnpike has been also considered in the recent
paper [45] within the dissipativity context.

To prove the results, our approach takes advantage of the hyperbolic feature of
the optimality systems (see [32]) resulting from the Pontryagin maximum principle, as
in [37]. However, the invertibility of solutions of the matrix algebraic Riccati equation
played an important role in the argument of [37], but to the best of our knowledge,
this argument is in general not valid in the infinite-dimensional setting, because this
invertibility is closely related to an exact observability inequality and thus this would
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be a too restrictive assumption in view of applications. One of the main technical
novelties of the present paper is to design a new dichotomy transformation to overcome
this difficulty. We mentioned that the authors in [27] have used the Riccati theory,
although slightly different, to describe the evolution of the optimality system as the
time horizon tends to infinity.

The paper is organized in the following way. In section 2, we present our main
results and some applications. More precisely, in Theorem 1, we establish the ex-
ponential turnpike property for general nonlinear autonomous optimal control prob-
lems with bounded control operators in a Hilbert space, under appropriate stability
assumptions and smallness conditions. In Theorem 2, we establish the periodic expo-
nential turnpike property for linear quadratic optimal control problems with bounded
control operators, in which the referred turnpike is a periodic optimal solution for a
periodic optimal control problem. In Theorems 4 and 5, we extend the results, respec-
tively, of Theorems 1 and 2 to analytic parabolic systems with unbounded admissible
control operators. Section 3 is devoted to the proofs of the main results.

2. Main results. Throughout the paper, given a Hilbert space Z, we denote by
〈·, ·〉Z the usual inner product and by ‖ · ‖Z the corresponding norm. The notation
L(X,Y ) designates the space of bounded linear operators from the Hilbert space X

to the Hilbert space Y .

2.1. Steady-state exponential turnpike for nonlinear optimal control

problems. Let X and U be two Hilbert spaces, which are accordingly identified with
their duals. We define hereafter the dynamical optimal control problem (OCPT ),
and then the corresponding static optimal control problem (Ps) yielding the optimal
steady-state around which the turnpike is expected. The exponential turnpike result
is then stated in Theorem 1.

The dynamical optimal control problem (OCPT ). For every T > 0 and every
y0 ∈ X, we consider the optimal control problem

(

OCPT
)

inf
u(·)∈L2(0,T ;U)

JT (u(·)) =

∫ T

0

f0(y(t), u(t)) dt,

where y(·) ∈ C([0, T ];X) is the mild solution1 of

(2.1)

{

ẏ(t) = Ay(t) + f(y(t), u(t)) for a.e. t ∈ [0, T ],

y(0) = y0,

corresponding to the control function u(·) ∈ L2(0, T ;U). Here, A : D(A) ⊂ X → X

is a linear (unbounded) operator generating a C0 semigroup on X, and the function
f0 : X×U → R and the mapping f : X×U → X are assumed to be twice continuously
Fréchet differentiable and globally Lipschitz continuous with respect to y for each
u ∈ U .

Existence of optimal controls for the problem (OCPT ) is a classical issue (see,
e.g., [24, Chapter 3]) and is generally ensured under adequate convexity assumptions.
Here, we assume that for the problem (OCPT ) there exists at least one optimal
solution. Let (yT (·), uT (·)) be any of them. According to the Pontryagin maximum
principle in a Hilbert space (see [24, Chapter 4]), there exists λT (·) ∈ C([0, T ], X),

1Recall that the form of mild solution is y(t) = eAty0 +
∫ t

0 eA(t−s)f(y(s), u(s)) ds, t ∈ [0, T ],

where eAt is the C0 semigroup in X with generator A : D(A) ⊂ X → X.
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called adjoint state or costate, such that

(2.2)

{

ẏT (t) = AyT (t) +Hλ(y
T (t), λT (t), uT (t)), yT (0) = y0,

λ̇T (t) = −A∗λT (t)−Hy(y
T (t), λT (t), uT (t)), λT (T ) = 0,

in the mild sense along [0, T ] and

(2.3) Hu

(

yT (t), λT (t), uT (t)
)

= 0 for a.e. t ∈ [0, T ],

where A∗ is the adjoint operator associated with A, with the domain D(A∗), and

(2.4) H(y, λ, u) = 〈λ, f(y, u)〉X − f0(y, u)

is the Hamiltonian of the optimal control problem. The index at H above designates
the partial derivative.

The static optimal control problem (Ps). We consider the nonlinear constrained
minimization problem

(Ps) inf
u∈U

Js(u) = f0(y, u),

where y ∈ X is the corresponding weak solution2 of

Ay + f(y, u) = 0.

Likewise, we assume that the problem (Ps) has at least one optimal solution (sufficient
conditions ensuring existence are standard; see, e.g., [17]). Let (ys, us) ∈ X × U be
any of them. We assume that there exists λs ∈ X such that (ys, λs, us) satisfies the
optimality system (see, e.g., [24, Chapter 5, Theorem 1.2] and [17, 35])

(2.5)

{

Ays +Hλ(ys, λs, us) = 0,

−A∗λs −Hy(ys, λs, us) = 0

and

(2.6) Hu(ys, λs, us) = 0.

Here, H is the Hamiltonian function defined by (2.4).
Note that (ys, λs, us) is an equilibrium point of the differential system (2.2), satis-

fying the constraint (2.3). This remark is crucial in order to understand the turnpike
property. Indeed, we are going to prove that, under appropriate assumptions, the
equilibrium point (ys, λs, us) is hyperbolic, in the sense that, if we linearize the sys-
tem of equations (2.2) around the point (ys, λs, us), then we obtain a linear system
that has a stable manifold and an unstable manifold. This feature, adequately inter-
preted, implies the exponential turnpike property, locally around (ys, λs, us).

The exponential turnpike property. At the point (ys, λs, us), we denote by

Hλy = Hλy(ys, λs, us), Hλu = Hλu(ys, λs, us), Huu = Huu(ys, λs, us)

and

Huy = Huy(ys, λs, us), Hyu = Hyu(ys, λs, us), Hyy = Hyy(ys, λs, us).

2Recall that the form of weak solution y ∈ X is 〈y,A∗ϕ〉X + 〈f(y, u), ϕ〉X = 0, for any ϕ ∈
D(A∗).
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Then, we define

(2.7) A = A+Hλy −HλuH
−1
uuHuy,

whenever H−1
uu exists.

Theorem 1. Assume that Huu is negative definite and boundedly invertible3 and
that HyuH

−1
uuHuy −Hyy is positive semidefinite, i.e.,

(2.8) HyuH
−1
uuHuy −Hyy = C∗C for some C ∈ L(X,X).

Assume that the pair (A, Hλu) is exponentially stabilizable4 and that the pair (A, C)
is exponentially detectable.5 Then, there exist positive constants ε, µ, and c such that
for any T > 0, if

(2.9) ‖y0 − ys‖X + ‖λs‖X 6 ε,

any optimal extremal triple (yT (·), uT (·), λT (·)) of (OCPT ) has the exponential turn-
pike property

(2.10)
∥

∥yT (t)− ys
∥

∥

X
+
∥

∥uT (t)− us

∥

∥

U
+
∥

∥λT (t)− λs

∥

∥

X
6 c

(

e−µt + e−µ(T−t)
)

for every t ∈ [0, T ].

Remark 1. The above theorem extends the result established in [37] for general
finite-dimensional optimal control problems. It is as well of local nature, requiring the
smallness assumptions (2.8) and (2.9). Note that, in Example 1 below, to ensure (2.8)
the turnpike itself has to be small. Ruling out the assumption (2.9) would require one
to have a knowledge of global properties of the dynamics.

We mention that the authors of [6] have derived a global exponential convergence
result, by using a property that the solution of a mean field game system fulfills a
smallness property on an interval of the form (δT, (1 − δ)T ) for δ ∈ (0, 1) (see [6,
Lemma 3.6]). However, we cannot prove a similar property to [6, Lemma 3.6] for the
optimality system under the global Lipschitz condition of the control system.

Remark 2. As seen in the proof, the exponential decay constant µ in (2.10) can
be characterized as the exponential stability rate for a C0 semigroup resulting from
the operator algebraic Riccati equation

A∗P + PA+ C∗C + PHλuH
−1
uuHuλP = 0.

The constant c in (2.10) depends in a linear way on (‖y0 − ys‖X + ‖λs‖X).

Remark 3. Note that we assume that f and f0 are C2-smooth and globally Lip-
schitz with respect to the state variable. Under such a globally Lipschitz condition,
we would get the existence and uniqueness of solutions for a given Cauchy problem

3This assumption is standard in optimal control theory, and it is usually referred as a strong

Legendre condition; see, e.g., [36]. It implies that the optimal control can be locally represented by
the maximum condition in terms of the optimal state and adjoint state.

4The pair (A, Hλu) is said to be exponentially stabilizable if and only if there exists an operator
K ∈ L(X,U) such that the operator A+HλuK is exponentially stable, i.e., the operator A+HλuK
generates a C0 semigroup (S(t))t>0 satisfying ‖S(t)‖L(X,X) 6 ce−νt for all t > 0, for some c > 0
and ν > 0.

5The pair (A, C) is said to be exponentially detectable if (A∗, C∗) is exponentially stabilizable.
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(2.1). The C2-regularity of the dynamic seems to be necessary to ensure that we can
obtain the linearized system of the optimality systems resulting from the Pontryagin
maximum principle for (OCPT ). Although sometimes globally Lipschitz properties
are not satisfied, we can however reduce the problem to the globally Lipschitz situa-
tion if solutions under consideration remain in a bounded set and if the dynamics and
their derivatives are bounded on bounded sets. Then, similar exponential turnpike
results can be also established in each particular instance. As an example of Theorem
1, we consider the cubic semilinear heat equation in Example 1, though for which the
exponential turnpike property has already been established in [28].

Let us describe how Theorem 1 yields the local exponential turnpike property for
the semilinear heat equation in [28].

Example 1. Let Ω ⊂ R
3 be an open and bounded domain with a C2 boundary,

and let ω ⊂ Ω be a nonempty open subset. Denote by χω the characteristic function
of the subset ω. Given T > 0, yd ∈ L2(Ω), and y0 ∈ L2(Ω), we consider the optimal
control problem

Minimize
1

2

∫ T

0

∫

Ω

|y(x, t)− yd(x)|
2 dx dt+

1

2

∫ T

0

∫

ω

|u(x, t)|2 dx dt,

subject to (y, u) ∈ C([0, T ];L2(Ω)) × L2(0, T ;L2(Ω)) satisfying the semilinear heat
equation with a cubic nonlinearity











yt −△y + y3 = χωu in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(0) = y0 in Ω.

This semilinear heat equation is well-posed. More precisely, given y0 ∈ L2(Ω) and u ∈
L2(ω × (0, T )), there exists a unique solution y ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)).
Moreover, for each T > 0, there exists at least one optimal solution (yT (·), uT (·)).
Meanwhile, there is an adjoint state λT (·) such that (yT (·), λT (·)) satisfies the opti-
mality systems (cf., e.g., [28, section 3.1])















































yTt −△yT + (yT )3 = χωλ
T in Ω× (0, T ),

yT = 0 on ∂Ω× (0, T ),

yT (0) = y0 in Ω,

λT
t +∆λT − 3(yT )2λT = yT − yd in Ω× (0, T ),

λT = 0 on ∂Ω× (0, T ),

λT (T ) = 0 in Ω,

and

uT (t) = χωλ
T (t) for almost every t ∈ (0, T ).

The corresponding static optimal control problem is

Minimize
1

2

∫

Ω

|y(x)− yd(x)|
2 dx+

1

2

∫

ω

|u(x)|2 dx,
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subject to (y, u) ∈ L2(Ω)× L2(Ω) satisfying

{

−△y + y3 = χωu in Ω,

y = 0 on ∂Ω.

Obviously, any minimizer (ys, us) of this minimization problem satisfies

‖ys − yd‖
2
L2(Ω) + ‖us‖

2
L2(ω) 6 ‖yd‖

2
L2(Ω).

Moreover, for each minimizer ys ∈ H1
0 (Ω), there exists λs ∈ L2(Ω) such that

{

−△λs + 3y2sλs + ys − yd = 0 in Ω,

λs = 0 on ∂Ω.

In view of applying the elliptic regularity theory, we note that there exists c = c(Ω) > 0
such that

(2.11) ‖ys‖H1

0
(Ω) + ‖λs‖H1

0
(Ω) 6 c‖yd‖L2(Ω).

We apply Theorem 1 with X = L2(Ω), U = L2(ω), A = △ defined on the domain
D(A) = H2(Ω) ∩ H1

0 (Ω), f(y, u) = −y3 + χωu, and f0(y, u) = 1
2‖y − yd‖

2
L2(Ω) +

1
2‖u‖

2
L2(ω). In this case, we obtain by (2.11) that HyuH

−1
uuHuy − Hyy is positive

semidefinite (i.e., (2.8)) if the L2-norm of yd is sufficiently small. Moreover,

A = A+O(‖yd‖L2(Ω)), Hλu = χωI +O(‖yd‖L2(Ω)), C = I +O(‖yd‖L2(Ω)),

where I is the identity operator on L2(Ω). Since the C0 semigroup in X generated
by A is exponentially stable, by the perturbation theory (see, e.g., [26, Chapter 3,
Theorem 1.1])), the pairs (A, Hλu) and (A∗, C∗) are also exponentially stabilizable
whenever the L2-norm of yd is sufficiently small. From (2.11) again, we see that the
condition (2.9) is also satisfied when ‖yd‖L2 and ‖y0‖L2 are small enough. Therefore,
according to Theorem 1, the exponential turnpike property is valid provided that
‖yd‖L2 and ‖y0‖L2 are small enough. These smallness conditions are the same as in
[28].

Remark 4. In the above example, if the norm of the target yd is small, the opera-
tor HyuH

−1
uuHuy −Hyy is not only positive semidefinite, but also it fills in the context

of the exponential turnpike property of linear quadratic optimal control problems.

2.2. Periodic exponential turnpike for linear quadratic problems with

periodic tracking trajectory. Let X, U , and V be Hilbert spaces identified with
their respective duals. As in the previous section, we first define the dynamical optimal
control problem (LQT ), formulated as a linear-quadratic optimal control problem with
a periodic tracking trajectory. Since the cost functional depends on t in a periodic
way, we replace the static optimal control problem with a periodic optimal control
problem (LQΠ), whose solution yields the referred turnpike. The exponential turnpike
result is then stated in Theorem 2.

The dynamical optimal control problem (LQT ). Given any y0 ∈ X, we consider
the linear control system

(2.12)

{

ẏ(t) = Ay(t) +Bu(t), t > 0,

y(0) = y0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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where the operator A : D(A) ⊂ X → X generates a C0 semigroup in X, and B ∈
L(U,X) is a linear bounded control operator.

Let Π > 0 be a fixed positive real number. Let yd(·) ∈ C([0,+∞);X) and
ud(·) ∈ L2

loc(0,+∞;U) be two Π-periodic functions such that

yd(t+Π) = yd(t), ud(t+Π) = ud(t) for a.e. t > 0.

Let C ∈ L(X,V ) be a linear bounded observation operator, and let Q ∈ L(X,X)
be an invertible positive definite operator. For any T > 0, we consider the optimal
control problem

(LQT ) inf
u(·)∈L2(0,T ;U)

JT (u(·))

=
1

2

∫ T

0

(

‖C(y(t)− yd(t))‖
2
V + ‖Q1/2(u(t)− ud(t))‖

2
U

)

dt,

where y(·) ∈ C([0, T ];X) is the solution of (2.12) with the control u(·). In the liter-
ature, this minimization problem is usually referred to as a linear quadratic optimal
problem with a periodic tracking trajectory.

The problem (LQT ) has a unique optimal solution (yT (·), uT (·)). Moreover, fol-
lowing [17, 21] or [24, Chapter 4, Theorem 1.6]), there exists λT (·) ∈ C([0, T ];X) such
that

(2.13)

{

ẏT (t) = AyT (t) +BQ−1B∗λT (t) +Bud(t), yT (0) = y0,

λ̇T (t) = C∗CyT (t)−A∗λT (t)− C∗Cyd(t), λT (T ) = 0,

in the mild sense along [0, T ] and

uT (t) = ud(t) +Q−1B∗λT (t), a.e. t ∈ [0, T ].

The periodic optimal control problem (LQΠ). In the present case where the track-
ing terms in the cost functional depend on t, the turnpike property cannot anymore
be captured by a corresponding static optimal control problem. Instead, we consider
the periodic optimal control problem

(LQΠ) inf JΠ(y(·), u(·))

=
1

2

∫ Π

0

(

‖C(y(t)− yd(t))‖
2
V + ‖Q1/2(u(t)− ud(t))‖

2
U

)

dt,

where (y(·), u(·)) ∈ C([0,Π];X)× L2(0,Π;U) is a mild solution of

{

ẏ(t) = Ay(t) +Bu(t), t ∈ [0,Π],

y(0) = y(Π).

Existence and uniqueness for such periodic optimal control problems, as well as first-
order necessary conditions for optimality, have been widely studied in the existing lit-
erature (see, for instance, [4, 13, 38] or [24, Chapter 4, Proposition 5.2] and references
therein). Since the problem (LQΠ) is convex, it is well known that (yΠ(·), uΠ(·)) is an
optimal pair for (LQΠ) if and only if there exists an adjoint state λΠ ∈ C([0,Π];X)
such that

(2.14)

{

ẏΠ(t) = AyΠ(t) +BQ−1B∗λΠ(t) +Bud(t), yΠ(0) = yΠ(Π),

λ̇Π(t) = C∗CyΠ(t)−A∗λΠ(t)− C∗Cyd(t), λΠ(0) = λΠ(Π),
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in the mild sense along [0,Π], and

(2.15) uΠ(t) = ud(t) +Q−1B∗λΠ(t), a.e. t ∈ [0,Π].

The periodic exponential turnpike property.

Theorem 2. Assume that the pair (A,B) is exponentially stabilizable and that
the pair (A,C) is exponentially detectable. Then the following hold:

• The problem (LQΠ) has a unique solution (yΠ(·), uΠ(·)), which has a unique
extremal lift (yΠ(·), uΠ(·), λΠ(·)) solution of (2.15) and (2.14). We extend it
by Π-periodicity over [0,+∞).

• There exist positive constants c and ν such that, for any T > 0,

(2.16)
∥

∥yT (t)− yΠ(t)
∥

∥

X
+
∥

∥uT (t)− uΠ(t)
∥

∥

U

+
∥

∥λT (t)− λΠ(t)
∥

∥

X
6 c

(

e−νt + e−ν(T−t)
)

for every t ∈ [0, T ].

Remark 5. From the proof of the theorem, we infer the following explicit formulas
in order to compute the optimal triple (yΠ(·), uΠ(·), λΠ(·)). We claim that

yΠ(t) = z(t)−Eq(t), λΠ(t) = −Pz(t)+(I+PE)q(t), uΠ(t) = ud(t)+Q−1B∗λΠ(t)

for almost every t ∈ [0,Π], where
• P ∈ L(X,X) is the unique nonnegative self-adjoint operator solution of the
operator algebraic Riccati equation

A∗P + PA− PBQ−1B∗P + C∗C = 0,

or equivalently,

2〈PAx, x〉X −
〈

PBQ−1B∗Px, x
〉

X
+ 〈Cx,Cx〉V = 0 ∀x ∈ D(A);

• E ∈ L(X,X) is defined by

E = −

∫ +∞

0

S(t)BQ−1B∗S(t)∗ dt,

where (S(t))t>0 is the (exponentially stable) C0 semigroup generated by the
operator A−BQ−1B∗P ;

• z(t) and q(t) are the Π-periodic trajectories defined by

z(t) = S(t)(I − S(Π)
)−1

∫ Π

0

S(Π− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ

+

∫ t

0

S(t− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ,

and

q(t) = S(Π− t)∗(I − S(Π)∗
)−1

×

∫ Π

0

S(Π− τ)∗
(

− PBud(Π− τ) + C∗Cyd(Π− τ))
)

dτ

+

∫ Π−t

0

S(Π− t− τ)∗
(

− PBud(Π− τ) + C∗Cyd(Π− τ)
)

dτ

for every t ∈ [0,Π].
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These facts are proved in section 3.1 (more specifically, see Lemma 3), as well as
Theorem 2.

Remark 6. Note that the periodicity of yd(·) and ud(·) does not play any role in
the algebraic Riccati equation in Remark 5.

Remark 7. As can be seen from the proof of the theorem, the exponential decay
constant ν in (2.16) can be characterized as the exponential stability rate for a C0

semigroup resulting from the operator algebraic Riccati equation in Remark 5, and
the constant c in (2.16) is of the form c1(‖y0 − yΠ(0)‖X + ‖λΠ(T )‖X), where the
constant c1 does not depend on y0, yd(·), and ud(·).

It follows from Theorem 2 that there exists η > 0 such that, for any initial
condition y0, the optimal triple (yT (·), uT (·), λT (·)) solution of (LQT ) is exponentially
close to the periodic optimal triple (yΠ(·), uΠ(·), λΠ(·)) solution of (LQΠ) over the
middle time interval [η, T − η] whenever T is large enough. Boundary layers may
occur at t = 0 and t = T for the optimality system, and the exponential closeness is
observed in the middle piece of optimal trajectories. This result means that, except
at the extremities of the time frame, the optimal trajectory, as well as the optimal
control and the associated adjoint state, is almost Π-periodic. It is worth mentioning
that similar results have been discussed in [3], [34], and [46, Chapter 6] for some
finite-dimensional optimal control problems.

Example 2. Let Ω ⊂ R
n (n > 1) be an open and bounded domain with a C2

boundary, and let ωi ⊂ Ω, i = 1, 2, be nonempty open subsets. Denote by χωi
,

i = 1, 2, the associated characteristic function. Let yd ∈ C([0,+∞);L2(Ω)) be a
periodic tracking trajectory, satisfying yd(t, ·) = yd(t+ 1, ·) for any t > 0. Given any
T > 0, we consider the optimal control problem

Minimize
1

2

∫ T

0

∫

ω1

|y(x, t)− yd(x, t)|
2 dx dt+

1

2

∫ T

0

∫

ω2

|u(x, t)|2 dx dt,

over all possible (y, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(Ω)) satisfying











yt −△y + a(x)y = χω2
u in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(0) = y0 in Ω,

where a(·) ∈ L∞(Ω) and y0 ∈ L2(Ω). We apply Theorem 2 with X = U = V = L2(Ω),
A = △ − a(·)I defined on the domain D(A) = H2(Ω) ∩ H1

0 (Ω), B = χω2
I, and

C = χω1
I. Here, I is the identity operator on L2(Ω). Since the above heat equation

with distributed control localized in ωi, i = 1, 2, is null controllable at any finite time
(see, for instance, [50]), the pairs (A,B) and (A∗, C∗) are exponentially stabilizable
(cf., e.g., [44, Theorem 3.3, p. 227]). Then, according to Theorem 2, we obtain that
the corresponding periodic optimal control problem has a unique solution and that
the optimal control problem under consideration has the periodic exponential turnpike
property.

Example 3. Let Ω ⊂ R
n (n > 1) be an open and bounded domain with a

C2 boundary, and let ωi ⊂ Ω, i = 1, 2, be nonempty open subsets. Let zd ∈
C([0,+∞);L2(Ω)) be a periodic tracking trajectory, satisfying zd(t, ·) = zd(t + 1, ·)
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for any t > 0. Given any T > 0, we consider the optimal control problem

Minimize
1

2

∫ T

0

∫

ω1

|zt(x, t)− zd(x, t)|
2 dx dt+

1

2

∫ T

0

∫

ω2

|u(x, t)|2 dx dt,

over all possible (z, u) ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) × L2(0, T ;L2(Ω)) satis-

fying











ztt −△z = χω2
u in Ω× (0, T ),

z = 0 on ∂Ω× (0, T ),

z(0) = z0, zt(0) = z1 in Ω,

where z0 ∈ H1
0 (Ω) and z1 ∈ L2(Ω). Writing the wave equation as a first-order system,

we apply Theorem 2 with X = H1
0 (Ω)× L2(Ω), U = V = L2(Ω),

A =

(

0 I

△ 0

)

defined on the domain D(A) =
(

H2(Ω) ∩H1
0 (Ω)

)

×H1
0 (Ω),

B =

(

0
χω2

I

)

, C =
(

0 χω1
I
)

,

where I the identity operator on L2(Ω). Note that A∗ = −A. It is well known
(see [5]) that, under the assumption that (Ω, ωi), i = 1, 2, satisfies the so-called
geometric control condition,6 there exists T0 > 0 such that the wave equation with
the distributed control localized in ωi, i = 1, 2, is null controllable at any time T >

T0. Therefore, the pairs (A,B) and (A∗, C∗) are exponentially stabilizable. Then,
according to Theorem 2, this optimal control problem has the periodic exponential
turnpike property if T > T0.

2.3. Particular case: Tracking a point. Consider the linear quadratic opti-
mal control problem (LQT ) of section 2.2. If yd(t) = yd ∈ X and ud(t) = ud ∈ U

do not depend on t, then Theorem 1 can be applied and the referred turnpike is an
optimal solution of the static optimal control problem

(Ps) inf Js(y, u) =
1

2

(

‖C(y − yd)‖
2
V + ‖Q1/2(u− ud)‖U

)

,

over the set of all (y, u) ∈ X ×U satisfying the constraint Ay+Bu = 0. Since (Ps) is
a convex programming problem, it is well known that (ys, us) ∈ X × U is an optimal
solution of (Ps) if and only if there exists an adjoint state λs ∈ X (see, e.g., [17, 21]
or [35, Chapter 6]) such that us = ud +Q−1B∗λs and

(2.17)

{

Ays +BQ−1B∗λs +Bud = 0,

C∗Cys −A∗λs − C∗Cyd = 0.

Note that the optimal solution of the periodic optimal problem (LQΠ) coincides with
that of the corresponding steady-state optimal control problem (Ps) (i.e., (y

Π(·), uΠ(·))
≡ (ys, us)). More precisely, we have the following result.

6The geometric control condition stipulates, roughly, that every generalized ray of geometrical
optics that propagates at unit speed in Ω and reflects on its boundary should intersect ωi within
time T .
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Theorem 3. Assume that (A,B) is exponentially stabilizable and (A,C) is expo-
nentially detectable. If yd(·) ≡ yd ∈ X and ud(·) ≡ ud ∈ U , then there exist positive
constants c and ν such that for any T > 0,

(2.18)
∥

∥yT (t)− ys
∥

∥

X
+
∥

∥uT (t)− us

∥

∥

U
+
∥

∥λT (t)− λs

∥

∥

X
6 c

(

e−νt + e−ν(T−t)
)

for every t ∈ [0, T ].

This result means that, in the linear quadratic framework, Theorem 1 holds true
globally. It unifies and extends the exponential turnpike theorems established in
[27, 37].

Remark 8. Similar to Remark 7, the exponential decay constant ν in (2.18) can
be characterized as the exponential stability rate for a C0 semigroup resulting from
the operator algebraic Riccati equation in Remark 5, and the constant c in (2.18) is
of the form c1(‖y0− ys‖X + ‖λs‖X), where the constant c1 does not depend on y0, yd,
and ud. This means in particular that, even if y0 = ys, the time depending optimal
control does not coincide with the steady state one. This is because, in particular,
the adjoint state of the steady state optimality system does not satisfy the terminal
condition on the adjoint state of the evolution optimality system. In fact the size of
λs coincides with the distance from λs to the terminal condition of the adjoint state,
which is zero.

Remark 9. In the linear quadratic case, the operators A, Hλu, C in Theorem 1,
respectively, coincide with A, B,C in Theorem 3. In fact, Theorem 3 is a global
version of Theorem 1 in the linear quadratic case (that is, ε = +∞).

2.4. Extensions to analytic parabolic systems with unbounded admis-

sible control operators. The previous analysis in sections 2.1, 2.2, and 2.3 was
restricted to bounded control operators. For instance, we were able to treat heat and
wave equations with internal control, but not with a boundary control because then
the control operator is unbounded in that case.

In this section, we generalize the results of Theorems 1, 2, and 3 to optimal control
problems of analytic parabolic systems with unbounded admissible control operators.

As before, let X and U be two reflexive Hilbert spaces (which are identified with
their dual spaces), and let A : D(A) ⊂ X → X generate a C0 semigroup (S(t))t>0 on
X. Denote by A∗ the adjoint operator associated with A, with the domain D(A∗),
and by X−1 the dual of D(A∗) with respect to the pivot space X. Then (S(t))t>0 can
be extended into a C0 semigroup on X−1 (see [41, Proposition 2.10.4]). We say that
B ∈ L(U,X−1) is an admissible control operator for (S(t))t>0 if there exists τ > 0
such that RanΨτ ⊂ X (see, e.g., [41, Definition 4.2.1]), where

Ψτu =

∫ τ

0

S(τ − t)Bu(t) dt, u ∈ L2(0, τ ;U).

First, as in section 2.1, for every T > 0 and every y0 ∈ X, we consider the optimal
control problem

(

OCPT
)

inf
u(·)∈L2(0,T ;U)

JT (u(·)) =

∫ T

0

f0(y(t), u(t)) dt,

where y(·) ∈ C([0, T ];X) is the mild solution of

{

ẏ(t) = Ay(t) + f(y(t)) +Bu for a.e. t ∈ [0, T ],

y(0) = y0.
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With the same notation and assumptions as in section 2.1, we have the following
exponential turnpike result (similar to Theorem 1). Note that in the case of semilinear
control systems considered above, one has Hλu = B.

Theorem 4. We assume that A generates an analytic semigroup (S(t))t>0 in X

and that B ∈ L(U,X−1) is an admissible control operator for (S(t))t>0. Under the
assumptions of Theorem 1, there exist positive constants ε, µ, and c such that for any
T > 0, if

‖y0 − ys‖X + ‖λs‖X 6 ε,

then, for any optimal extremal triple (yT (·), uT (·), λT (·)) of (OCPT ), we have the
exponential turnpike property

∥

∥yT (t)− ys
∥

∥

X
+
∥

∥uT (t)− us

∥

∥

U
+
∥

∥λT (t)− λs

∥

∥

X
6 c

(

e−µt + e−µ(T−t)
)

for every t ∈ [0, T ].

Remark 10. Note that the operator A given by (2.7) is a perturbation of the
generator A. It is already known that if B is an admissible control operator for the
C0 semigroup generated by A, then B is also an admissible control operator for the
C0 semigroup generated by A (cf. [41, Corollary 5.5.1]). Moreover, if A generates an
analytic semigroup (S(t))t>0 and if B is an admissible control operator for (S(t))t>0,
then by a standard perturbation result [26, Corollary 2.4, p. 81], we can see that A
also generates an analytic semigroup.

Second, with the same notation and assumptions introduced in section 2.2, for
any T > 0 and y0 ∈ X, we consider the optimal control problem (LQT ) by replacing
the bounded control operator B by an unbounded but admissible one. Then, we have
the following two analogous results to Theorems 2 and 3.

Theorem 5. We assume that A generates an analytic semigroup (S(t))t>0 in X

and that B ∈ L(U,X−1) is an admissible control operator for (S(t))t>0. We assume
that the pair (A,B) is exponentially stabilizable and that the pair (A,C) is exponen-
tially detectable. Then the following hold:

• The problem (LQΠ) has a unique solution (yΠ(·), uΠ(·)), which has a unique
extremal lift (yΠ(·), uΠ(·), λΠ(·)). We extend it by Π-periodicity over [0,+∞).

• There exist positive constants c and ν such that, for any T > 0,

∥

∥yT (t)− yΠ(t)
∥

∥

X
+
∥

∥uT (t)− uΠ(t)
∥

∥

U

+
∥

∥λT (t)− λΠ(t)
∥

∥

X
6 c

(

e−νt + e−ν(T−t)
)

for every t ∈ [0, T ].

Theorem 6. We assume that A generates an analytic semigroup (S(t))t>0 in X

and that B ∈ L(U,X−1) is an admissible control operator for (S(t))t>0. We assume
that (A,B) is exponentially stabilizable and that (A,C) is exponentially detectable. If
yd(·) ≡ yd ∈ X and ud(·) ≡ ud ∈ U , then there exist positive constants c and ν such
that for any T > 0,

∥

∥yT (t)− ys
∥

∥

X
+
∥

∥uT (t)− us

∥

∥

U
+
∥

∥λT (t)− λs

∥

∥

X
6 c

(

e−νt + e−ν(T−t)
)

for every t ∈ [0, T ].
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Remark 11. Regarding the constants appearing in Theorems 4, 5, and 6, we could,
respectively, have the same comments as in Remarks 2, 7, and 8.

We provide an examples below, concerning optimal control problems of the heat
equation with Neumann boundary controls.

Example 4. Let Ω ⊂ R
n be a bounded domain with a smooth boundary ∂Ω,

and let Γ ⊂ ∂Ω be a nonempty open subset. Let T > 0, y0 ∈ L2(Ω) and yd ∈
C([0,+∞);L2(Ω)) be a periodic tracking trajectory, satisfying yd(t, ·) = yd(t + 1, ·)
for any t > 0. Consider the optimal Neumann boundary control problem

inf
u∈L2(0,T ;L2(Γ))

1

2

∫ T

0

(

∥

∥y(t)− yd(t)
∥

∥

2

L2(Ω)
+ ‖u(t)‖2L2(Γ)

)

dt,

where y ∈ C([0, T ];L2(Ω)) is the solution of



















yt −△y = 0 in Ω× (0, T ),
∂y
∂ν = u on Γ× (0, T ),

y = 0 on (∂Ω \ Γ)× (0, T ),

y(0) = y0 in Ω.

Let X = L2(Ω), U = L2(Γ), V = L2(Ω), A = △ with D(A) = {y ∈ H2(Ω) | ∂y
∂ν =

0 on ∂Ω}, B = −△N , where N : L2(∂Ω) → L2(Ω) is the Neumann map,7 and
C = I is the identity operator on L2(Ω). Then, this optimal control problem can be
reformulated as (see, e.g., [19, Chapter 3.3])

inf
u∈L2(0,T ;U)

1

2

∫ T

0

(

‖C(y(t)− yd(t))‖
2
V + ‖u(t)‖2U

)

dt,

such that
ẏ = Ay +Bu, for a.e. t ∈ [0, T ], y(0) = y0.

Furthermore, we actually have B ∈ L(U, (D(A)1/4+ε)′) for every ε > 0 (where
(D(A)1/4+ε)′ is the dual space of D(A)1/4+ε with respect to the pivot space X),
and thus B is an admissible control operator for the analytic semigroup generated
by A. Note that (A,B) is exponentially stabilizable and that (A,C) is automatically
exponentially detectable when C = I. Therefore, according to Theorem 5, the cor-
responding periodic optimal control problem has a unique solution, and the optimal
control problem under consideration has the periodic exponential turnpike property.

2.5. A numerical simulation. In this section, we provide a simple example
in order to numerically illustrate the periodic turnpike phenomenon in the finite-
dimensional case. Given any T > 0, we consider the optimal control problem of
minimizing the cost functional

1

2

∫ T

0

(

(x(t)− cos(2πt))2 + (y(t)− sin(2πt))2 + u(t)2
)

dt

for the two-dimensional control system

ẋ(t) = y(t), ẏ(t) = u(t), t ∈ (0, T ),

7The name “Neumann map” is due to the fact that z = Nu is the solution of the Neumann
problem: ∆z = 0 in Ω and ∂z

∂ν
= u on ∂Ω.
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with fixed initial condition (x(0), y(0)) = (0.1, 0). Here, the target trajectories are
1-periodic. The explicit formulas for the expected periodic turnpike are given in
Remark 5 and have been numerically computed with MATLAB. More precisely, to fit
in the framework that has been developed previously, we set

A =

(

0 1
0 0

)

, B =

(

0
1

)

, C = Q = I, ud ≡ 0, yd(t) =

(

cos(2πt)
sin(2πt)

)

,

and then, using MATLAB, do the following:
• We solve the Riccati equation A∗P + PA− PBB∗P + I = 0.
• We solve the Lyapunov equation (A−BB∗P )E+E(A−BB∗P )∗−BB∗ = 0.
• We set T =

(

I −E
−P I+PE

)

and S(t) = exp(t(A−BB∗P )).
• We compute

z(t) = −S(t)(I − S(1))−1

∫ 1

0

S(1− τ)Eyd(τ) dτ −

∫ t

0

S(t− τ)Eyd(τ) dτ

and

q(t) = S(1− t)∗(I − S(1)∗)−1

∫ 1

0

S(1− τ)∗yd(1− τ) dτ

+

∫ 1−t

0

S(1− t− τ)∗yd(1− τ) dτ

for t ∈ [0, 1]. This can be done by noting that z(·) and q(·) are solutions of
some ordinary differential equations and by using numerical integration.

• Then, the reference turnpike trajectory and adjoint state are given by

( (

x̄(t), ȳ(t)
)

(

λ̄x(t), λ̄y(t)
)

)

= T

(

z(t)
q(t)

)

, t ∈ [0, 1].

The optimal extremal (x(·), y(·), λx(·), λy(·), u(·)), solution of the first-order optimal-
ity system derived from the Pontryagin maximum principle, has been computed in
time T = 20 by using a direct method of numerical optimal control (see [36]); more pre-
cisely, we have discretized the above optimal control problem using a Crank–Nicolson
method and we have then used the automatic differentiation code AMPL (see [12]) com-
bined with the optimization routine IpOpt (see [42]) on a standard desktop machine.

The turnpike property can be observed on Figure 1. As expected, except transient
initial and final arcs, the extremal (x(·), y(·), λx(·), λy(·)) (in blue) remains close to
the periodic turnpike (x̄(·), ȳ(·), λ̄x(·), λ̄y(·)) (in red).

2.6. Conclusion and further comments. We have established the exponen-
tial turnpike property around an optimal steady-state for general nonlinear infinite-
dimensional optimal control problems under certain stability and smallness assump-
tions. We have then established the periodic exponential turnpike property for linear
quadratic optimal control problems with periodic tracking trajectories, for which the
turnpike is an optimal solution to a periodic optimal control problem. To the best of
our knowledge, the latter result is new even in the finite-dimensional setting. More-
over, the optimal periodic solution has been explicitly characterized by means of a
dichotomy transformation on the solutions of the operator algebraic Riccati and Lya-
punov equations.

Some possible perspectives are in order.
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Fig. 1. Example of a periodic turnpike.

1. We believe that the periodic turnpike phenomenon appears in many concrete
situations. It is, for instance, reminiscent of many biological processes (see,
e.g., [15]). Then, obtaining a nonlinear version of our periodic turnpike the-
orem would certainly model many possible problems in life sciences. When
linearizing the extremal system (derived from the Pontryagin maximum prin-
ciple) around the optimal periodic trajectory, we obtain a linear time-periodic
Hamiltonian system instead of an autonomous one. Identifying adequate hy-
perbolic properties is then an open problem. In a forthcoming paper, we will
investigate the periodic turnpike phenomenon for optimal controls of general
nonlinear time-periodic systems.

2. An open and challenging problem, probably much more difficult, is to remove
the assumption of analyticity of the C0 semigroup generated by A in Theo-
rems 4, 5, and 6. To the best of our knowledge, the theory of algebraic Riccati
equation with unbounded control operator for the hyperbolic case is incom-
plete so far (see, e.g., [20]). It seems to us that the general approach used
in this paper cannot be developed and applied to this situation. There exist
however particular situations where a turnpike result can be established: we
refer to [16] and [51] for an exponential turnpike result for a one-dimensional
wave equation with Neumann boundary control.

3. Although the results established in this paper are only in the framework of
Hilbert spaces, the methodology used here is applicable to the more gen-
eral reflexive Banach spaces, in which the Pontryagin maximum principle for
optimal control problems is valid. Using the solvability of algebraic Riccati
equation in Banach spaces (see, e.g., [18]) instead of that in Hilbert spaces, a
similar procedure can be carried out with some slight modifications as what
we have done in our analysis for the case of Hilbert spaces.

4. We emphasize that the final state y(T ) in the underlying optimal control
problem is assumed to be free. This raises an obvious question: what happens
if the final state is fixed, for instance, y(T ) = y1? In finite dimension, the
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exponential turnpike theorem for this question has been established in [37]
under suitable Kalman rank condition. In infinite dimension, however, from
our analysis there is a twofold difficulty for this question. On one hand, the
Pontryagin maximum principle may fail in general. On the other hand, even if
the Pontryagin maximum principle is valid under certain finite codimensional
condition on the final state (cf. [24, Chapter 4, Theorem 1.6]), however we
still do not know how to prove the invertibility of the Lyapunov operator E
constructed in (3.6). Indeed, it is generally not invertible. For example, when

A =

(

−1 0
0 −1

)

, B =

(

1
0

)

, C = 0, Q =

(

1 0
0 1

)

,

one can easily check that E is not invertible.
5. We have established our main results for optimal control problems not in-

volving any state or control constraint. Indeed, the presence of constraints
complicates the dynamics derived from the Pontryagin maximum principle,
and then identifying hyperbolicity features may be very challenging. For in-
stance, control constraints may promote chattering, i.e., an infinite number
of control switchings over a compact time interval. Note that a turnpike
phenomenon is suspected in [49], while chattering also occurs.
Consider, for instance, the linear quadratic optimal control problem (LQT )
considered in section 2.2. If we impose the simple control constraint u > 0,
then the application of the Pontryagin maximum principle leads to the same
extremal equations (2.13), and to the extremal control

u(t) = max
(

0, ud(t) +Q−1B∗λT (t)
)

.

Since the extremal control is not smooth anymore, it is not clear how to ana-
lyze and use hyperbolicity properties of the extremal system, by linearization
around the equilibrium corresponding to the optimal steady-state. Oscilla-
tions may indeed occur (with possible chattering as mentioned above) and
make the dynamical study complex.
It is therefore challenging to consider the exponential turnpike property for
optimal control problems with mixed state and/or control constraints, partic-
ularly including the time and norm optimal control problems for heat equa-
tions, at least, by using the approach developed in this paper, consisting of
linearizing the extremal equations coming from the application of the Pon-
tryagin maximum principle.
Instead, an interesting alternative consists of using dissipativity properties of
the control system. We refer to [9] for investigating the exponential turn-
pike property for a class of strictly dissipative discrete-time systems in finite
dimension. Even in the presence of constraints, the turnpike property may
be analyzed within the viewpoint of strict dissipativity (see [9, 11, 14, 39]).
Such an analysis may reveal some relationships between strictly dissipativity
and hyperbolicity, which are now two methodologies used in the literature to
study the exponential turnpike property. In [39], we provide a comparison
between these two approaches which yield results of different natures.

6. Our Theorem 1 has been proved under the smallness assumption (2.9), be-
cause our approach consists of linearizing the optimality system near the opti-
mal steady-state that is an equilibrium point of the optimality system. Hence,
this linearized system does not reflect what may happen far from this equilib-
rium point, and this is why the smallness condition (2.9) is then required in
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the proof. Establishing a global result, without such smallness assumptions,
may certainly be done, but at the price of having a good knowledge of the
global dynamics. Note that, in [30, 31], the authors study in a specific context
the optimality status of several turnpikes that are in competition. Besides,
dissipativity properties of the global dynamics (see [9, 11, 14, 39]) may also
be a route to deriving global turnpike properties.

7. Turnpike issues can be explored as well for shape optimization problems,
by raising the question of whether optimal designs of a shape optimization
problem for evolution systems approximate to those of an optimal steady-
state one, as the time horizon is large enough (cf., e.g., [40]). We refer to [2]
for an example of such a large time behavior for the two-phase optimal design
for the heat equation, by using relaxation and homogenization. We notice that
whether the admissible shapes depend on time or not makes a huge difference
in the framework of shape optimization problems for evolution systems.

3. Proofs. For optimal control problems governed by infinite-dimensional evo-
lution systems in which the Pontryagin maximum principle can be applied, we obtain
a Hamiltonian system (two-point boundary value problem) coupling the optimal state
and the associated adjoint state. In the proofs, we develop a dichotomy transformation
acting on the solutions of the operator algebraic Riccati and Lyapunov type equations,
in order to “decouple” the Hamiltonian system to a block-diagonal one, containing a
contracting part (which is stable) and an expanding part (which is unstable). As a
byproduct, we obtain a quantitative description of the limiting behavior, interpreted
as the exponential turnpike property, of the optimal solutions of the original optimal
control problem, as the time horizon is large enough.

Since the proofs of Theorems 2 and 3 are much easier than that of Theorem 1,
for the reader’s convenience, we first give their proofs in section 3.1 and then we
provide the proof of Theorem 1 in section 3.2. Finally, in section 3.3, we point out
the key points and outline the proof of Theorem 6. Following the approach used in
the proof of Theorem 6, the proofs of Theorems 4 and 5 are almost the same as those
of Theorems 1 and 2, respectively. Thus we omit their proofs and leave the details to
the reader.

3.1. Proofs of Theorems 2 and 3. First, note that the extremal solution
(ys, λs) of the problem (Ps), solution of (2.17), is an equilibrium point for the Hamil-
tonian system (2.13) with yd(·) ≡ yd and ud(·) ≡ ud. We are going to prove that
this equilibrium is a saddle point for the system (2.13), thus yielding the turnpike
property. Setting

(3.1) δy(t) = yT (t)− ys, δλ(t) = λT (t)− λs, t ∈ [0, T ],

we get from (2.13) and (2.17) that

(3.2)
d

dt

(

δy(t)
δλ(t)

)

= M

(

δy(t)
δλ(t)

)

, t ∈ [0, T ],

where M : D(A) ×D(A∗) → X ×X is the linear unbounded operator block defined
by

(3.3) M =

(

A BQ−1B∗

C∗C −A∗

)

.
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Lemma 1. Assume that (A,B) is exponentially stabilizable and that (A,C) is
exponentially detectable. Then M is block-diagonalizable and boundedly invertible.
Moreover, the system (3.2) can be decoupled by a bounded linear transformation.

Proof. It is well known from [44, Part IV, Chapter 4, Theorem 4.4, p. 241] that,
under these assumptions in this lemma, the operator algebraic Riccati equation

(3.4) A∗P + PA− PBQ−1B∗P + C∗C = 0

has a unique nonnegative self-adjoint operator solution P ∈ L(X,X). Moreover, the
operator A − BQ−1B∗P generates an exponentially stable C0 semigroup (S(t))t>0,
satisfying

(3.5) ‖S(t)‖L(X,X) 6 ce−νt, t > 0,

for some constants c > 0 and ν > 0. As a consequence (see [44, Theorem 3.1, p. 222],
for instance), the spectral abscissa of A−BQ−1B∗P satisfies

sup
{

Reλ | λ ∈ σ
(

A−BQ−1B∗P
)}

6 −ν < 0,

and thus the operator A − BQ−1B∗P is boundedly invertible. Since the semigroup
(S(t))t>0 is exponentially stable, the Lyapunov integral operator E ∈ L(X,X) given
by

(3.6) E = −

∫ +∞

0

S(t)BQ−1B∗S(t)∗ dt

is well defined and is the solution of the operator Lyapunov equation (see also [44,
Theorem 3.2, p. 226])

(3.7)
(

A−BQ−1B∗P
)

E + E
(

A−BQ−1B∗P
)∗

−BQ−1B∗ = 0,

or equivalently,

2
〈(

A−BQ−1B∗P
)

Ex, x
〉

X
−
〈

BQ−1B∗x, x
〉

X
= 0 ∀x ∈ D(A).

We now construct a dichotomy transformation in order to decouple the system (3.2),
based on the linear and bounded operators P and E. We first define two linear
transformations on X ×X by

T1 =

(

I 0
P I

)

and T2 =

(

I 0
−P I

)

,

where I is the identity operator on X. Note that

T1 ◦ T2 =

(

I 0
0 I

)

= T2 ◦ T1.

Since P solves the Riccati equation (3.4), a straightforward computation shows that

(3.8) T1 ◦M ◦ T2 =

(

A−BQ−1B∗P BQ−1B∗

0 −(A−BQ−1B∗P )∗

)

.

Setting

(

v(t)
w(t)

)

= T1

(

δy(t)
δλ(t)

)

, t ∈ [0, T ],
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we infer from (3.2) and (3.8) that

(3.9)
d

dt

(

v(t)
w(t)

)

=

(

A−BQ−1B∗P BQ−1B∗

0 −(A−BQ−1B∗P )∗

)(

v(t)
w(t)

)

, t ∈ [0, T ].

Now, we set

T3 =

(

I E

0 I

)

and T4 =

(

I −E

0 I

)

.

Note that

T3 ◦ T4 =

(

I 0
0 I

)

= T4 ◦ T3.

By performing the transformation

(

z(t)
q(t)

)

= T3

(

v(t)
w(t)

)

, t ∈ [0, T ],

we infer from (3.9) and (3.7) that

(3.10)
d

dt

(

z(t)
q(t)

)

=

(

A−BQ−1B∗P 0
0 −(A−BQ−1B∗P )∗

)(

z(t)
q(t)

)

, t ∈ [0, T ].

Finally, we see that M can be block-diagonalized by using the composition transfor-
mation T = T3 ◦ T1 given by

T =

(

I + EP E

P I

)

.

Since A−BQ−1B∗P and its adjoint operator are boundedly invertible,M is boundedly
invertible. This completes the proof.

Remark 12. Lemma 1 implies that the optimality system (2.17) has a unique
solution.

Remark 13. In the finite-dimensional case, a dichotomy transformation similar to
the one designed above has been used in [22, Lemma 2.5] and [33]. Here, we adapt
this dichotomy transformation in the setting of infinite-dimensional Hilbert spaces.
We also refer the reader to [43] for a different dichotomy transformation, which is,
however, based on positive and negative definite solutions of the matrix algebraic
Riccati equation.

Remark 14. The applications of dichotomy transformations for the Hamiltonian
system, resulting from the Pontryagin maximum principle, are also well known in the
numerical analysis of optimal control problems. For this issue we refer the reader to
the brief paper [29]. Note that this uncoupling dichotomy transformation technique
could be used as well for the numerical analysis of optimal control problems for partial
differential equations.

The following stability estimate is inspired from [27, Lemma 3.5].

Lemma 2. Assume that (A,B) is exponentially stabilizable and that (A,C) is
exponentially detectable. Then, there exists a constant c > 0 independent of T such
that

(3.11) ‖y(T )‖X + ‖λ(0)‖X 6 c
(

‖y(0)‖X + ‖λ(T )‖X
)
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for any solution (y(·), λ(·)) ∈ C([0, T ];X)× C([0, T ];X) of the coupled system

(3.12)

{

ẏ(t) = Ay(t) +BQ−1B∗λ(t),

λ̇(t) = C∗Cy(t)−A∗λ(t), t ∈ [0, T ].

Proof. Since the pair (A,C) is exponentially detectable, the pair (A∗, C∗) is expo-
nentially stabilizable, and thus there exists a bounded linear operator K ∈ L(X,V )
such that the C0 semigroup generated by A∗ + C∗K is exponentially stable. Let
ϕ(·) ∈ C([0, T ];X) be the unique solution of

{

ϕ̇(t) = −(A∗ + C∗K)ϕ(t), t ∈ [0, T ],

ϕ(T ) = y(T ).

It follows from the exponential decay of the C0 semigroup that there is a constant
c1 > 0 (independent of T ) such that

(3.13) ‖ϕ(0)‖X 6 c1‖y(T )‖X

and

(3.14)

∫ T

0

‖ϕ(t)‖2X dt 6 c1‖y(T )‖
2
X .

Multiplying by ϕ(t) the first equation in (3.12) and integrating the result over t ∈
[0, T ], we get
(3.15)

‖y(T )‖2X = 〈y(0), ϕ(0)〉X +

∫ T

0

(〈

BQ−1B∗λ(t), ϕ(t)
〉

X
−
〈

K∗Cy(t), ϕ(t)
〉

X

)

dt.

By the Cauchy–Schwarz inequality and (3.14), we see that

∫ T

0

∣

∣

〈

BQ−1B∗λ(t), ϕ(t)
〉

X

∣

∣ dt

6

(

∫ T

0

∥

∥BQ−1B∗λ(t)
∥

∥

2

X
dt

)1/2(
∫ T

0

‖ϕ(t)‖2X dt

)1/2

6 c2‖y(T )‖X

∥

∥

∥
BQ−1/2

∥

∥

∥

L(U,X)

(

∫ T

0

∥

∥

∥
Q−1/2B∗λ(t)

∥

∥

∥

2

U
dt

)1/2

and

∫ T

0

|〈K∗Cy(t), ϕ(t)〉X | dt

6 ‖K∗‖L(V,X)

(

∫ T

0

‖Cy(t)‖2V dt

)1/2(
∫ T

0

‖ϕ(t)‖2X dt

)1/2

6 c3‖K
∗‖L(V,X)‖y(T )‖X

(

∫ T

0

‖Cy(t)‖2V dt

)1/2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



STEADY-STATE AND PERIODIC EXPONENTIAL TURNPIKE 1243

These two inequalities, together with (3.15) and (3.13), imply that

‖y(T )‖2X 6 c4

(

∫ T

0

‖Cy(t)‖2V + ‖Q−1/2B∗λ(t)‖2U dt+ ‖y(0)‖2X

)

(3.16)

for some positive constant c4 (independent of T ).
Similarly, since the pair (A,B) is exponentially stabilizable, we obtain from the

second equation in (3.12) that

(3.17) ‖λ(0)‖2X 6 c5

(

∫ T

0

∥

∥

∥
Q−1/2B∗λ(t)

∥

∥

∥

2

U
+ ‖Cy(t)‖2V dt+ ‖λ(T )‖2X

)

for some positive constant c5 (independent of T ).
Let c6 = max(c4, c5). Next, multiplying by λ(t) the first equation in (3.12) and

by y(t) the second equation in (3.12), and then integrating over t ∈ [0, T ], we get from
the Cauchy–Schwarz inequality that

∫ T

0

(

‖Cy(t)‖2V + ‖Q−1/2B∗λ(t))‖2U

)

dt

=
〈

y(T ), λ(T )
〉

X
−
〈

y(0), λ(0)
〉

X

6 ‖λ(T )‖X‖y(T )‖X + ‖y(0)‖X‖λ(0)‖X

6 c6‖λ(T )‖
2
X +

1

4c6
‖y(T )‖2X + c6‖y(0)‖

2
X +

1

4c6
‖λ(0)‖2X .

This, along with (3.17) and (3.16), implies that

∫ T

0

(

‖Cy(t)‖2V + ‖Q−1/2B∗λ(t)‖2U

)

dt 6 c7
(

‖y(0)‖2X + ‖λ(T )‖2X
)

for some positive constant c7 independent of T . Using (3.17) and (3.16) again, this
leads to (3.11) and completes the proof.

Using Lemmas 1 and 2, we are now in position to prove Theorem 3.

Proof of Theorem 3. Let δy(·) and δλ(·) be defined by (3.1). By using the same
dichotomy transformation

(3.18)

(

z(t)
q(t)

)

=

(

I + EP E

P I

)(

δy(t)
δλ(t)

)

, t ∈ [0, T ],

as in the proof of Lemma 1, we obtain a decoupled evolution system (3.10). Conse-
quently, we have

(3.19) z(t) = S(t)z(0) and q(t) = S(T − t)∗q(T ), t ∈ [0, T ],

where the C0 semigroup (S(t))t>0 is generated by the operator A−BQ−1B∗P satis-
fying the exponential decay estimate (3.5), and (S(t)∗)t>0 is its adjoint C0 semigroup.

Note that uT (t) − us = Q−1B∗δλ(t) for a.e. t ∈ [0, T ]. To derive the estimate
(2.18), according to (3.18) and (3.19), it suffices to show that the norms of z(0) and
q(T ) have an upper bound which is independent of T . Note from (3.18) that

z(0) = (I + EP )δy(0) + Eδλ(0), q(T ) = Pδy(T ) + δλ(T ).
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Therefore, in order to complete the proof, it suffices to give an upper bound for
‖δy(T )‖X , as well as for ‖δλ(0)‖X , which follows from Lemma 2. The theorem is
proved.

Before turning to the proof of Theorem 2, by using Lemma 1 we are now in a
position to formulate explicitly the optimal extremal triple (yΠ(·), uΠ(·), λΠ(·)) for the
periodic optimal control problem (LQΠ), thus proving the contents of Remark 5.

Lemma 3. Under the assumptions of Theorem 2, the (unique) optimal Π-periodic
extremal triple (yΠ(·), λΠ(·), uΠ(·)) of the problem (LQΠ) is given by

yΠ(t) = z(t)−Eq(t), λΠ(t) = −Pz(t)+(I+PE)q(t), uΠ(t) = ud(t)+Q−1B∗λΠ(t)

for almost every t ∈ [0,Π]. Here, P and E are accordingly linear bounded operators
defined by (3.4) and (3.6), and (z(t), q(t)), t ∈ [0,Π] are the periodic trajectories given
by (3.25) and (3.26) below, respectively.

Proof. Using the dichotomy transformation already used in the proof of Lemma 1,

(3.20)

(

z(t)
q(t)

)

=

(

I + EP E

P I

)(

yΠ(t)
λΠ(t)

)

, t ∈ [0,Π],

we can uncouple the system (2.14) to

(3.21) ż(t) =
(

A−BQ−1B∗P
)

z(t) +
(

(I + EP )Bud(t)− EC∗Cyd(t)
)

, t ∈ [0,Π],

and

(3.22) q̇(t) = −(A−BQ−1B∗P )∗q(t) +
(

PBud(t)− C∗Cyd(t)
)

, t ∈ [0,Π].

Now, using the periodic boundary conditions, we are going to determine the initial
data z(0) and q(T ) for (3.21) and (3.22), respectively. It follows from (3.20) and from
the periodic condition in (2.14) that

(3.23) z(0) = z(Π).

By the Duhamel formula, we get from (3.21) that

(3.24) z(Π) = S(Π)z(0) +

∫ Π

0

S(Π− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ,

where (S(t))t>0 is the C0 semigroup generated by the operator A−BQ−1B∗P satis-
fying the exponential decay estimate (3.5). It follows from [4, Corollary 2.1] that the
operator I − S(Π) is boundedly invertible. Hence, we obtain from (3.23) and (3.24)
that

z(0) = (I − S(Π)
)−1

∫ Π

0

S(Π− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ.

Therefore, we get

z(t) = S(t)(I − S(Π))−1

∫ Π

0

S(Π− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ(3.25)

+

∫ t

0

S(t− τ)
(

(I + EP )Bud(τ)− EC∗Cyd(τ)
)

dτ, t ∈ [0,Π].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



STEADY-STATE AND PERIODIC EXPONENTIAL TURNPIKE 1245

Applying similar arguments to (3.22), we also obtain that

q(t) = S(Π− t)∗(I − S(Π)∗
)−1

∫ Π

0

S(Π− τ)∗
(

− PBud(Π− τ) + C∗Cyd(Π− τ))
)

dτ

(3.26)

+

∫ Π−t

0

S(Π− t− τ)∗
(

− PBud(Π− τ) + C∗Cyd(Π− τ)
)

dτ, t ∈ [0,Π].

Noting from the transformation (3.20) that

(

yΠ(t)
λΠ(t)

)

=

(

I −E

−P I + PE

)(

z(t)
q(t)

)

, t ∈ [0,Π],

the lemma follows.

We can now complete the proof of Theorem 2.

Proof of Theorem 2. Setting

δy(t) = yT (t)− yΠ(t), δλ(t) = λT (t)− λΠ(t), δu(t) = uT (t)− uΠ(t), t ∈ [0, T ],

we get from (2.13) and (2.14) that

(3.27)











dδy(t)

dt
= Aδy(t) +BQ−1B∗δλ(t), t ∈ [0, T ],

dδλ(t)

dt
= C∗Cδy(t)−A∗δλ(t), t ∈ [0, T ],

with the terminal conditions

δy(0) = y0 − yΠ(0), δλ(T ) = −λΠ

(

T −

[

T

Π

]

Π

)

.

Here, [x] denotes the largest integer less than or equal to x. Using the dichotomy
transformation

(3.28)

(

v(t)
w(t)

)

=

(

I + EP E

P I

)(

δy(t)
δλ(t)

)

, t ∈ [0, T ],

where P and E are accordingly given by (3.4) and (3.6), we transform the system
(3.27) to

d

dt

(

v(t)
w(t)

)

=

(

A−BQ−1B∗P 0
0 −(A−BQ−1B∗P )∗

)(

v(t)
w(t)

)

, t ∈ [0, T ].

Therefore,

(3.29) v(t) = S(t)v(0) and w(t) = S(T − t)∗w(T ), t ∈ [0, T ],

where (S(t))t>0 is the exponentially stable C0 semigroup generated by A−BQ−1B∗P .
In particular, by (3.28), we have

(3.30) v(0) = (I + EP )δy(0) + Eδλ(0) and w(T ) = δλ(T ) + Pδy(T ).
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By Lemma 2, we infer that the stability estimate

‖δy(T )‖X + ‖δλ(0)‖X 6 c
(

‖δy(0)‖X + ‖δλ(T )‖X
)

holds true for some positive constant c independent of T . This estimate, together with
(3.30), (3.29), as well as the bounded invertibility of the dichotomy transformation
(3.28), lead to the estimate

‖δy(t)‖X + ‖δλ(t)‖X 6 c(‖δy(0)‖X + ‖δλ(T )‖X)
(

e−νt + e−ν(T−t)
)

∀t ∈ [0, T ]

for some positive constants c and ν independent of T . The theorem is proved.

3.2. Proof of Theorem 1. We follow the arguments of the proofs of Lemmas 1,
2 and of Theorem 3, as well as those of the proof of [37, Theorem 1].

According to the assumptions, the Hamiltonian H is twice continuously Fréchet
differentiable in X ×X × U , and thus for any (y, λ, u) ∈ X ×X × U , there exists a
constant R0 > 0 such that, for any 0 < R < R0, the asymptotic expansion formula

H⋆(y + δy, λ+δλ, u+ δu)−H⋆(y, λ, u)

= H⋆y(y, λ, u)δy +H⋆λ(y, λ, u)δλ+H⋆u(y, λ, u)δu+ o(δy, δλ, δu)

holds for any small perturbation (δy, δλ, δu) verifying

(3.31) ‖δy‖X + ‖δλ‖X + ‖δu‖U 6 R.

Here the symbol ⋆ stands for the Fréchet derivative of H with respect to the variable
y or λ or u, and o(δh) is the remaining higher-order terms with respect to δh.

We start by defining perturbations of (yT (·), λT (·), uT (·)) with respect to (ys, λs, us),
by

δy(t) = yT (t)− ys, δλ(t) = λT (t)− λs, δu(t) = uT (t)− us, t ∈ [0, T ].

Under the assumptions of the theorem, we make the following a priori hypotheses:

(i). ‖(δy(t), δλ(t), δu(t))‖X×X×U 6 R for a.e. t ∈ [0, T ];

(ii).

∫ T

0

(

‖δy(t)‖2X + ‖δλ(t)‖2X
)

dt 6 R,
(3.32)

where the positive constant R is sufficiently small. These two hypotheses will be
verified a posteriori at the end by an appropriate choice of smallness constraint (2.9).
First, it follows from (2.3) and (2.6) that, at the point (ys, λs, us),

Huyδy(t) +Huλδλ(t) +Huuδu(t) + o(δy(t), δλ(t), δu(t)) = 0 for a.e. t ∈ [0, T ].

Since H−1
uu is bounded, we get

(3.33) δu(t) = −H−1
uu

(

Huyδy(t) +Huλδλ(t)
)

+ o(δy(t), δλ(t)).

Therefore, using (2.7) and (2.8), we infer from (2.2), (2.5), and (3.33) that

(3.34)
d

dt

(

δy(t)
δλ(t)

)

=

(

A −HλuH
−1
uuHuλ

C∗C −A∗

)(

δy(t)
δλ(t)

)

+ o(δy(t), δλ(t))
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with the two-point boundary conditions

(3.35) δy(0) = y0 − ys, δλ(T ) = −λs.

Note that the principal part of (3.34) has the same structure as the operator block
M given by (3.3). As already mentioned, in comparison with the proof of Theorem 3,
the difficulty is here to deal carefully with the higher-order remaining terms in (3.34).

Next, by using arguments similar to those in the proof of Lemma 1, we are going
to uncouple the principal part of the linearized system (3.34). Let P ∈ L(X,X) be
the unique nonnegative self-adjoint operator solution of the operator algebraic Riccati
equation (see the same reasonings for (3.4))

A∗P + PA+ C∗C + PHλuH
−1
uuHuλP = 0.

Moreover, the operator A+HλuH
−1
uuHuλP generates an exponentially stable C0 semi-

group (S(t))t>0 in X, i.e.,

(3.36) ‖S(t)‖L(X,X) 6 c1e
−νt for t > 0,

for some positive constants c1 and ν. We then define the linear bounded selfadjoint
operator on X

E =

∫ +∞

0

S(t)HλuH
−1
uuHuλS(t)

∗ dt.

We can check that it satisfies the Lyapunov equation (see the same reasonings for
(3.7))

(

A+HλuH
−1
uuHuλP

)

E + E
(

A+HλuH
−1
uuHuλP

)∗
+HλuH

−1
uuHuλ = 0.

Using the dichotomy transformation

(3.37)

(

v(t)
w(t)

)

=

(

I + EP E
P I

)(

δy(t)
δλ(t)

)

, t ∈ [0, T ],

we transform the system (3.34) to

d

dt

(

v(t)
w(t)

)

=

(

A+HλuH
−1
uuHuλP 0

0 −
(

A+HλuH
−1
uuHuλP

)∗

)(

v(t)
w(t)

)

+o(v(t), w(t)).

Solving the first equation in forward time and the second equation in backward time,
and using (3.36), we get

(3.38) ‖v(t)‖X + ‖w(t)‖X 6 4c1(e
−νt/2‖v(0)‖X + e−ν(T−t)/2‖w(T )‖X)

for every t ∈ [0, T ].
The remainder of the proof consists of determining the values (‖v(0)‖X , ‖w(T )‖X)

from the terminal conditions (3.35). We first claim that the inequality

(3.39) ‖δy(T )‖X + ‖δλ(0)‖X 6 c2
(

‖y0 − ys‖X + ‖λs‖X
)

+ o(R)

holds for some constant c2 independent of T . (The proof of this claim is postponed
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to the end.) It follows from the transformation (3.37) that

v(0) = (I + EP)δy(0) + Eδλ(0), w(T ) = Pδy(T ) + δλ(T ).

Hence, we infer from (3.37), (3.38), and (3.39) that

(3.40) ‖δy(t)‖X+‖δλ(t)‖X 6

(

c3(‖y0−ys‖X+‖λs‖X)+o(R)
)

(

e−νt/2+e−ν(T−t)/2
)

for every t ∈ [0, T ] with some constant c3 independent of T . This, together with
(3.33), leads to a similar estimate for δu(·). Therefore, there exists ε > 0 such that
the estimates (3.32) hold true whenever the inequality (2.9) holds. As a consequence
of (3.40), the exponential turnpike property (2.10) is proved.

Finally, let us prove the claim (3.39), which is analogous to that in Lemma 2. For
the first equation in (3.34), since (A∗, C∗) is exponentially detectable, by the same
reasoning as for (3.16), there exists a c0 > 0 independent of T such that
(3.41)

‖δy(T )‖2X 6 c0

(

∫ T

0

(

‖Cδy(t)‖2V + ‖H−1/2
uu Huλδλ(t)‖

2
U

)

dt+ ‖δy(0)‖2X

)

+ o(R).

Similarly, we obtain
(3.42)

‖δλ(0)‖2X 6 c0

(

∫ T

0

(

‖H−1/2
uu Huλδλ(t)‖

2
U + ‖Cδy(t)‖2V

)

dt+ ‖δλ(T )‖2X

)

+ o(R).

Multiplying by δλ(t) the first equation in (3.34) and by δy(t) the second equation in
(3.34), and then integrating over t ∈ [0, T ], we get that

∫ T

0

(

‖H−1/2
uu Huλδλ(t)‖

2
U + ‖Cδy(t)‖2V

)

dt

6 ‖δλ(T )‖X‖δy(T )‖X + ‖δy(0)‖X‖δλ(0)‖X + o(R)

6 σ
(

‖δλ(0)‖2X + ‖δy(T )‖2X
)

+
1

4σ

(

‖δy(0)‖2X + ‖δλ(T )‖2X
)

+ o(R)

for any real number σ > 0. This, together with (3.41) and (3.42), implies that

∫ T

0

(

‖H−1/2
uu Huλδλ(t)‖

2
U + ‖Cδy(t)‖2V

)

dt

6 2c0σ

∫ T

0

(

‖H−1/2
uu Huλδλ(t)‖

2
U + ‖Cδy(t)‖2V

)

dt

+

(

1

4σ
+ 2c0σ

)

(

‖δy(0)‖2X + ‖δλ(T )‖2X
)

+ o(R).

Choosing σ = 1
4c0

, we get that

∫ T

0

(

‖H−1/2
uu Huλδλ(t)‖

2
U + ‖Cδy(t)‖2V

)

dt 6 (2c0+1)
(

‖δy(0)‖2X + ‖δλ(T )‖2X
)

+ o(R).

This, along with (3.35), (3.41), and (3.42), implies and completes the proof of the
claim (3.39).
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Remark 15. The algebraic Riccati and Lyapunov equations involved in the proof
of Theorem 1 coincide with those in the linear case (i.e., the proof of Theorem 3).

3.3. Proof of Theorem 6. Compared with the proof of Theorem 3 (which is
the case of bounded control operators), the new difficulty here is the solvability of
the operator algebraic Riccati equation and the operator Lyapunov equation, with
unbounded admissible control operators. In the following, we mainly demonstrate
how to overcome this difficulty and give a resolution.

More precisely, as seen in the proof of Theorem 3, there are two key ingredients
to construct the dichotomy transformation:
(K1). There exists a solution P ∈ L(X,X) to the operator algebraic Riccati equa-

tion

A∗P + PA− PBQ−1B∗P + C∗C = 0.

(K2). There exists a solution E ∈ L(X,X) to the operator Lyapunov equation

(

A−BQ−1B∗P
)

E + E
(

A−BQ−1B∗P
)∗

−BQ−1B∗ = 0.

Observe that, once (K1) and (K2) have been solved, by following the same ap-
proach as in the proof of Theorem 3, we obtain Theorem 6. Hereafter, we show that
(K1) and (K2) can indeed be solved when the unbounded control operator B is admis-
sible for an analytic semigroup generated by A. We will finish the proof of Theorem 6
whenever they are done.

We first show that (K1) is valid. In fact, since B is an admissible control op-
erator for the C0 semigroup generated by A, by [41, Proposition 4.4.6], we have
B ∈ L(U,X−1/2−ε) for every ε > 0. Then, under the assumptions of this theorem,
one can easily verify that all assumptions of [19, Theorems 2.2.1 and 2.2.2, p. 125–127]
are satisfied. Thus, we have the following facts about the algebraic Riccati equation
for analytic parabolic systems:
(G1). There exists a nonnegative and self-adjoint operator P ∈ L(X,X) satisfying

the operator algebraic Riccati equation

A∗P + PA− PBQ−1B∗P + C∗C = 0.

(G2). The operator B∗P is bounded from X to U , i.e., B∗P ∈ L(X,U).
(G3). The operator A−BQ−1B∗P generates an exponentially stable C0 semigroup

(SP (t))t>0, satisfying

‖SP (t)‖L(X,X) 6 ce−νt, t > 0,

for some constants c > 0 and ν > 0.
As a consequence, (G1) guarantees that (K1) is true.
Second, we prove that (K2) is also valid. In fact, by the duality between admissible

observation and control operators (cf., e.g., [41, Theorem 4.4.3]), we obtain that B∗ is
an admissible observation operator for the C0 semigroup generated by A∗. It follows
from (G2) that PB ∈ L(U,X). Then, by the perturbation theory of admissible
observation (see, e.g., [41, Theorem 5.4.2]), we have that B∗ is indeed an admissible
observation operator for (SP (t)

∗)t>0. Because (SP (t)
∗)t>0 is moreover exponentially

stable (see (G3) above), we deduce from [41, Remark 4.3.5] that B∗ is also an infinite-
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time admissible observation operator for (SP (t)
∗)t>0, i.e., there exists a constant c > 0

(independent of T ) such that

∫ +∞

0

‖B∗SP (t)
∗z‖2U dt 6 c‖z‖2X ∀z ∈ D(A∗).

From [41, Theorem 5.1.1], we find that there exists a linear and bounded operator
E ∈ L(X,X) satisfying the following operator Lyapunov equation

(

A−BQ−1B∗P
)

E + E
(

A−BQ−1B∗P
)∗

−BQ−1B∗ = 0.

Thus, (K2) is also true. This completes the proof.
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Concrètes,” 2005.
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