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Steady-State Computations Using Summation-by-Parts
Operators

Magnus Sviird,! Ken Mattsson,? and Jan Nordstrom?

This paper concerns energy stability on curvilinear grids and its impact on
steady-state calulations. We have done computations for the Euler equations
using fifth order summation-by-parts block and diagonal norm schemes. By
imposing the boundary conditions weakly we obtain a fifth order energy-stable
scheme. The calculations indicate the significance of energy stability in order to
obtain convergence to steady state. Furthermore, the difference operators are
improved such that faster convergence to steady state are obtained.

KEY WORDS: High order finite differences; summation-by-parts operators;
convergence to steady state; stability.

1. INTRODUCTION

Previously, our focus has been on time dependent problems where high-order
methods are necessary to accurately compute fine structures of the flow. (see
[1-3]) However, those methods need good steady-state solutions as initial data
which shifted our focus towards computation of such solutions. In this paper
we address some key issues relevant to the efficient and accurate computation
of steady state solutions by using high-order finite difference methods.

There are a variety of methods to speed up convergence to steady-
state but the interest here is on properties of the finite difference meth-
ods themselves. If a difference method have bad properties, convergence
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to the correct solution will not be possible regardless of any convergence
acceleration techniques. For this reason only local time stepping is used to
enhance convergence to steady-state.

In [4] and [5] summation-by-parts (SBP) operators were developed
for Cartesian grids. These operators makes it possible to prove stability
using energy estimates. However, in [6] it was shown that stability might
be destroyed when a general SBP operator is applied to curvilinear grids
and stability is only recovered for a certain class of SBP operators.

Recently, SBP conserving dissipation operators were developed, (see
[7]). These are of the same order of accuracy as the scheme itself, but can
also be used to construct upwind schemes with the proper scaling. In the
upwind case, one order of accuracy less is obtained.

Further, in [8-11] a theory for imposing boundary conditions weakly
using SBP operators with a simultaneous approximation term (SAT) is devel-
oped. The SAT boundary procedure can be used both for external and internal
boundaries, making the scheme stable for grids composed of blocks. Moreover,
this technique gives a straightforward way of efficient parallelization.

The technique mentioned above was used to construct fifth order
accurate upwind schemes, which were used to compute steady state solu-
tions to the Euler equations around a NACAO0012 airfoil. Both the non-
energy stable SBP schemes applied to curvilinenar grids as well as the
energy stable schemes are used and compared to each other. To speed up
convergence to steady state, the difference operators are modified in order
to give the smallest spectral radius. Also, as was mentioned above, local
time stepping is used.

The contents of this report are divided as follows: In Sec. 2, the Euler
equations and the flux splitting employed, are given; Sec. 3 displays the dis-
cretization techniques and also an explanation of the parallel implementation;
numerical experiments are performed in Sec. 4. In Sec. 5 conclusions are drawn.

2. THE CONTINUOUS PROBLEM
2.1. Governing Equations

The Euler equations in curvilinear coordinates, x =x(£,7n) and y =
y(§. 1), become,

Jp Tp(Ect+Eyv)
Jou Jou(xu+&yv)+JExp
Jpv Tl JovEautEv) + g p
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where J = (&, —éynx)_l; p is the density; u, v are the velocity compo-
nents in the x, y directions, respectively; e denotes the internal energy and
p the pressure. A complete derivation of these equations is found in [11].

2.2. Lax—Friedrich Flux Splitting

We will formulate the two-dimensional Euler equations using the
Lax—Friedrich flux splitting formulation. Consider the 2-D system with m
unknowns,

u+F,+Gy=0, a<x<b, c<y<d, (1)

where u is the solution vector and F=Au and G=Bu are the flux vectors.
The matrices A and B are the flux Jacobian matrices. We start by splitting
the flux vectors into two parts with positive and negative running char-
acteristics respectively. We obtain F=Au= % A+aoly)u+ % A—aly)u=
Aju+A_uand G=Bu= % B+B 1) u+ % (B—p1,)u=B u+B_u, where
a and B are the largest eigenvalues, in magnitude, to A and B, respectively
and I, is the m x m identity matrix. The system (1) can now be written as

u; + (Apu)y + (A_u), + (Byu), + (B—u)y =0. )

These fluxes will be discretized with upwind and downwind finite
difference operators.

3. COMPUTATIONAL PROCEDURE

We use numerical schemes with an SBP property for stability reasons.
The summation-by-parts properties are the following for the first deriv-
ative: let 4 denote the spacing between two grid points. Further, let the
grid consist of N 4+ 1 points numbered from 0 to N. Let u denote a grid
function and u, denote its exact derivative projected onto the same grid.
Denote by P~ Q an 2mth order accurate approximation of the first deriv-
ative operator,

P Qu=u,+[OG" Y, ..., 0m* Y, 0m™),...1". (3)



The operator P~'Q is an SBP operator if (i) the matrix P is symmetric
and positive definite and defines a norm ||u||%3 =u’ Pu and (ii) the matrix
Q is nearly skew-symmetric and Q + QT = B, where B is diagonal such
that B =diag[—1,0,...,0,1]. To obtain the accuracy stated in (3), P is
diagonal except at the upper left and lower right corners which contains
blocks. P is then called a block norm. If P is diagonal it is called a
diagonal norm. Although, it is an abuse of language we will use the
word norm to describe a matrix P when we mean that P defines a norm
through |ul|3 =u” Pu.

3.1. Stability on Curvilinear Grids

The SBP operator above is valid only on equidistant Cartesian
grids. Below we will give the conditions for stability on curvilinear grids.
The details are found in [6]. Let £(x) be a transformation between the
x-coordinate and &-coordinate and let x (&) be the inverse transformation.
Consider the advection equation,

v +u, =0, >0, ag<x<b, or 4)

xev +ve=0, 120, 0<E<I, (5)

since %‘;lzxg and £(a)=0, £(b)=1.
The energy rate for Eq. (4) is obtained by multiplying by v and
integrating over X,

%anz: (v(a, 1)) — (b, )% (6)

Equation (5) is discretized on [0, 1] with n+ 1 equidistant points indexed
from O to n. Let the matrix Xg be such that, (Xg)i,- =x:(1AE), i=0...n,
on the diagonal and 0 elsewhere. Let u be the approximate solution to v
in each grid point, u(t) =[uo(t), u1(t), ..., u,(t)]". Then the discretized ver-
sion of Eq. (5) becomes,

X¢u;+ P~ Qu=0, (7)

where P~1Q is the difference operator on an equidistant grid previously
defined.

In the same manner as in the continuous case, Eq. (7) is multiplied
by u” P to acquire,

uTPXgut +u” Qu=0.



Adding the transpose yields,
u' PX¢u +ul (PXHTu+u” (Q+Q"u=0. (®)

In general, PX? is neither positive definite nor symmetric. Hence, the first
two terms in Eq. (8) do not form a total derivative. Thus (8) does not lead
to an energy estimate. If PX? could be modified to a symmetric norm,
PXg, Eq. (8) would be,

%(MTPXEM)+MT(Q+QT)u:O, or %Hu”%xgzu(z)—uﬁ. )
i.e. an equation similar to Eq. (6). Note that if P is diagonal matrix, PX?
would indeed be a norm since a valid coordinate transformation X¢ is
positive definite and diagonal by construction. In fact, this is the only
choice to obtain an energy estimate as is shown in [6]. If P is diagonal
the boundary can only be closed at half the internal accuracy such that,

P ' Qu=u,+[O®™),...,00™), O™, ... . (10)

The global accuracy is then reduced to m + 1. However, as will be shown
in the next subsection, the loss of efficiency is only minor in the context
of upwind operators.

3.2. Artificial Dissipation and Upwind Operators

For non-linear convection problems it is well known that centered
difference schemes require the addition of artificial dissipation to absorb
the energy of the unresolved modes. Further, in the previous subsection
we claimed that diagonal norms are necessary on non-equidistant grids
for stability reasons. If we want to compute a solution with a fifth order
method we have to use an eighth order internal scheme with a fourth
order boundary closure. Thus, the internal scheme is unnecessary accurate
and wide. However, for the above mentioned stability reasons, we add arti-
ficial dissipation to cancel terms in the scheme to make it less wide, i.e. we
use so called upwinding.

The dissipation operators are of a specific form and the details are
given in [7]. The main properties are: DI, = P~ 'R with R=RT >0 and
DI, approximates d” u/d x” in the interior. At the boundary they are con-
structed to preserve the SBP property and thus they yield stability.

Denote by Dg the standard difference operator approximating
the sixth derivative, ie. Dg =[—1, 6, —15, 20, —15, 6, —1]/h6. Corre-
spondingly Dg =1, —8, 28, —56, 70, —56, 28, —8§, 1]/h8 in the interior.



The eighth-order internal scheme approximating the first derivative is,
[1/280, —4/105, 1/5, —4/5, 0, 4/5, —1/5, 4/105, —1/280]/ h. Then, for the
case with an interior accuracy of order eight, we add DIy =h’Dg/280 and
DIs=h’>Dg/105 in the interior and thereby cancel two terms. The interior
accuracy is then reduced to fifth order and the operator is only one ele-
ment wider than the optimal fifth order accurate upwind operator based on
block norms. Thus the loss of efficiency using diagonal norm schemes are,
for upwind operators, only minor. For the construction of the full dissipa-
tion operators including the boundary we refer to [7]. We also construct
downwind operators in the same manner.

Remark. The above described technique to cancel two terms in the
interior is the optimal case. Sometimes that amount of dissipation is not
sufficient, forcing us to increase DI somewhat. That means that only one
point in the stencil is cancelled, but it is still fifth-order accurate.

Remark. The same technique can be used to construct other upwind
operators as well. For example, a third order upwind scheme can be con-
structed from the third order accurate diagonal norm scheme. Block norm
schemes can of course also be used as a basis for the construction of
different upwind schemes. As long as the dissipation operators of [7] are
used, they will be energy stable.

3.3. The Numerical Scheme

Postponing the boundary treatment we now have the tools to discretize
(2) in space. To describe the scheme we use the following notation:

apoB --- ao,g—1 B
AQB= )
ap_1,0B---ap_14-1B

where A is a p x ¢ matrix and B a m x n matrix. The p x g block
matrix A® B is called a Kronecker product. There are some useful rules
for Kronecker products. In this paper we will use (A® B)(C® D)=(AC)®
(BD) and (A® BT =AT @ BT.

Consider the domain (a <x <b,c<y<d) with an N+ 1x M + 1-
points equidistant grid. That is,

Xi=a+ihy, i=01,....,N, hy= , (11)

yi=c+jhy,  j=0,1,....M, hy=

(12)



The numerical approximation at grid point x;,y; is a 1 x m-vector
denoted u;;. We define a discrete solution vector ul = [ui,ump, ...,
uipm, U, U, ..., uny]. The basic scheme to approximate u, is a non-dis-
sipative and pth order accurate finite difference approximation (P;1 0:®
Ipy)u. But as will be seen below, we scale the artificial dissipation to obtain
an upwind scheme.

A corresponding semi-discrete approximation of (2) can be written

Uy = —(Dyx @Iy QA DU — (Dx R Iy QA )u
—(UIN®D1y®@B)u—(IN®D_y@B_)u

—(P7 0 @Iy @A —a (P Ry ® Iy ® In)u
—~(UIN® Py Oy @Bu—B(IN® Py Ry @ Iy (13)

«a and B are the scalings of the artificial dissipation required for the
upwind formulation. Also, D4, =P '(0¢ £ R,) and similarly for Dy,y.

3.4. Stable Interface Treatment

As an example of the block interface procedure we will consider,

u +Au,+Buy, =0, —-1<x<0, 0<y<], (14)
V; +Avy +Bv, =0, 0<x<l1, 0<y<lI. (15)

In order to limit the amount of algebra we assume homogeneous boundary
conditions. A and B are constant symmetric matrices with m rows and col-
umns. The matrices are split according to Sec. 2.2. The resulting matrices
are denoted A;,A_ and B;,B_.

Discretize the domains with n and [/ points and in the x direction and
k points in the y-direction and denote the nkm x 1, lkm x 1 vectors u and
v, respectively. Note that the grid lines at the interface match. The differ-
ence operators in the x and y direction might be different in the left and
right domain and are denoted DX, DY, DX, DX , DL, D% , DR and
ny. Further we introduce the following simplifications, Iy =1, ® Iy ® L,
Ir=L®LQ1,, X1=1, %, and Er=1® I; ® Zx. By using these
notations, the semi-discrete system becomes,

Iu,+ (DL, @ @A u+(DE, @ @ A )u
+(,®DY, @B u+ (I, @ D" @B )u (16)

=(PHT'@ L@ 1) Z1(en ® (uny —v0))
+SAT(x=—-1,y=0,y=1),



Irv + (DR @ @A) v+ (DR @ @A )v
+ (I ®DY, @B v+ (1@ DX @B )v (17)

= (P ® It ® L) Zr(e0 ® (v —un))
+SAT(x=1,y=0,y=1),

where the right-hand sides are the SAT penalty terms. Xz and X are
unknown m x m matrices to be determined below by requiring stability.
The term SAT(x=—1,y=0,y=1) and SAT(x=1, y=0, y=1) denotes the
penalty terms at the outer boundaries. These are scaled to precisely can-
cel the boundary terms (see [8§-11] for details). eg=(1,0,..., 07 and ey =
,...,0,D7T are I x 1 and n x 1 vectors, respectively. uy and vy are km x 1
vectors with components corresponding to the interface points. Define the
norms Mp=(PL® P ®1,) and Mg=(PR® PR ®1,). Apply the energy
method bz/ multl}zlymg (16) and (17) by uTML and vTM R, respectively. Let
R ®Ry"" ®1I, and RER=RLR g P - Adding the equa-
tlons to thelr transposes, using Q + QT =B and assummg that Pl =PR=
P, yield,

d
J el + 0l3,,) = (v vo) Py@M (ay vp)"
2w )R v)’. (18)

Note that the boundary terms at the outer boundaries are cancelled by the
SAT terms. In (18), R =diag(as RE + /SLR'L,aRRf +,8RR§) is symmetric
and positive semi-definite and

M= —A+2X;, X —Xp
T\ =X - A+4+2Xp ’

To obtain stability M has to be negative semi-definite which is achieved
by choosing X; and X properly.

Since A is a symmetric matrix we can diagonalize it by X7 AX = A,
where X is a matrix consisting of the eigenvectors of A. Further, consider
penalty parameters ¥; and Xy of the form X7 ¥, X=A; and XT XX =
Ag. Denote by A’ the ith diagonal component of A and similarly )JL and
Mg for Ay and Ag. Then we obtain for i=1...m

i

. A
AL < 5 (19
Ap=20 — Al (20)

(The details can be found in [1].) Equation (19) is the stability condition
and (20) is recognized as the conservation condition, (see for example [9]).



With A; and Ay determined, inserting X; =X A7 XT and Xp=XAgXT
in (16) and (17) yields a stable scheme.

Remark. As an example of the SAT terms for the outer boundaries
we give the penalty term at x = —1 which would be included in
SAT(x=—-1,y=0,y=1). It is

(PHT'QL®ZL _Deg® w—g),

where the vector g holds the boundary data and X _; is the penalty
matrix. Denote by AT~ the diagonal matrix holding the positive and
negative eigenvalues of A such that AT+ A~ =A=XT AX. For stability,
XTx; _1X=2x9 must satisfy 229+ AT <0, i.e. ;" +20; <0.

Remark. The technique of splitting the domain into blocks not only
simplifies grid generation but also allows for an efficient parallelization
since only the interface points have to be shared.

3.5. Reducing Spectral Radius of P~1Q

In order to speed up convergence to steady state it is essential that
the spectral radius of the numerical scheme is minimal. In [12], analyti-
cal expressions for the first derivative SBP operators of different orders
are derived. The free parameters remaining in the operators to close the
expressions are in [12] chosen to give the minimal width of the operator
near the boundary. However, it is more important to have operators with
small spectral radius such that a larger time step may be used. In partic-
ular when explicit time stepping is performed. Thus, we have searched the
parameter space to find a better choice and indeed it is possible to severly
reduce the spectral radius. In Appendix A in [12] the parameters xp, x3,
and x3 for the fifth order diagonal norm scheme are chosen,

x1 = 1714837/4354560~ 0.394,
x2 = —1022551/30481920~ —0.034,
x3 = 6445687/8709120~0.740,

to obtain a minimal bandwidth. In our case we choose,

x1 = 0.649,
xy = —0.104,
x3 = 0.755,
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Fig. 1. Left: Spectrum of original fifth-order accurate SBP operator. Right: Spectrum of
modified fifth-order accurate SBP operator.

and obtain a much smaller spectral radius. For simplicity, we will use the
term spectrally optimized to denote the operator with reduced spectral
radius though we do not claim that we have found a formal extremum.

In Fig. 1, the spectrum of the original fifth order diagonal norm oper-
ator is shown as well as the corresonding data for the modified opera-
tor. The spectral radii differs by a factor of approximately 9.4. To test the
effect of the reduction of the spectral radius we consider the following sys-
tem of equations:

u;+uy =0, u(0)=v(0), 21
vy —v, =0, v(l)=v(l). (22)

The system is discretized using the spectrally and non-spectrally opti-
mized operators and a fourth order Runge-Kutta discretization in time.
The largest possible quotient CFL = At/Ax was deduced experimentally
and found to be CFLopt =1.65 and CF Lyonopt =0.176, that is approxi-
mately a factor 9.4. This corresponds well to the spectra of the two differ-
ent discretizations (see Fig. 2). Further, note that in Fig. 2 the eigenvalues
are located only in the left halfplane.

As dissipation is added to construct an upwind operator, the spec-
trum is altered. But it only seems to give a small perturbation of the orig-
inal spectrum and C FL number.

Note also, that the originally large spectral radius of the SBP-operator
is not typical and is due to the boundary closure that ensures the SBP-
property. Other boundary schemes may have smaller spectral radii but
they are not necessarily energy stable (see for example [13]).
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Fig. 3. The computational domain around a NACAO0012 airfoil divided into 12 blocks. The
right subfigure is a close up.

4. NUMERICAL COMPUTATIONS

Next, we consider steady state calculations around NACAO0012 at 2
degrees angle of attack and Mach-number (Ma) 0.63. The solution will be
calculated using a second and fifth order scheme. The blocking of the grid
is shown in Fig. 3. The solution is considered to have reached steady state
when the residual is less than 10712,

The total amount of grid points and the number of points resolving
the airfoil is given in Table I.



Table I. The Total Number of Points
in Different Grids and the Resolution of
the Airfoil

Grid Total Airfoil
1 18600 140
2 74400 280

4.1. Convergence to Steady State

To investigate the effect of non-energy stable schemes we have com-
puted solutions with the stable fifth-order scheme and also with a
fifth-order block norm scheme (see [12]). The last scheme is not formally
stable on the grid since the grid is curvilinear. On both Grid 1 and
Grid 2 we compute solutions with the fifth order diagonal and block norm
schemes. We alter the amount of dissipation, that is the constant ¢ in
front of D¢ described in Sec. 3.2. To cancel a second point in the origi-
nal scheme, we must chose c=Ah>/(105). That is, however, a too small dis-
sipation. We begin with a small dissipation and increase it to investigate
the behavior of the schemes. All the computations are made with a con-
stant small time step. The results are presented in Table II. Figure 4 shows
a typical convergence history when the diagonal norm scheme converges
and the block norm scheme levels out.

Although it is possible to obtain convergence for both schemes the
block norm scheme requires significantly more artificial dissipation. That
in turn, results in a larger spectral radius for the difference operators and
hence a need for smaller time steps.

In [6] it is shown for a linear equation with zero growth rate that
small positive eigenvalues are obtained when using a block norm scheme.
Probably, this is the case in the above computations in a non-linear sense.
However, with sufficient artificial dissipation the block norm scheme can
be made converegent. The reason that the computations do not explode
is probably due to the non-linearity. When the residual decreases, the solu-
tion is close to stationary and the Jacobian of the fluxes is locally approx-
imately constant. Hence, the linear theory applies and we obtain a growth.
However, as the growth become significant the conditions changes and lin-
ear theory is no longer relevant.

Note that even the non-energy stable scheme is stable for all cases
where the diagonal norm scheme is stable. That is, in the sense that the
solutions do not explode. In fact there are several notions of stability.
According to the definitions in [14], stability only means boundedness of



Table II. Behavior of Block and Diagonal Norm Schemes for Different Amount of
Artificial Dissipation

Scheme/grid c=h/30 c=h>/20 c=h/15 c=h>/10

Block/2 Unstable Levels out Turns up and Converges
levels out

Diagonal/2 Turns up and Converges Converges Converges

levels out

Block/1 Unstable Unstable Turns up and Levels out
levels out

Diagonal/l Unstable Unstable Turns up and Converges
levels out

The descriptions refer to the residual between two consecutive time steps.

Convergence history, 5:th order case

10 T T T
-6~ block norm
-5~ diagonal norm

|pn+1 - pn|

14

10

tire

Fig. 4. Steady-state convergence for fifth order diagonal and block norm scheme on Grid 1.

the growth of the solution. This does not implicate that the time growth of
the discrete problem on a fine mesh is the same as for the continuous. This
means that it may be impossible to drive the convergence to steady state
arbitrary far. However, if the scheme is strictly stable it means that the
time growth converges to the correct growth rate, i.e. for a given residual
we can grid refine in space until that demand is fulfilled. Neither of these



stability notions are appropriate for steady-state calculations since we can
in general not afford such grid refinements but want to design the grid
only to resolve the expected solution well. Rather, we would like to com-
pute a solution arbitrary close to steady state for a given grid. The energy
stable diagonal norm schemes do fulfill this requirement.

Remark. Note that the non-energy stable scheme is stable in the
von Neumann sense, i.e. it is stable for the Cauchy problem, even for
curvilinear grids. This indicates that the instability is triggered by the
boundary treatment only.

Next, we will compare the maximum time step possible for the
fifth-order energy stable non-spectrally and spectrally optimized SBP oper-
ators. Also in the airfoil computations the timestep could be increased to
the same order of magnitude as for the model equation in Sec. 3.5. In this
case we gained a factor 9. Of course, the same factor reduces the time to
reach steady state. In fact, the timestep can be taken almost as large for
the fifth-order scheme as for the second order scheme. The difference is
approximately 20% which also is the difference in the number of iterations
to reach steady state. The second order scheme use a fourth-order artifi-
cial dissipation and is thus 5 points wide and the fifth-order scheme is 7
(or 8) points wide. Together with the 20% difference in the time step we
obtain approximately a factor 2 for the difference in efficiency of the two
schemes.

Figure 5 shows a typical solution on Grid 2. The figure is a blow up
around the leading edge to better show the stuctures of the flow. Note the
smoothness across the block interfaces.

4.2. Spectra of Different Stencils

The first test of whether a scheme is suitable for the Euler equations
is usually the advection equation. However, the advection equation only
mimics the supersonic Euler equations in that it transports the solution
out through the boundary. The subsonic Euler equations with a pressure
boundary condition at the outflow boundary couple the characteristics in
such a way that a part of the solution is fed back into the domain. The
systems (21) and (22) models that behavior, though it might be even more
sensitive to stability problems than the Euler equations since energy never
leaves the system.

To further investigate the expected growth of the solution for different
stencils, we will consider the systems (21) and (22) discretized by two differ-
ent stencils: the internally sixth order accurate with fifth order boundary
closure block norm SBP-scheme, i.c. the basis for the upwind block norm
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Fig. 5. Steady-state solution for the fifth order scheme on grid 2. Contour plot of the
Mach-number.

operator used throughout the article; and the same internally sixth order
accurate scheme with the fifth order boundary closure proposed in [13].
The last one will be called the non-SBP scheme. In [13] a spectrum for the
non-SBP scheme applied to the advection equation was computed showing
stability for that equation. Further, the non-SBP scheme is succesfully used
in [15] for Maxwell’s equations. We will not consider the fifth order diagonal
norm scheme since it can be proven strictly dissipative.

We apply these schemes to the systems (21) and (22) with two differ-
ent grid spacings. One is an equidistant grid spacing and the other is a
slightly stretched grid. The stretching between two adjacent cells ranges
between 3 and 6%. The spectra for the block norm SBP-scheme is seen in
Fig. 6 and for the non-SBP scheme in Fig. 7. The block norm SBP scheme
do not have positive eigenvalues in the equidistant case. But in the non-
equidistant case there are small positive eigenvalues. The non-SBP scheme
have positive eigenvalues in both the equidistant and non-equidistant case.

Both the schemes have identical non-dissipative central difference sten-
cils in the interior. When computing solutions to the Euler equations arti-
ficial dissipation is added. With enough dissipation, it is possible that the
spectrum can be adjusted such that no positive eigenvalues exist. However,
this also leads to large negative eigenvalues which have a negative effect on
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the time step in case of explicit time stepping. Furthermore, the accuracy of
the solution decreases with increasing amount of dissipation.

5. CONCLUSIONS

We have given numerical evidence that energy stability is important
when computing steady state solutions to partial differential equations. On
curvilinear grids the SBP block norm schemes are not energy stable as is



shown in [6] and accordingly they might yield small positive eigenvalues
that destroy convergence to steady state. However, for the diagonal norm
scheme no such behavior is observed and in that case stability proofs
using the energy method are obtainable.

Furthermore, we have given improvement of the difference operators

such that a considerably larger time step may be used. This contributes to
a fast convergence to steady state.
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