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Steady-state distributions for human decisions

in two-alternative choice tasks

Andrew Stewart, Ming Cao and Naomi Ehrich Leonard

Abstract— In human-in-the-loop systems, humans are often
faced with making repeated choices among finite alternatives in
response to observations of the evolving system performance.
In order to design humans into such systems, it is important
to develop a systematic description of human decision making
in this context. We examine a commonly used, drift-diffusion,
decision-making model that has been fit to human neural and
behavioral data in sequential, two-alternative, forced-choice
tasks. We show how this model and type of task together can be
regarded as a Markov process, and we derive the steady-state
probability distribution for choice sequences. Using the analytic
expression for this distribution, we prove matching behavior
for tasks that exhibit a matching point and we compute the
sensitivity of steady-state choices to a model parameter that
measures the decision maker’s “exploratory” tendency.

I. INTRODUCTION

It is not uncommon in human-in-the-loop systems that

humans will be confronted repeatedly with decision-making

problems in which, having observed the performance of the

system, they must choose between two or more alternatives

in order to maintain or improve performance. For example,

in [1], the authors study human supervisory control of

multiple unmanned aerial vehicles where choices must be

made between attending to targets and ensuring safe return

of vehicles. Human flight control operators face many such

choices, for example, in bad weather when it must be decided

whether or not to ground each of many vehicles [2]. The

authors of [3] explore a setting in which a human must

repeatedly choose one of two different robotic oxygen extrac-

tion systems operating on Mars with the goal of maximizing

long-term oxygen extraction; the investigation focuses on the

well-known difficulty that humans have with making long-

term optimal decisions when short-term performance is high.

A systematic description of human decision making can

be of critical value in designing such human-in-the-loop

systems. In this paper we focus on human decision mak-

ing in tasks where each choice is to be made between

two alternatives. Two-alternative forced-choice (TAFC) tasks

have been used extensively in the psychology literature to

investigate human decision-making behavior in decision-

making problems that require sequential binary choices of

this sort [4]. A number of studies have focused explicitly on

the case in which a performance measure, referred to as a
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reward, is provided to the human subject after every choice,

and the reward is a function not only of the immediate choice

but also of the subject’s recent history of choices [4], [5],

[6]. The human subject can then base the next decision on

the current (and past) rewards received. The dependence of

performance on past decisions is highly relevant for real-

world human-in-the-loop decision-making problems.

The successful fitting of both behavioral and neural data

taken from TAFC task experiments provides strong justifi-

cation for the widespread use of the Drift Diffusion Model

(DDM) to describe human decision making in TAFC tasks

[4], [6]. Further, the DDM can be derived from the dynamics

of a variable that represents the evidence in neuronal popu-

lations in favor of one alternative over the other [7]. It can

also be interpreted as a continuum limit of the Sequential

Probability Ratio Test [7].

Motivated by the challenges in designing human-in-the-

loop systems, we leverage the TAFC task research and in

particular use the DDM to derive formal expressions for

behavior and performance sensitivity for decision making in

this context. We do this by proving that the model is Markov

under two important simplifying assumptions, the stronger of

which is used and justified in [4].

We describe the TAFC task in Section II and the DDM

for decision making in Section III. We prove that the model

is Markov in Section IV and derive the steady-state choice

distribution in Section V. In Section VI we prove results on

the steady-state decision-making dynamics. We make final

remarks in Section VII.

II. TWO-ALTERNATIVE FORCED-CHOICE TASK

Montague and co-authors [4], [6] introduced the two-

alternative forced-choice (TAFC) task in which the decision

maker is required to make a choice between two alternatives

(denoted A and B), sequentially in time, and a reward

(performance measure) is received after each choice is made.

The decision maker’s goal is to maximize total accumulated

reward (optimize performance over the long run). Figures

1 and 2 show example reward schedules that are used in

behavioral studies; the reward rA for choosing A (resp. rB

for B) is plotted as a dashed line (resp. solid) as a function

of y, which is the fraction of times A is chosen in the past

N decision trials.

Figure 1 is called the matching shoulders reward structure

[6] and represents the case in which there are diminishing

returns for choosing A for too long and likewise for choosing

B for too long. The point at which the curves intersect is

called the matching point, and there is extensive empirical
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evidence that human decision makers converge in aggregate

to choice sequences y that correspond to the matching point.

This is despite the fact that the expected value of the reward

at the matching point is not necessarily optimal as seen

in Figure 1. Figure 2 is called the converging gaussians

reward structure and has been used recently in empirical

studies of decision dynamics in social TAFC tasks [8]. The

converging gaussians reward structure also has a matching

point and experiments show that decision makers converge

to the matching point [8].

Let x(t) = (x1(t), x2(t), . . . , xN (t)) denote the past N
choices ordered sequentially in time with x1(t) ∈ {A, B}
the most recent decision at time t, x2(t) ∈ {A, B} the most

recent decision at time t − 1, etc. We have that

xk(t+1) = xk−1(t), k = 2, . . . , N, t = 0, 1, 2, . . . (1)

Let y(t) denote the proportion of choice A in the last N
trials at time t; i.e.

y(t) =
1

N

N
∑

k=1

δkA(t) (2)

where

δkA(t) =

{

1 if xk(t) = A
0 if xk(t) = B.

Note that y can only take values from a finite set Y of N +1
discrete values:

y ∈ Y =

{

i

N
, i = 0, 1, . . . , N

}

.

The reward at time t is given by

r(t) =

{

rA(y(t)) if x1(t) = A
rB(y(t)) if x1(t) = B .

(3)

We define the difference in the reward as

∆r(y(t)) := rB(y(t)) − rA(y(t)). (4)

The dynamics of the human decision-making process

in the TAFC task can be modeled as an N -dimensional,

discrete-time dynamical system where x(t) is the state of

the system and y(t) is the output of the system.

III. DRIFT DIFFUSION MODEL

The Drift Diffusion Model (DDM) for decision making

derives from a one-dimensional drift diffusion process de-

scribed by a stochastic differential equation [8], [9], [10]:

dz = αdt + σdW, z(0) = 0. (5)

Here z represents the accumulated evidence in favor of a

candidate choice of interest, α is the drift rate representing

the signal intensity of the stimulus acting on z and σdW
is a Wiener process with standard deviation σ, which is the

diffusion rate representing the effect of white noise.

Now consider the TAFC task with choices A and B. The

drift rate α, as described in [6], [11], is determined by a

subject’s anticipated rewards wA and wB for a decision of

A or B. Take z to be the accumulated evidence for choice

A relative to choice B. Then on each trial a choice is made

Fig. 1. The matching shoulders reward structure [4]. The dotted line depicts
rA, the reward for choice A. The solid line depicts rB , the reward for choice
B. The dashed line is the average value of the reward. Each is plotted against
y, the fraction of choice A made in the last N trials.

when z(t) first crosses one of the predetermined thresholds

±ν. If +ν is crossed then choice A is made, and if −ν
is crossed then choice B is made. For such drift diffusion

processes, as pointed out in [8], it can be computed using

tools developed in [7] that the probability of choosing A in

the next time step is

pA(t + 1) =
1

1 + e−µ(wA(t)−wB(t))
(6)

where µ(wA − wB) is identified with 2(α/σ)2(ν/α). The

right side of equation (6) is a sigmoidal function of wA−wB

where µ is the slope. Larger µ implies more certainty in the

decision making, sometimes interpreted as less of a tendency

to explore.

Studies of the role of dopamine neurons in coding for re-

ward prediction error [12] have motivated the use of temporal

difference learning theory [13] to describe the update of wA

and wB . Let Z ∈ {A, B} be the choice made at time t, then

wZ(t + 1) = (1 − λ)ωZ(t) + λr(t) (7)

wZ̄(t + 1) = wZ̄(t) t = 0, 1, 2, . . . (8)

where ·̄ denotes the “not” operator. Here, λ ∈ [0, 1] acts as

a learning rate, controlling how the anticipated reward of

choice Z at t + 1 is affected by its value at t.

IV. MARKOV MODEL OF DECISION MAKING

Consider the DDM decision maker faced with the two-

alternative, forced-choice task. As the DDM makes se-

quential decisions and receives corresponding rewards, the

proportion of choice A evolves in time according to the

dynamics of the coupled decision maker and task system

described in Sections II and III. In this section we find

conditions under which the decision making can be modeled

as a Markov process. We derive the probability transition

function for y(t) and build a one-step transition matrix which

is used in Section V to compute the steady-state distribution

for the process.
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The full state of the DDM in the two-alternative, forced-

choice task is the N -element decision history x(t), coupled

with the expected rewards wA(t) and wB(t). To reduce the

order of the system we make the following assumptions:

Assumption 1: Pr{xk(t) = A|x(t)} = y(t)

Assumption 2: wB(t) − wA(t) = ∆r(y(t)).

Assumption 1 implies that the yN A’s and (1 − yN)
B’s in x(t) are uniformly distributed in the finite history.

Assumption 2 sets the difference in anticipated rewards at

time t equal to the difference in rewards evaluated at y(t);
according to Montague and Berns [4] this assumption is

true “on average”. Together these assumptions reduce the

dimension of the state space to one.

Proposition 1: Suppose Assumptions 1 and 2 hold. Then,

the DDM (6) for the TAFC task (1)-(3) is a Markov Process

with state y(t) and transition probabilities given by

Pr{y(t + 1) = y(t) −
1

N
} =

eµ∆ry(t)

1 + eµ∆r
(9)

Pr{y(t + 1) = y(t)} =
eµ∆r + (1 − eµ∆r)y(t)

1 + eµ∆r
(10)

Pr{y(t + 1) = y(t) +
1

N
} =

1 − y(t)

1 + eµ∆r
(11)

where ∆r = ∆r(y(t)) is given by (4).

Proof of Proposition 1:

Since for a given choice x1(t + 1) at time t + 1, y(t + 1)
can only change from its current value of y(t) to y(t) +
1
N

, y(t) − 1
N

or stay at y(t), we need only compute the

probability of each of these three events for all y(t) ∈ Y .

Each of these events depends upon the current value of y(t)
as well as x1(t+1) and xN (t) since y(t+1) will only differ

from y(t) if x1(t + 1) also differs from xN (t).
The event that y(t+1) = y(t)− 1

N
requires x1(t+1) = B

and xN (t) = A. Treating these as independent events and

using Equation (6) with Assumption 1 yields

Pr{y(t + 1) = y(t) −
1

N
} =

Pr{x1(t + 1) = B} ∗ Pr{xN (t) = A}

=
eµ(wB(t)−wA(t))y(t)

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption (2), we get Equa-

tion (9).

Similarly, the probability that y(t + 1) takes the value

y(t) + 1
N

is given by

Pr{y(t + 1) = y(t) +
1

N
} =

Pr{x1(t + 1) = A} ∗ Pr{xN (t) = B}

=
1 − y(t)

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption (2), we get Equa-

tion (11).

The event that y(t+1) = y(t) requires either x1(t+1) = A
and xN (t) = A or x1(t + 1) = B and xN (t) = B. The

probability of the union of these events is

Pr{y(t + 1) = y(t)} =

Pr{x1(t + 1) = A} ∗ Pr{xN (t) = A}

+ Pr{x1(t + 1) = B} ∗ Pr{xN (t) = B}

=
y(t) + (1 − y(t))eµ(wB(t)−wA(t))

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption (2), we get Equa-

tion (10). Since the probabilities depend on y(t) only, the

state at time t, the process is Markov. �

Equations (9)-(11) are used to build the (N + 1) × (N +
1) one-step transition matrix P which has entries Pij =
Pr{y(t + 1) = j

N
|y(t) = i

N
}, i, j ∈ {0, 1, . . . , N + 1}.

V. STEADY-STATE CHOICE DISTRIBUTION

Since the Markov process modeled in Section IV is

irreducible and aperiodic, it has a unique limiting distribution

π = (π0, π1, . . . , πN ) describing the fraction of time the

chain will spend in each of the enumerated states in the

long run (as t → ∞) [14]. This steady-state distribution is

the solution to the following equations:

πP = π (12)

N
∑

i=0

πi = 1. (13)

Proposition 2: For the transition probabilities given by (9)

- (11) the unique steady-state distribution is

πi =
αi(1 + eµ∆r( i

N
))e−µβi

∑N
j=0 αje−µβj (1 + eµ∆r( j

N
))

(14)

where αi = N !
(N−i)!i! and βi =

∑i
j=1 ∆r( j

N
).

Proof of Proposition 2: Solving (12) alone yields a row vector

v whose elements are given by

vi =
N !

(N − i)!i!
(1 + eµ∆r( i

N
))e−µ

Pi
j=1

∆r( j
N

).

To solve (13) we normalize the vector v to get

π =
v

∑N
i=0 vi

.

The elements of π are then given by Equation (14). �

Figure 2 shows the converging gaussians reward struc-

ture [8] along with the corresponding steady-state choice

distribution π. Note that the distribution peaks where the

reward curves intersect (the matching point); i.e. the decision

maker spends the highest fraction of time with proportion of

choice A at the matching point. This is in agreement with

experimental results shown in Figure 3 of [8]. We show more

general conditions under which this occurs in Section VI,

where we also derive the sensitivity to µ of the reward earned

by the decision maker.
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Fig. 2. The converging gaussians reward structure [8]: The dotted line
depicts rA, the reward for choice A. The solid line depicts rB , the reward
for choice B. The dashed line is the average value of the reward. The
limiting distribution π is given by Equation (14) and is shown for N = 20

and µ = 8 by the circular points. Each component πi is plotted against
y =

i
N

.

VI. ANALYSIS OF STEADY-STATE DISTRIBUTION

In this section we perform two analyses of the steady-state

behavior. First we show conditions for which the decision

maker converges to a value of y that corresponds to a

matching point. To do this we consider reward structures

with a unique matching point (Figures 1 and 2 are two

examples of such reward structures). Second we derive the

sensitivity of the expected value of reward earned by the

decision maker to the parameter µ in the DDM (6).

A. Steady-State Matching

Matching behavior is a well-known phenomenon in human

behavioral experiments [15], [16]: human decision makers

in TAFC tasks converge in aggregate to choice sequences

in the neighborhood of the matching point for a variety

of reward structures that have a matching point. However,

there are relatively few results that prove conditions for this

phenomenon given well-established models like the DDM. In

[4], Montague and Berns use Assumption 2 to show that the

matching point in the matching shoulders reward structure

is an attracting point. In [17], [18] a proof of convergence

to a neighborhood of the matching point is shown for the

Win Stay Lose Switch (WSLS) decision-making model and

a deterministic limit of the DDM. A related analysis for the

WSLS model is performed in [19].

In this section we prove steady-state matching behavior

for the DDM by finding sufficient conditions on the slope µ
of the DDM that guarantee that πi is greatest for y = i/N
at or near the matching point. In Theorem 1 below, we find

a bound µ1 such that if µ > µ1 then πi peaks in a small

neighborhood of the matching point. In Theorem 2 we find

a bound µ2 > µ1 such that if µ > µ2 then πi peaks at the

matching point.

Definition 1: Let a reward structure with a single match-

ing point consist of reward curves rA(y), rB(y) for which

there exists y∗ = i∗

N
, i∗ ∈ {1, 2, . . . , N − 1}, that satisfies

∆r(y∗) = 0, ∆r(y) < 0 for y < y∗, and ∆r(y) > 0 for

y > y∗.

Theorem 1: If reward structures satisfy Definition 1 and

µ > µ1 := max

{

−
ln

(

⌊N
2
⌋!⌈N

2
⌉!

(N−i∗)!i∗!

)

|∆r
(

i∗+1
N

)
∣

∣

,−
ln

(

⌊N
2
⌋!⌈N

2
⌉!

(N−i∗)!i∗!

)

|∆r
(

i∗−1
N

)
∣

∣

}

(15)

then the steady-state choice distribution is maximum for y ∈
{y∗− 1

N
, y∗, y∗+ 1

N
}; where ⌊·⌋ gives the largest integer less

than its argument and ⌈·⌉ gives the smallest integer greater

than its argument.

Proof of Theorem 1: To prove Theorem 1 we examine ρ(i) =
πi/πi∗ , the ratio of time spent at y = i

N
, i 6= i∗ to time spent

at y∗ = i∗

N
. From (14) we compute

ρ(i) =
(N − i∗)!i∗!(1 + eµ∆r( i

N
))e−µ

Pi
j=1

∆r( j
N

)

2(N − i∗)!i∗!e−µ
P

i∗

j=1
∆r( j

N
)

. (16)

We show that ρ(i) < 1 for all i /∈ {i∗ − 1, i∗, i∗ + 1} in

two steps. In the first case we show that ρ(i) < 1 for all

i > i∗ + 1. In the second case we show that ρ(i) < 1 for

i < i∗ − 1.

Case 1: Let ǫ = i − i∗ with ǫ > 0. The ratio ρ(i) then

becomes

ρ(i) =

(N − i∗)!i∗!(1 + eµ∆r( i∗+ǫ
N

))e−µ
(

∆r( i∗+1

N
)+...∆r( i∗+ǫ

N
)
)

2(N − i∗ − ǫ)!(i∗ + ǫ)!
.

(17)

Replacing (N − i)!i! in the denominator of (17) with its

minimal possible value for i ∈ {0, 1, . . . , N} yields the

inequality

ρ(i) ≤

(N − i∗)!i∗!(1 + eµ∆r( i∗+ǫ
N

))e−µ
(

∆r( i∗+1

N
)+...∆r( i∗+ǫ

N
)
)

2⌊N
2 ⌋!⌈

N
2 ⌉!

≤ γ(1 + e−µ∆r( i∗+ǫ
N

))e−µ
(

∆r( i∗+1

N
)+...∆r( i∗+ǫ−1

N
)
)

where γ = (N−i∗)!i∗!

2⌊N
2
⌋!⌈N

2
⌉!

.

Now assume ǫ ≥ 2. Since ∆r( i∗+ǫ
N

) > 0 for all ǫ ≥ 1,

ρ(i) decreases with increasing ǫ so

ρ(i) ≤ γ(1 + e−µ∆r( i∗+2

N )e−µ∆r( i∗+1

N
)

<
(N − i∗)!i∗!

⌊N
2 ⌋!⌈

N
2 ⌉!

e−µ∆r( i∗+1

N
). (18)

If (15) is satisfied then (18) becomes ρ(i) < 1.
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Case 2: Let ǫ = i − i∗ with ǫ < 0. The ratio ρ(i) then

becomes

ρ(i) =

(N − i∗)!i∗!(1 + eµ∆r( i∗−ǫ
N

))e−µ
(

−∆r( i∗−ǫ+1

N
)−...∆r( i∗

N
)
)

2(N − i∗ + ǫ)!(i∗ − ǫ)!
(19)

≤ γ(1 + eµ∆r( i∗−ǫ
N

))e−µ
(

−∆r( i∗−ǫ+1

N
)−...∆r( i∗

N
)
)

.
(20)

Since ∆r( i∗−ǫ
N

) < 0 for all ǫ > 0 this can also be written

ρ(i) ≤ γ(1 + e−µ|∆r( i∗−ǫ
N

)|)e−µ
(

|∆r( i∗−ǫ+1

N
)|+...|∆r( i∗

N
)|
)

.
(21)

Using the same argument as in Case 1, we arrive at the strict

inequality

ρ(i) <
(N − i∗)!i∗!

⌊N
2 ⌋!⌈

N
2 ⌉!

e−µ|∆r( i∗−1

N
)|. (22)

If (15) is satisfied then (22) becomes ρ(i) < 1. �

Theorem 2: If reward structures satisfy Definition 1 and

µ > µ2 := max

{

−
ln

(

2+i∗−N
N−i∗

)

|∆r
(

i∗+1
N

)
∣

∣

,−
ln

(

2N+2−3i∗

i∗

)

|∆r
(

i∗−1
N

)
∣

∣

}

(23)

then the steady-state choice distribution is maximum for

y = y∗.

Proof of Theorem 2: Again we examine ρ(i) = πi/πi∗ .

Case 1: Let ǫ = i − i∗ with ǫ > 0.

We assume ǫ ≥ 1. We have shown that ρ(i) decreases with

increasing ǫ so

ρ(i) ≤
N − i∗

2(i∗ + 1)
(1 + e−µ∆r( i∗+1

N )e−µ∆r( i∗+1

N
)

<
N − i∗

2(i∗ + 1)
(1 + e−µ∆r( i∗+1

N ). (24)

If (23) is satisfied then (24) becomes ρ(i) < 1.
Case 2: Let ǫ = i − i∗ with ǫ < 0. We assume ǫ = −1 and

(21) becomes

ρ(i) ≤
i∗

2(N − i∗ + 1)
(1 + e−µ|∆r( i∗−1

N
)|). (25)

If (23) is satisfied then (25) becomes ρ(i) < 1. �

Example 1: For the matching shoulders reward structure

shown in Figure 1, we have rA(y) = kAy+cA and rB(y) =
kBy + cB where kA = − 1

2 , cA = 3
5 , kB = 1 and cB = 0.

For this example with N = 20, µ1 = 5.11 and µ2 = 10.81.

These values shrink for smaller N and grow for larger N .

Example 2: For the converging gaussians reward structure

shown in Figure 2, we have

rA(y) = e
−

“

y−ȳA√
2σA

”

2

+ cA, rA(y) = e
−

“

y−ȳB√
2σB

”

2

+ cB

with ȳA = 2
5 , ȳB = 3

5 and σA = σB = 1
5 and cA = cB = 3

10 .

In this example µ1 = 0 for any N . For N = 20, µ2 = 1.11
and µ2 grows almost negligibly with increasing N .

B. Performance Dependence on Model Parameters

Given π, the fraction of time spent at each proportion of

choice A, we can compute sensitivity of long-run perfor-

mance to the parameters of the DDM and task. Here we

compute this sensitivity to the parameter µ in the DDM. As

mentioned in Section III, larger µ corresponds to increased

certainty in the decision making, which can also be inter-

preted as a reduced tendency to explore.

The average reward can be computed as r̄(y) = yrA(y)+
(1 − y)rB(y). For each value of y, this is the reward that

would be received on average if the decision maker were to

maintain that value of y. So the expected value of the reward

is the sum of each average reward multiplied by the fraction

of time spent at each proportion of choice A and is written

r̃ =

N
∑

i=0

πir̄i. (26)

The sensitivity of performance to µ can then be computed

as the derivative of the expected value of the reward with

respect to µ:

d

dµ
r̃ =

N
∑

i=0

r̄i

d

dµ
πi

=
N

∑

i=0

(

i

N
rA

( i

N

)

+
N − i

N
rB

( i

N

)

)

d

dµ
πi. (27)

By denoting gi(µ) := (1+eµ∆r( i
N

)) and M(µ) :=
∑N

j=0 πj ,

the derivative of πi with respect to µ can be written

d

dµ
πi =

αie
−µβi(∆r( i

N
)eµ∆r( i

N
) − βigi(µ))

M(µ)
−

αie
−µβigi(µ)

∑N
j=0 αje

−µβj
(

∆r( j
N

)eµ∆r( j
N

) − βjgj(µ)

M(µ)2
.

(28)

Example 1 continued: Consider again the matching shoulders

reward structure of Figure 1. The derivative of the expected

value of reward with respect to µ, given by (28) is plotted in

Figure 3 along with the expected value of the reward. For this

reward structure there is a critical point (for N = 20 µc =
1.15). For µ < µc increasing µ results in substantially higher

reward. However, as µ increases further, the expected value

of reward decreases. This is an example for which some

exploratory behavior in the decision making is beneficial and

is directly related to the results of Theorems 1 and 2. For

instance, in the case N = 20, for µ > µ1 = 5.11 there

is not a lot of exploratory behavior and the decision maker

converges to the matching point of the reward structures,

which is not the optimal strategy.
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Fig. 3. The derivative of the expected value of reward for the matching

shoulders reward structure shown in Figure 1. The dotted line is d
dµ

r̃ from

Equation (28). The solid line is the expected value of reward, r̃. Both are
plotted against µ for N = 20.

Example 2 continued: Consider again the converging gaus-

sians reward structure of Figure 2. The derivative of the

expected value of reward with respect to µ, given by (28)

is plotted in Figure 4 along with the expected value of the

reward. In this example, d
dµ

r̃ is positive for all µ.

Fig. 4. The derivative of the expected value of reward for the converging

gaussians reward structure shown in Figure 2. The dotted line is d
dµ

r̃ from

Equation (28). The solid line is the expected value of reward, r̃. Both are
plotted against µ for N = 20.

The derivative is always positive in this example (for any

N ) because the matching point coincides with the maximum

of the expected value of reward; i.e., when the decision

maker converges to y∗ in the converging gaussians reward

structure, it is also the case that the highest reward on average

is received. Therefore, increasing the parameter µ, or the

certainty in the decision making, results in higher expected

reward for the task. We note, however, that there is not a

great deal of gain in performance once µ increases above a

threshold approximately equal to 5.

VII. FINAL REMARKS

In this paper we prove conditions for which the DDM

for the TAFC task is a Markov process. This allows us to

derive transition probabilities and analytical expressions for

steady-state distributions of choice sequences as a function

of DDM and TAFC task parameters. We use the expressions

to prove results about the long-run decision dynamics. In

particular we prove conditions on DDM parameter µ, which

measures the level of certainty or tendency to explore in

the decision maker, that lead to matching behavior. We also

study performance sensitivity to the parameter µ. We apply

the results to two example reward structures.

In ongoing work, motivated by the investigations in [8], we

are extending our modeling and analysis approach to address

multiple human decision makers, engaged in TAFC tasks,

that exchange information on their choices or performance.

In this case there is a DDM for each decision maker and the

models are coupled by feedback between individuals.
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