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Motivated by the growing importance of strong system-bath coupling in several branches of quan-
tum information and related technological applications, we analyze and compare two strategies cur-
rently used to obtain (approximately) steady states in strong coupling regime. The first strategy is
based on perturbative expansions while the second one uses reaction coordinate mapping. Focusing
on the widely used spin-boson model, we show that the predictions of these two strategies coincide
in many situations. This confirms and strengthens the relevance of both techniques. Beyond that,
it is also crucial to know precisely their respective range of validity. In that perspective, thanks to
their different limitations, we use one to benchmark the other. We introduce and successfully test
some very simple validity criteria for both strategies, bringing some answers to the question of the
validity range.

I. INTRODUCTION

It is notoriously challenging to describe the dynam-
ics and the steady states of quantum systems coupled to
noisy environment[1]. This is particularly true when the
coupling strength is such that system-environment corre-
lations cannot be neglected, invalidating the traditional
Born and Markov approximations [2], characterizing the
so-called strong coupling regime.

Still, strong coupling effects are playing increasing role
in quantum transport [3–11], quantum sensing [12–14],
quantum thermal engines [15–21], magnets properties for
memory hard-drive [22], and possibly in biological sys-
tems [23–26]. For such applications, since one is usually
interested in stationary properties and performances, the
knowledge of the steady state of the strongly dissiaptive
dynamics is enough.

Several techniques have been established to gain access
to the strong coupling dynamics where usual Markovian
Master equations cannot be used straightforwardly. One
of them is the polaron transformation [15, 27–31], which
consists in analyzing the problem in a rotating frame
with respect to the coupling Hamiltonian. In the fol-
lowing, however, we will focus on two other approaches
which have been recently used to obtain estimates of the
steady states in the strong coupling regime. The first
one uses embedding techniques like reaction coordinate
[5, 6, 16, 19, 32, 33] and pseudo-mode [34–37] to obtain
the dynamics of the system of interest and then consid-
ers time going to infinity. The second one relies on a
result sustained by several studies [38–43] establishing,
under some generic conditions, that a system S interact-
ing strongly with a thermal bath B tends together with
B to a global thermal state. Greater details on this tech-
nique can be found in the recent review [44].

Both approaches have some strengths and weaknesses.
The limitations of the first approach relying on embed-
ding techniques typically come from the bath spectral
density. On the other hand, the results are expected

to have a broad range of validity in terms of coupling
strength. The second approach requires to trace out the
bath in the global thermal state, which actually amounts
to similar difficulties as computing the exact dynamics
in the first place. Thus, one is left with perturbative ex-
pansions, with limited range of validity. However, within
the range of validity of these expansions, the obtained ex-
pressions are expected to provide very good description
of the steady states.

Even though one expects these two approaches to coin-
cide, at least for some regions of parameter, this has not
been tested. This is the first aim of this paper. Secondly,
we will use the strength of each approach to benchmark
and define more precisely the range of validity of the
other approach. This allows us to introduce and suc-
cessfully test some simple validity criteria for both ap-
proaches, providing some answers to the crucial question
of validity range for each approach.

II. PERTURBATIVE EXPANSION APPROACH

We consider a system S, of self Hamiltonian HS , in-
teracting with a thermal bosonic bath B of self Hamil-
tonian HB at inverse temperature β := 1/kBT (T being
the usual temperature). The interaction is of the form
V = AB, where A is an observable of S, and B is the

standard bosonic operator B =
∑
k gk(b†k + bk), where gk

is the coupling coefficient between S and the kth mode of
the bath (setting ~ = 1), with creation and annihilation

operators b†k and bk, respectively. The starting point of
the perturbative expansion approach is the convergence
of the system together with the bath towards the global
thermal state

ρth
SB = Z−1

SBe
−βHSB , (1)

where HSB := HS+HB+V is the total Hamiltonian gen-
erating the dynamics of SB, and ZSB := TrSB [e−βHSB ]
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is the partition function. This fundamental result has
been widely used for classical and quantum systems, and
is supported by several important studies focusing on
quantum systems [38–44] under the important condition
[HS , V ] 6= 0 (which can be seen as pure dephasing and
can be simply solved). From (1), the reduced steady state
of S is obtained by tracing out B,

ρss
S := TrB [ρth

SB ]. (2)

As usually, tracing out the bath is a very challenging
task which can only be done approximately. A common
approach is perturbative expansion, whose main steps
are presented below (for more details see Appendix A
and [43–47]). By “taking out” the local contributions in
(2) and then expanding up to second order, we obtain,

ρss
S = Z−1

SBTrB

[
e−β(HS+HB)e−T

∫ β
0
duÃ(u)B̃(u)

]
'

2d order
Z−1
SBe

−βHS

[
1−

∫ β

0

duÃ(u)TrB [e−βHB B̃(u)] +

∫ β

0

du1

∫ u1

0

du2Ã(u1)Ã(u2)TrB [e−βHB B̃(u1)B̃(u2)]

]

=
ZSZB
ZSB

ρth
S

[
1 +

∫ β

0

du1

∫ u1

0

du2Ã(u1)Ã(u2)cB(u1 − u2)

]
, (3)

where we used in the first line the usual “split-
ting” formula [48], and defined the operators X̃(u) :=
eu(HS+HB)Xe−u(HS+HB), the bath correlation function
cB(u1 − u2) := TrB [ρth

B B̃(u1)B̃(u2)] = TrB [ρth
B B̃(u1 −

u2)B̃] taken in the thermal state ρth
B := Z−1

B e−βHB

with ZB := TrB [e−βHB ], and the local thermal state of
S, ρth

S = Z−1
S e−βHS , with the local partition function

ZS := TrS [e−βHS ]. We also use the property of station-

ary baths, namely, TrB [ρth
B B̃(u)] = 0. We obtain for the

bath correlation function,

cB(u) =

∫ ∞
0

dωJ(ω)
[
e−ωu(nω + 1) + eωunω

]
(4)

where nth
ω = (eωβ−1)−1 is the thermal occupation at the

frequency ω, and the bath spectral density is defined as

J(ω) :=
∑
k

g2
kδ(ω − ωk). (5)

Introducing the eigen-decomposition of the coupling ob-
servable A =

∑
ν A(ν) such that [A(ν), HS ] = νA(ν),

A†(ν) = A(−ν), and Ã(u) =
∑
ν e
−νuA(ν), we have, up

to the second order,

ρss,PE
S =

2d order

ZSZB
ZSB

ρth
S

1 +
∑
ν,ν′

A(ν)A†(ν′)g(ν, ν′)

 ,
(6)

where

g(ν, ν′) :=

∫ β

0

du1

∫ u1

0

du2e
−νu1+ν′u2cB(u1 − u2), (7)

and the superscript “PE” stands for “Perturbative Ex-
pansion”. Addtionally,

ZSB = TrSB [e−β(HS+HB+V )]

=
2d order

ZSZB

[
1 +

∑
ν

TrS [ρth
S A(ν)A†(ν)]g(ν, ν)

]
.

(8)

Expression (6) is Hermitian and is equivalent to the ex-
pression obtained in [47] (up to the initial renormalisa-
tion term). An explicit, analytical expression of the func-
tion g(ν, ν′) in term of usual functions is provided in Ap-
pendix A for under-damped (22) and over-damped (23)
bath spectral densities.

A. Conditions of validity

The above expression (6) is a second order expansion.
It provides a good approximation of the exact steady
state ρss

S Eq.(2) in the limit of small corrections, when
the second order contribution is much larger than higher
order contributions. Based on that, one can build valid-
ity criteria by requiring that the corrections brought by
(6) with respect to the thermal state ρth

S = Z−1
S e−βHS

remain small. Expressed in different mathematical ways,
we present in the following several potential validity crite-
ria to be tested later with numerical simulations (section
IV).

• A first criterion can be obtained by considering that
small corrections should imply that the global par-
tition function ZSB is close the product of the local
partition functions ZSZB ,

cr1 :=
∣∣∣ ZSB
ZBZS

− 1
∣∣∣� 1, (9)
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which turns out to be equivalent to the condition
suggested in [47].

• Alternatively, one could consider that the expan-
sion is valid as long as the corrections to the popu-
lations (in the eigenbasis of HS) are small, resulting
in the following criterion

cr2 :=

∣∣∣pss
n − pth

n

∣∣∣
pss
n

� 1, (10)

for all energy level n of S, where pss
n stands for the

populations of the steady state (6) and pth
n corre-

sponds to the populations of the thermal state ρth
S ,

reached in the weak coupling limit. Note that a
coherence-based criterion would typically be equiv-
alent to the above population-based one.

• Additionally, the quantity

Q :=

∫ ∞
0

dω
J(ω)

ω
, (11)

known as the “re-organisation energy” [49–51],
gives a figure of merit of the coupling energy.
Therefore, one can expects the expansion to be
valid for Q � ωS , where ωS stands for the typical
energy difference in HS . Thus, we define a third
candidate for the validity criterion as

cr3 :=
Q

ωS
� 1. (12)

Anticipating sections III and IV, we can obtain
explicit expressions of Q in term of the bath pa-
rameters for the bath spectral densities used there.
For the under-damped spectral density JUD(ω) :=

ω 2
π

γUDΩ2λ2

(Ω2−ω2)2+(γUDΩω)2 (see more details in section

III), we obtained QUD = λ2/Ω, while for the over-

damped spectral density JOD(ω) := αω
ω2
c

ω2
c+ω2 , we

have QOD = π
2αωc.

• Finally, considering a two-level system, focus of the
comparison section IV, we can come up with an
additional criteria obtained from a special choice
of the system parameters for which the partition
function can be easily computed. More precisely,
if we take rx = ry = 0 (see next section II B), we
can diagonalise the total Hamiltonian and compute
exactly the partition function, giving a simple but
non-trivial expression, ZSB = eβQZSZB . Then,
in the same spirit as in the first criterion, we can
consider that small corrections imply |ZSB/ZSZB−
1| � 1, which leads to the simple criterion

cr4 := βQ� 1. (13)

Note that at this stage we only use the setting
rx = ry = 0 as a mathematical trick to com-
pute ZSB , while in the reminder of the paper we

consider rx 6= 0, implying [HS , V ] 6= 0, necessary
condition for the applicability of (1). Although it
might not seem totally justified to approximate the
order of magnitude of ZSB for arbitrary rx and
ry by its value for rx = ry = 0, we will see in
the following (section IV), that cr4 is always very
close to cr1, justifying afterwards this approxima-
tion. Additionally, the factor eβQ is reminiscent of

the renormalization factor eβQA
2

due to the bath
interaction [47, 52], so one can conjecture that this
criterion could be extended to arbitrary systems in
the form cr4 := βQ|A2| � 1. Finally, this last
criterion seems promising because it involves the
bath inverse temperature β. Indeed, the expansion
(6) becomes trivially valid when the energy scale
set by the bath temperature, kBT = β−1, is much
larger than the system-bath coupling [47] (infinite
temperature limit), suggesting that β should play
a role in the validity criterion.

We will test these criteria in section IV and see that
two of them, cr1 and cr4, seems to indicate particularly
well the validity range of expression (6).

B. Spin-boson model

In order to obtain explicit comparison with embedding
techniques (reaction coordinate), we choose a specific sys-
tem, namely the spin-boson model, for being a widely
used system, experimentally as well as theoretically. The
Hamiltonian of the two-level system is of the form

HS =
ωS
2

(rxσx + ryσy + rzσz) =
ωs
2
~r.~σ, (14)

where ~r is a real unit vector of component rx, ry, and
rz (such that r2

x + r2
y + r2

z = 1), and ~σ is the Pauli
vector of component the Pauli matrices σx, σy, and σz.
Importantly, we will use in the following the notation
r := rx + iry. We consider a typical coupling with the
bath, namely A = σz. The eigen-decomposition takes
the form A(u) = A(ωs)e

−uωs +A(−ωs)euωs +A(0), with

A(ωs) = −r|g〉〈e|,
A(−ωs) = −r∗|e〉〈g|,

A(0) = rz(|e〉〈e| − |g〉〈g|) := rzΣz, (15)

where

|e〉 :=
(1 + rz)|+〉+ r|−〉√

2(1 + rz)
,

|g〉 :=
−r∗|+〉+ (1 + rz)|−〉√

2(1 + rz)
, (16)

are the excited and ground eigenstate of HS , respectively.
In the above expression, we used the notation |+〉, |−〉
to denote respectively the excited and ground state of
σz. Injecting these expressions in (6) with the use of
the explicit expression of the function g(ν, ν′) provided



4

in Appendix A, we obtain for the reduced steady state of
S in the basis {|e〉, |g〉},

ρss,PE
S =

(
pss
e css∗ge
cssge pss

g

)
, (17)

with

css,PE
ge =

−2rrz(β/ωs)[G(ωs, β)− (1 + e−ωsβ)Q/β]

(1 + e−ωsβ)[1 + r2
zβQ] + |r|2β2G(ωs, β)

,

(18)

and the population,

pss,PE
e =

e−ωsβ(1 + r2
zβQ)− |r|2βG′(ωs, β)

(1 + e−ωsβ)[1 + r2
zβQ] + |r|2β2G(ωs, β)

,

(19)

where Q is the re-organisation energy defined above,

G(ωs, β) :=

∫ 1

0

due−ωsβucB(uβ), (20)

and G′(ωs, β) := ∂
∂ωs

G(ωs, β). The explicit expression

of G(ωs, β) and G′(ωs, β) in term of usual functions is
provided in Appendix A for both under-damped and
over-damped spectral densities JUD(ω) (22) and JOD(ω)
(23).

III. REACTION COORDINATE

In the perspective of comparing the perturbative ex-
pansion approach with embedding approaches, we briefly
review some important features of the reaction coordi-
nate mapping. Introduced in [53] and further developed
in [5, 16, 32, 33, 54, 55], the archetypal application of re-
action coordinate is for the spin-boson model, although
it can applied to other systems [5, 6, 19]. Thus, consider-
ing the two-level system of the previous section, the spin-
boson model of Hamiltonian HSB = ωs

2 ~r.~σ + σzB + HB

can be mapped onto [32, 33]

HSB = HSRCE :=
ωs
2
~r.~σ + λσz(a

† + a) + Ωa†a

+(a† + a)BE +HE + (a† + a)2
∑
k

g2
k

ωk
, (21)

where a and a† are the annihilation and creation oper-
ators of the collective bosonic mode, called the reaction

coordinate (RC), defined as λA(a†+a) =
∑
k gk(b†k+bk),

and the system E is a residual bath (the original bath
“minus” the collective mode) of self Hamiltonian HE and
coupling to the reaction coordinate through the opera-
tor BE . The detailed expressions of the residual bath’s
modes and parameters are not useful in our problem so
we refer interested readers to [32, 33] for further details.

Importantly, the mapping is exact when the original
bath B has an under-damped spectral density,

JUD(ω) := ω
2

π

γUDΩ2λ2

(Ω2 − ω2)2 + (γUDΩω)2
, (22)

where λ (frequency), Ω (frequency) and γUD (dimension-
less) characterise respectively the strength of the cou-
pling, the peak of the spectral density, and its width.
According to the reaction coordinate mapping, the pa-
rameters of the collective mode are given directly by the
parameters of the under-damped spectral density [32, 33]:
λ corresponds to the strength of the coupling between S
and the collective mode, and Ω is its frequency.

It is also possible to find an approximate mapping
when the original bath spectral density is over-damped,
namely of the form,

JOD(ω) = αω
ω2
c

ω2
c + ω2

. (23)

where ωc is sometimes referred to as the cutoff frequency
and α is a dimensionless parameter determining the cou-
pling strength. The RC coupling and frequency can be
expressed in terms of the parameters of JOD(ω) as [32, 33]

Ω = γωc and λ =

√
π

2
αωcΩ. (24)

Written directly in term of the reaction coordinate
parameters, the over-damped spectral density takes

the form JOD(ω) = ω 2
π

λ2γ
Ω2+γ2ω2 . While the expression

(23) is a function with two parameters α and ωc,
this later expression contains three parameters. The
extra parameter γ is introduced during the reaction
coordinate mapping and is required to be much larger
than 1. To understand better the emergence of this free
parameter γ, one should mention that for over-damped
spectral density, the mapping is actually obtained
from an asymptotic limit of the under-damped spectral
density case, as follows [32, 33]. For γUD � 1, we

have JUD(ω) ' JOD(ω) when setting α = 2γUDλ
2

πΩ2 and

ωc = Ω
γUD

. Then, with these settings, we can use the

reaction coordinate mapping used for the under-damped
case, and the parameter γ appearing in (24) is actually
γUD which must be much larger than 1 in order to have
the approximate identification JUD(ω) ' JOD(ω) . As a
conclusion, the reaction coordinate mapping is not exact
for over-damped spectral density, and only holds under
the condition Ω� ωc (or γUD � 1).

Now that we have introduced the reaction coordinate
mapping for the under-damped and over-damped spec-
tral densities, we can focus on the steady state. For weak
coupling between the reaction coordinate RC and the
residual bath E, which is precisely the situation where
the reaction coordinate mapping is useful, one expects
from weak dissipation theory that the extended system
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SRC (S and the reaction coordinate) tends to the ther-
mal state at inverse temperature β, the inverse tempera-
ture of the original and residual bath,

ρth
SRC = Z−1

SRCe
−βHSRC , (25)

where

HSRC := HS + λA(a† + a) + Ωa†a. (26)

This conjecture was indeed benchmarked by numerical
techniques (hierarchical equation of motions) in [32, 33]
and Redfield master equation [46] and used in [16, 17].
However, when the residual coupling between RC and E
is not weak, one expects ρth

SRC to depart from the ex-
act steady state of SRC. Thus, ρth

SRC becomes an ap-
proximation of the exact steady state. How good is this
approximation and when exactly does it start breaking
down are the questions which motivated this paper. In
the following, we will refer to ρth

SRC as the “reaction coor-
dinate mapping of the steady state”, or “mapping of the
steady state” in short. From ρth

SRC , the reduced steady
state of S is given by

ρss,RC
S := TrRC [ρth

SRC ]. (27)

Again, we stress that since in general ρth
SRC is an approx-

imation of the exact steady state of SRC, ρss,RC
S is also

in general an approximation of ρss
S (2), the exact steady

state of S.
The partial trace over the RC mode can be realised nu-

merically or analytically via approximate diagonalization
of HSRC (see for instance [56, 57]). Note that the plots
presented below were indeed realised using numerical di-
agonalisation using QuTiP (with adequate truncation of
the RC mode). The remainder of the paper is mainly
dedicated to the comparison of the predictions of the two
approaches, namely comparing (27) with (17), (19), and
(18). Before that, we introduce a third approximation
of the steady state which will help us in the comparison
and is detailed in the next section III A.

A. Perturbative expansion applied to reaction
coordinate

Beyond our prime objective to confirm that the pertur-
bative expansion approach and the reaction coordinate-
based approach coincide, at least for some range of pa-
rameters, we also aim at studying the validity range of
each approach. In that perspective, when some discrep-

ancies appear between ρss,RC
S and ρss,PE

S , how can we tell
that it is because the reaction coordinate mapping of the
steady state, ρth

SRC , fails to faithfully approximate the
exact steady state of RC, or that it is because the per-
turbative expansion stops being valid, or both? How can
we separate the two effects?

We can obtain some insights on these questions by con-
sidering a third state, obtained by applying the general

perturbative expansion of section II to ρth
SRC (25), where

the reaction coordinate RC plays the role of the bath B.

We denote the resulting state by ρss,PRC
S , where the su-

perscript “PRC” stands for Perturbative expansion of the
RC mapping. Then, from the point of view of the per-

turbative expansion, ρss,RC
S is the “exact” (containing all

orders) version of ρss,PRC
S . Consequently, the discrepancy

between ρss,RC
S and ρss,PRC

S provides information on the

validity of the perturbative expansion. Conversely, ρss,PE
S

and ρss,PRC
S are both expansions to the same order, of the

original problem and of the reaction coordinate mapping,
respectively. Then, from the point of view of the reaction

coordinate mapping, ρss,PE
S is the exact version of ρss,PRC

S .

Thus, by observing the discrepancy between ρss,PE
S and

ρss,PRC
S we can obtain information on the performance

of the reaction coordinate mapping. We will use in the

next section these discrepancies ρss,RC
S versus ρss,PRC

S and

ρss,PE
S versus ρss,PRC

S to gain precious information on the
range of validity of each approach.

Applying the general perturbative expansion of section
II to ρth

SRC we obtain the same form as (6), namely,

ρss,PRC
S =

2d order

ZSZB
ZSB

ρth
S

1 +
∑
ν,ν′

A(ν)A†(ν′)g(ν, ν′)

 .
(28)

The functions g(ν, ν′), cB(u), G(ν, β), and G′(ν, β), have
the same general expression as the one detailed in Ap-
pendix A but using the following spectral density

J(ω) = λ2δ(ω − Ω). (29)

Thus, for the steady state populations and coher-
ences, it leads to the same expressions as (19) and
(18), respectively, substituting G(ν, β) and G′(ν, β)
by GPRC(ν, β) := CPRC(−ν) + e−νβCPRC(ν), and

GPRC′(ν, β) := −CPRC′(−ν) − βe−νβCPRC(ν) +

e−νβCPRC′(ν), with

CPRC(ν) :=
λ2

β

(
nth

Ω + 1

Ω− ν
− nth

Ω

Ω + ν

)
(30)

and

CPRC′(ν) :=
λ2

β

(
nth

Ω + 1

(Ω− ν)2
+

nth
Ω

(Ω + ν)2

)
. (31)

IV. COMPARISON

In this section, we compare the steady state ρss,RC
S

given by the reaction coordinate (27), the steady state

ρss,PRC
S (28) given by the perturbative expansion of the

reaction coordinate, and the steady states ρss,PE,UD
S and

ρss,PE,OD
S , given respectively by the perturbative expan-

sion of the original problem (17) for under-damped bath
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FIG. 1. Steady state coherences cPE,OD
ge (39) (red thick solid

line), cPE,UD
ge (37) (orange thick solid line), cPRC

ge (35) (blue

dashed line), and cRC
ge (33) (sparse dotted line), in function of

the inverse temperature β in unit of ω−1
S , for (a) λ/ωS = 0.5

and (b) λ/ωS = 1.5. The other parameters are given by
Ω/ωS = 10, γUD = 0.1, rz =

√
0.75, r = rx + iry = 0.5.

spectral density JUD(ω) (22) and over-damped bath
spectral density JOD(ω) (23). We denote the coherence
and excited population in the eigenbasis {|e〉, |g〉} of HS

as

pRC
e := 〈e|ρss,RC

S |e〉, (32)

cRC
ge := 〈g|ρss,RC

S |e〉, (33)

pPRC
e := 〈e|ρss,PRC

S |e〉, (34)

cPRC
ge := 〈g|ρss,PRC

S |e〉, (35)

pPE,UD
e := 〈e|ρss,PE,UD

S |e〉, (36)

cPE,UD
ge := 〈g|ρss,PE,UD

S |e〉, (37)

pPE,OD
e := 〈e|ρss,PE,OD

S |e〉, (38)

cPE,OD
ge := 〈g|ρss,PE,OD

S |e〉. (39)

Fig. 1 presents the plots of the steady state coher-
ences as given by cPE,OD

ge (red thick solid line), cPE,UD
ge

(orange thick solid line), cPRC
ge (blue dashed line), and

cRC
ge (sparsely dotted line), in function of the inverse tem-

perature β (in unit of ω−1
S ). The panel (a) corresponds to

a coupling λ/ωS = 0.5 and the panel (b) to λ/ωS = 1.5.
The other parameters are chosen as follows, Ω/ωS = 10,

γUD = 0.1 (dimensionless), rz =
√

0.75, r = rx + iry =
0.5, meaning that ry = 0 (note than one would obtain
a similar behavior up to a π/2 phase for the coherence
with the alternative choice rx = 0, and ry = 0.5).

One can see a very good agreement between cRC
ge

(sparse dots) and cPRC
ge (blue dashed line) at high

temperature (low inverse temperature β), but this
agreement slowly deteriorates beyond β ∼ 4ω−1

S in panel

(a), and beyond β ∼ ω−1
S in panel (b). By contrast,

the agreement between cPE,OD
ge (red solid line) and cPRC

ge

(blue dashed line) is only good at very high temperature
and it deteriorates quickly as the temperature decreases.
Finally, cPE,UD

ge (orange solid line) and cPRC
ge (blue dashed

line) coincide perfectly at high temperature, and only a
very small discrepancy appears at small temperatures.

Fig. 2 is the counter-part of Fig. 1 for the excited pop-
ulation. Note that instead of plotting directly the popu-
lations for ωSβ from 0 to 10, we zoom in and consider two
sections, otherwise all five curves would be indistinguish-
able: the panels (a) and (b) represents the steady state
excited population as a function of the inverse tempera-
ture β in the interval [5; 6] (in unit of ω−1

S ), while panels
(c) and (d) correspond to β ∈ [0.5; 0.51]. Additionally,
panels (a) and (c) correspond to a coupling λ/ωS = 0.5,
while panel (b) and (d) to λ/ωS = 1.5. The color conven-
tion is the same as in Fig. 1, namely, pPE,OD

e (38) (red
solid line), pPE,UD

e (36) (orange solid line), pPRC
e (34) (the

blue dashed line), and pRC
e (sparsely dotted line) (32).

The grey dotted line represents the thermal excited pop-
ulation pth

e := 〈e|ρth
S |e〉 at inverse temperature β. The

other parameters are chosen as in Fig. 1.

The conclusions are the same as in Fig. 1, namely, the
agreement between pRC

e and pPRC
e is very good at high

temperature and deteriorates more at low temperature
when the system-bath coupling is larger. However, the
agreement between pPE,OD

e and pPRC
e is relatively good

only at high temperature, and large discrepancies appear
at low temperatures, while pPE,UD

e and pPRC
e coincide

perfectly at both ranges of temperatures, even in strong
coupling.

Finally, Fig. 3 presents the plots of the steady state
coherences and populations in function of the coupling
strength λ (in unit of ωS) for (a)-(b) ωSβ = 0.5 and (c)-
(d) ωSβ = 5. The color conventions are the same as in
Fig. 1 and Fig. 2, as well as the remaining parameters.

As a first observation, one can see that the plots for the
coherences and populations have almost identical shapes,
which will be confirmed in Figs. 4 and 7. Secondly, the
agreement between css,RC

ge (sparse dotted line) and css,PRC
ge

(blue dashed line) (as well as pss,RC
e and pss,PRC

e ) is excel-
lent below λ ∼ 2ωS at high temperature ωSβ = 0.5, and
below λ ∼ 0.75ωS at low temperature ωSβ = 5, while
it starts deteriorating beyond these values of coupling
strength. For cPE,OD

ge (red thick line) and cPRC
ge (blue

dashed line) (as well as pPE,OD
e and pPRC

e ), the agree-
ment is good until λ ∼ 1 for ωSβ = 0.5, but for ωSβ = 5
the agreement drops quickly beyond λ ∼ 0.2ωS . By con-
trast, the agreement between cPE,UD

ge (orange thick line)

and cPRC
ge (blue dashed line) (as well as pPE,UD

e and pPRC
e )
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(a) 5 5.5 6
β

0.004

0.006

0.008
pe

(b) 5 5.5 6
β

0.004

0.006

0.008

0.01

0.012

0.014

pe

(c) 0.5 0.505 0.51
β

0.376

0.377

0.378

pe

(d) 0.5 0.505 0.51
β

0.376

0.377

0.378

0.379

0.38

0.381

pe

FIG. 2. Steady state populations in function of the inverse
temperature β ∈ [5; 6] (in unit of ω−1

S ) for panels (a) and (b),
and β ∈ [0.5; 0.51] for (c) and (d). The coupling strength
is λ/ωS = 0.5 for panels (a) and (c), and λ/ωS = 1.5 for
panel (b) and (d). Following the same color convention as in
Fig. 1, the red thick solid line corresponds to pPE,OD

e (38),
the orange thick solid line corresponds to pPE,OD

e (36), the
blue dashed line corresponds to pPRC

e (34), and the sparse
dotted line corresponds to pRC

e (32). The dotted grey line
represents the thermal excited population pthe := 〈e|ρthS |e〉 at
inverse temperature β. The other parameters are as in Fig 1.

is almost perfect for both values of β and for all λ.
Conclusion–. From Fig. 1 - 3, we can conclude

that the two approaches do coincide on an extended re-
gion of parameters for under-damped spectral densities,
namely from high to low temperatures for limited cou-
pling λ = 0.5ωS , and even for large coupling λ = 1.5ωS at
high temperature ωSβ = 0.5. However, for over-damped

(a) 0 1 2 3
λ

0.378

0.382

0.386

pe

(b) 0 1 2 3
λ

0.005

0.01

0.015

cge

(c) 0 1 2 3
λ

0.006

0.01

0.014

0.018

pe

(d) 0 1 2 3
λ

0.01

0.02

0.03

0.04

0.05

0.06

cge

FIG. 3. Steady state populations (a,c) and coherences (b,d) in
function of the coupling strength λ (in unit of ωS) at inverse
temperature (a,b) ωSβ = 0.5 and (c,d) ωSβ = 5. The color
conventions are the same as in Figs. 1 and 2. The remainder
of the parameters are chosen as in previous figures, namely
Ω/ωS = 10, γUD = 0.1, rz =

√
0.75, r = rx + iry = 0.5.

spectral densities, the two approaches coincide only at
high temperatures.

A. Discrepancies due to the perturbative expansion

In order to obtain a more precise and quantitative cri-
terion of “good” and “bad” agreement, we introduce the
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(a) 1 2 3
λ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
dexpcoh/pop

(b) 1 2 3 4 5 6 7 8 9 10
β

0.1
0.2
0.3
0.4
0.5
0.6
0.7
dexpcoh/pop

FIG. 4. Panel (a): the yellow and green dots correspond
to dexpcoh in function of λ (in unit of ωS) for ωSβ = 0.5 and
ωSβ = 5, respectively, and the black and purple large dots
(in the background of the yellow and green dots) correspond
to dexppop in function of λ for ωSβ = 0.5 and ωSβ = 5, respec-
tively. Panel (b): the yellow and green dots correspond to dexpcoh

in function of β (in unit of ω−1
S ) for λ = 0.5ωS and λ = 1.5ωS ,

respectively, and the black and purple large dots correspond
to dexppop in function of β for λ = 0.5ωS and λ = 1.5ωS , respec-
tively. For both panels, the remainder of the parameters are
chosen as in previous figures, namely Ω/ωS = 10, γUD = 0.1,
rz =

√
0.75, rx + iry = 0.5

.

relative discrepancies

dexp
coh := (cRC

ge − cPRC
ge )/cRC

ge ,

dexp
pop := (pRC

e − pPRC
e )/(pRC

e − pth
e ),

(40)

where one should note that the relative discrepancy re-
lated to the population is defined with respect to the devi-
ation from the thermal excited population pth

e = 〈e|ρth
S |e〉

(at inverse temperature β). As already discussed in sec-
tion III A, these relative discrepancies provide informa-
tion on the validity of the perturbative expansion.

Fig. 4 (a) provides the relative discrepancies associ-
ated with Fig. 3, namely, the yellow and green dots
correspond to dexp

coh for ωSβ = 0.5 and ωSβ = 5, re-
spectively, while the black and purple large dots (in the
background of the yellow and green dots) correspond to
dexp

pop for ωSβ = 0.5 and ωSβ = 5, respectively. The
remainder of the parameters are chosen as in previous
figures, namely Ω/ωS = 10, γUD = 0.1, rz =

√
0.75,

r = rx + iry = 0.5. Firstly, one can see that the rela-
tive discrepancies is exactly the same for coherences and
for populations at both temperatures, confirming obser-

vations from Fig. 3. More importantly, adopting the
standard 10% error criterion, these plots testify that the
perturbative expansion is valid up to a coupling strength
λ ∼ 2ωS at ωSβ = 0.5, and up to λ ∼ 0.5ωS at ωSβ = 5,
which also coincides with what we can see from Fig. 3.

Fig. 4 (b) provides the relative discrepancies of Figs.
1 and 2. Adopting a similar color convention as panel
(a), the yellow and green dots correspond to dexp

coh for
λ = 0.5ωS and λ = 1.5ωS , respectively, while the black
and purple large dots correspond to dexp

pop for λ = 0.5ωS
and λ = 1.5ωS , respectively. Thus, as for panel (a),
the relative discrepancies are also exactly the same for
coherences and populations.
Conclusion–. These plots confirm the observations from
Figs. 1 and 2, namely that the perturbative expansion
is roughly valid up to ωSβ ∼ 5 for λ = 0.5ωS , and up to
ωSβ ∼ 1 for λ = 1.5ωS .

B. Benchmarking the validity criteria for
perturbative expansions

Using the observations from the previous figures, we
can benchmark the capacity of the validity criteria in-
troduced in section II A to pinpoint the actual range of
validity of the perturbative expansion. In Fig. 5, we plot
the four criteria cr1 (9) (black line), cr2 (10) (blue line),
cr3 (12) (green line), cr4 (13) (red dashed line), in func-
tion of λ (in unit of ωS), for ωSβ = 0.5 in panel (a), and
ωSβ = 5 in panel (b). Considering that cri � 1 means

cri . 0.1, one can see that only criteria cr1 =
∣∣∣ ZSBZBZS

− 1
∣∣∣

and cr4 = βQ, which, interestingly, coincide exactly, indi-
cate a range of validity in agreement with our conclusions
from Figs. 3 and 4. More precisely, at inverse tempera-
ture ωSβ = 0.5 (ωSβ = 5), cr1 and cr4 indicate a validity
of the perturbative expansion up to a coupling strength
λ ∼ 1.5ωS (λ ∼ 0.5ωS), in agreement with the value
λ ∼ 2ωS (λ ∼ 0.5ωS to 0.75ωS) from Figs. 3 and 4.

Similarly, in Fig. 6, we plot the same validity criteria,
but now as functions of the inverse temperature, using
the same color convention as in the previous figure 5.
One can see that the conclusions are the same: only cr1

and cr4, which coincide almost perfectly, indicate a range
of validity in agreement with our previous conclusions
from Figs. 1, 2 and 4.

Thus, we obtain a very simple criterion for the valid-
ity of the perturbative expansion incorporating both the
coupling strength and the temperature aspects,

βQ . 0.1 (41)

This takes the explicit form β λ
2

Ω . 0.1 for an under-
damped spectral density of parametrization (22), and
π
2βαωc . 0.1 for an over-damped spectral density of
parametrization (23).

Importantly, we also benchmarked this result for Ω ∼
ωS and Ω � ωS , both in function of β and λ (see addi-
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(a) 0 1 2 3
λ

0.1

0.2

0.3

cri

(b) 0 1 2 3
λ

0.1

0.2

0.3
cri

FIG. 5. Plots of the validity criteria introduced in section
II A in function of the coupling strength λ (in unit of ωS)
for (a) ωSβ = 0.5 and (b) ωSβ = 5. Criteria cr1 and cr4
coincide almost exactly and correspond to the black solid line
and red dashed line, respectively; cr2 corresponds to the blue
solid line, and cr3 corresponds to the green solid line. The
remainder of the parameters are chosen as in previous figures,
namely Ω/ωS = 10, γUD = 0.1, rz =

√
0.75, r = rx + iry =

0.5.

tional plots provided in Appendix B). In all situations,
we confirm that βQ . 0.1 is a surprisingly good validity
criterion. In particular, even in regimes where the crite-
rion Q � ωS is totally misleading, βQ . 0.1 indicates
accurately the region where the expansion stops being
valid.

One should note that there is something unexpected in
this result. It is comparing the energy scale of the system
with the energy scale of the coupling that one sometimes
defines weak/strong/ultrastrong coupling: the system’s
transition energy scale (here ωS) is the reference. How-
ever, our results point at a criterion which is independent
of ωS , namely βQ . 0.1, while the criterion based on ωS
is wrong most of the time. This could suggest that ei-
ther the breakdown of the validity of the perturbative
expansion is not strictly related to strong coupling, or
the definition of strong coupling might not always be re-
lated to the system’s energy scale.

As a side comment, cr1 and cr4 are exactly equal for
rx = ry = 0, by definition. However, their exact agree-
ment, at least for the considered range of parameters (see
also plots in Appendix B), is quite surprising and justifies
afterwards the assumption made in section II A that the
order of magnitude of ZSB does not depend on the spin
orientation.

(a) 0 1 2 3 4 5 6 7 8 9 10
β

0.1

0.2

0.3
cri

(b) 0 1 2 3 4 5 6 7 8 9 10
β

0.1

0.2

0.3
cri

FIG. 6. Plots of the validity criteria introduced in section
II A in function of β (in unit of ω−1

S ) for (a) λ = 0.5ωS and
(b) λ = 5ωS . The color conventions are the same as in Fig.
5, namely: cr1 (black solid line), cr4 (red dashed line), cr2
(blue solid line), and cr3 (green solid line). The remainder
of the parameters are chosen as in previous figures, namely
Ω/ωS = 10, γUD = 0.1, rz =

√
0.75, r = rx + iry = 0.5.

C. Benchmarking the reaction coordinate mapping

In this section we focus on the other aspect of the prob-
lem: how well does the reaction coordinate mapping of
the steady state (25) approximate the steady state of the
original problem, ρss

S (2)? We already saw in Figs. 1,
2, and 3 that it depends strongly on the bath spectral
density as well as on the bath temperature. As in the
previous section IV B, in order to obtain more quanti-
tative information on the performance of the mapping
of the steady state, we introduce the following relative
discrepancies,

dmap,UD
coh := (cPE,UD

ge − cPRC
ge )/cPE,UD

ge ,

dmap,UD
pop := (pPE,UD

e − pPRC
e )/(pPE,UD

e − pth
e ),

dmap,OD
coh := (cPE,OD

ge − cPRC
ge )/cPE,OD

ge ,

dmap,OD
pop := (pPE,OD

e − pPRC
e )/(pPE,OD

e − pth
e ). (42)

and plot them in function of λ and β in Fig. 7. In
Fig. 7 (a), the yellow and green thin solid line represent

dmap,UD
coh as a function of λ for ωSβ = 0.5 and ωSβ = 5,

respectively, while the black and purple large solid line
represent dmap,UD

pop in function of λ for ωSβ = 0.5 and
ωSβ = 5, respectively. In Fig. 7 (c), the same quanti-
ties are plotted for the over-damped spectral densities.
Interestingly, we can see that the relative discrepancies
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are independent of the coupling strength. In some sense

it means that both perturbative expansions ρss,PRC
S and

ρss,PE
S drift away in parallel from their respective exact

states ρss,RC
S and ρss

S . This is a good indication that the

strategy of comparing ρss,PRC
S and ρss,PE

S does result in
getting rid of discrepancies stemming from the perturba-
tive expansion and thus retains only discrepancies stem-
ming from the reaction coordinate mapping, as if we were

measuring directly the discrepancies between ρss,RC
S and

ρss
S . From Fig. 7 (a) we also have the confirmation that

the mapping of the steady state performs well for nar-
row under-damped spectral densities, and fails for over-
damped spectral densities, panel (c).

In panel (b), the yellow line corresponds to dmap,UD
coh

in function of β (in unit of ω−1
S ) and the black thick

line corresponds to dmap,UD
pop also in function of β (both

for arbitrary λ since dmap,UD
pop/coh is independent of λ). The

same quantities are plotted in panel (d) for over-damped
spectral density. The main message of these plots is that
the reaction coordinate mapping seems to always perform
well at high temperatures.

In the following, we briefly explain the reasons be-
hind the failure of the reaction coordinate mapping of
the steady state for over-damped spectral densities at
arbitrary temperatures, and we also explain its universal
success at high temperature.

1. Reasons for discrepancies

Since the reaction coordinate mapping is exact for
under-damped bath spectral densities [16, 32, 33], one
might not be surprised that we observed a good perfor-
mance for such spectral densities. On the other hand,
for under-damped spectral densities of increasing width
(determined by γUD), the reaction coordinate mapping
is still exact, but one can verify that the under-damped
spectral density becomes indistinguishable from an over-
damped spectral density, and the steady state coherences
and populations also become indistinguishable from the
ones of an over-damped spectral density. Thus, how can
we have an exact mapping giving a wrong stead state?
As already commented in section III, the reason for this
apparent contradiction is that the reaction coordinate
mapping of under-damped spectral densities is exact for
the dynamics, and the steady state ρth

SRC (25) is only an
approximation of the actual steady state of the dynam-
ics [16, 17, 32, 33, 46]. Thus, as already stressed above,
the observed failure of the reaction coordinate mapping of
the steady state is not a failure of the reaction coordinate
mapping per se, but is a break down of the approxima-
tion consisting in equating the exact steady state of SRC
by ρth

SRC (25). This breakdown can be understood from
three related point of view.

• Although the mapping is exact for under-damped
spectral densities of arbitrary width, the strength

(a) 0 1 2 3
λ

0.05

0.1

dmap,UDcoh/pop

(b) 0 1 2 3 4 5 6 7 8 9 10
β

0.05

0.1

dmap, UDcoh/pop

(c) 0 1 2 3
λ

0.2

0.4

0.6

0.8

dmap, ODcoh/pop

(d) 0 1 2 3 4 5 6 7 8 9 10
β

0.2

0.4

0.6

0.8

dmap, ODcoh/pop

FIG. 7. Plots of the relative discrepancies d
UD/OD

pop/coh in function

of the coupling strength λ and β. Panel (a) (panel (c)): the

yellow and green thin solid line represent dmap,UD
coh (dmap,OD

coh )
as a function of λ (in unit of ωS) for ωSβ = 0.5 and ωSβ =
5, respectively, while the black and purple large solid line
represent dmap,UD

pop (dmap,OD
pop ) in function of λ for ωSβ = 0.5

and ωSβ = 5, respectively. Panel (b) (panel (d)): the yellow

line corresponds to dmap,UD
coh (dmap,OD

coh ) in function of β (in

unit of ω−1
S ) and the black thick line corresponds to dmap,UD

pop

(dmap,OD
pop ) also in function of β, both for arbitrary λ. The

other parameters are chosen as in previous figures, namely
Ω/ωS = 10, γUD/ωS = 0.1, rz =

√
0.75, rx + iry = 0.5.
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of the coupling between the residual bath and the
reaction coordinate grows as γUD. Therefore, for
increasing spectral widths, one should expect ρth

SRC
to depart from the exact steady state. In par-
ticular, one expects a steady state of the form
ρss
SRC = TrE [ρth

SRCE ] 6= ρth
SRC . More precisely, one

can show [16] that TrRC [ρth
SRC ] is equal to TrB [ρth

SB ]
at lowest order in the residual coupling between RC
and E. Thus, for increasing γUD, and therefore in-
creasing residual coupling, discrepancies between

ρss
SRC and ρth

SRC as well as ρss
S and ρss,RC

S increase.

• Alternatively, this can be seen directly from the ex-
pressions we obtained for the general perturbative
expansion (6). The steady state (6) depends on
the function g(ν, ν′), which is entirely determined
by the bath correlation function cB(u) (4), which
is itself ultimately determined by the bath spec-
tral density J(ω). Thus, when approximating the
steady state ρss

S = TrB [ρth
SB ] (2) by TrRC [ρth

SRC ]
(27), we are ultimately approximating the original
bath spectral density by a single mode, represented
by the reaction coordinate. In other words, we are
approximating the original bath spectral density
J(ω) by λ2δ(ω−Ω). This approximation is reason-
able if J(ω) is a narrow spectral density centered
in Ω, but is not justified for a broad spectral den-
sity. Thus, one expects that TrRC [ρth

SRC ] becomes
increasingly distant from ρss

S = TrB [ρth
SB ] (2) as the

spectral width increases.

• Final viewpoint, strongly related to the first one.
One can show that the steady state ρth

SRC (25) is
actually the steady state of the master equation de-
rived in the Supplementary Material of [32] when
applying the secular approximation. However, the
secular approximation is valid when max|ωSRC −
ω′SRC |−1 � τD, where τD denotes the dissipa-
tion timescale induced by the action of the bath
and ωSRC denotes the Bohr frequencies of the ex-
tended system SRC. A rough analysis show that
τD ∼ (πγUDωS)−1, so that one expects the secular
approximation to become unjustified for growing
γUD, and thus a steady state increasingly distinct
from ρth

SRC . This question has been analyzed in
great details in [6], and one of the conclusion actu-
ally limits the strength of this last argument: the
authors show that the reaction coordinate mapping
of the steady state might actually be valid way be-
yond the supposed validity of the secular approxi-
mation.

As a rule of thumb, from observations coming from
the above plots and additional plots (not shown), one
can consider that the reaction coordinate steady state

performs well, meaning dmap,UD
pop/coh ≤ 0.1, as long as the

spectral width γUD is smaller than ∼ 3/Ωβ.

2. Universal faithful mapping of the steady state at high
temperature

Contrasting with the breakdown of the reaction coordi-
nate mapping of the steady state for broad bath spectral
densities at arbitrary temperatures, the mapping seems
to be always faithful at high temperatures (see Fig. 7
(d)). This can be seen as follows. Assuming that the
bath spectral density J(ω) vanishes for ω ≥ 2/β, the
correlation function can be approximated by

cB(u) := TrBρ
th
BB(u)B

=

∫ ∞
0

dωJ(ω)
[
e−ωu(nω + 1) + eωunω

]
∼
∫ ∞

0

dωJ(ω)
2

ωβ
=

2Q

β
, (43)

where we use the approximation e−ωu(nω+1)+eωunω ∼
2
ωβ valid for ωβ ≤ 2 (reminding that the variable u be-

longs to [0;β]). Then, applying this result to the bath
spectral densities we have been considering, JOD(ω) and
JUD(ω), both vanishing for ω � Ω, one expects to

have cB(u) ∼ 2Q
β for both spectral densities as soon as

Ω� 2/β. Additionally, considering the effective spectral
density representing the reaction coordinate JRC(ω) =

δ(ω − Ω), we have cB(u) ∼ 2Q
β when Ω ≤ 2/β. Thus,

for Ω � 2/β, G(ωs, β), and therefore G′(ωs, β), become
independent of the form of the bath spectral density, re-
taining only a dependence on Q. Then, for Ω� 2/β, we
should have the same steady state for any bath spectral
densities of same re-organization energy Q. This is what
we observed in Fig. 7 (d), and confirmed in Fig. 8, as
soon as

Ωβ ≤ 1. (44)

This hols for arbitrary spectral width γUD, and might
also hold for arbitrary coupling strength (again, accord-
ing to our conclusions from Fig. 7).

V. CONCLUSION

We compare the perturbative expansion of the mean
force Gibbs state with the approximate steady state (25)
from the reaction coordinate mapping. We reach our
first objective by showing the agreement of these two
approaches, for some ranges of parameters and focusing
on the spin-boson model, see Figs. 1 - 3.

In a second time, we focus on the crucial task of explor-
ing and understanding their respective range of validity.
To achieve that, we use one approach to benchmark the
other. We establish and test successfully a validity crite-
rion (41) for the perturbative expansion depending only
on the inverse bath temperature β and on the reorgani-
zation energy Q (11).

Regarding the reaction coordinate mapping and its ap-
proximate steady state (27), we quantify its performance
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10 20 30 40 50
β

-0.1

-0.05

0.05

0.1
dmap, UD/ODcoh/pop

FIG. 8. Plots of d
map,UD/OD
coh (yellow thin line) and

d
map,UD/OD
pop (black thick line) in function of the inverse tem-

perature β (in unit of ωS) for Ω/ωS = 1/β, γUD = 20
(any value larger than 20 gives the same plot), rz =

√
0.75,

r = rx+iry = 0.5. The plots of dmap,OD
coh and dmap,UD

coh (dmap,OD
pop

and dmap,UD
pop ) are indistinguishable. Additionally, we chose

λ = 1.5ωS , but the plots are actually independent of λ as
shown in Fig. 7.

and derived a validity criterion (44) involving only the
inverse bath temperature β and the reaction coordinate
frequency Ω, holding for arbitrary spectral width γUD
and arbitrary coupling strength. This criterion relies on
analytical arguments which were confirmed numerically.

Thanks to these validity criteria, one has in hand prac-
tical tools to assess the validity range of these two tech-
niques. Although these validity criteria were numerically
tested for the spin-boson model, they can be extended
to arbitrary systems, and the curious fact that they do
not involve the system’s energy scale might suggest that
they do work for other systems. It would be interesting
to test that.

Additionally, it would also be instructive and useful
to extend this comparative analysis to other techniques
like pseudo-mode [34–37], as well as to the ultrastrong
coupling regime [47, 52, 58].

ACKNOWLEDGMENTS

I am grateful for on going discussions with Ilya
Sinayskiy, Graeme Pleasance, and Francesco Petruc-
cione. I also would like to thank Patrice Camati for a
crash course on QuTiP, as well as all QuTiP contrib-
utors for setting up and developing such a useful tool.
The author acknowledges the support of the French
Agence Nationale de la Recherche (ANR), under grant
ANR-20-ERC9-0010 (project QSTEAM).

Appendix A: Expression of the function g(ν, ν′)

The function g(ν, ν′) introduced in the main text is de-

fined by g(ν, ν′) :=
∫ β

0
du1

∫ u1

0
du2e

−νu1+ν′u2cB(u1−u2).
Re-writing its expression and introducing the variable
v2 = u1 − u2, we obtain

g(ν, ν′) =

∫ β

0

du1

∫ u1

0

du2e
−νu1+ν′u2cB(u1 − u2)

=

∫ β

0

du1

∫ u1

0

dv2e
−νu1eν

′(u1−v2)cB(v2)

=

∫ β

0

du1

∫ u1

0

dv2e
(ν′−ν)u1e−ν

′v2cB(v2)

=

∫ β

0

dv2

∫ β

v2

du1e
(ν′−ν)u1e−ν

′v2cB(v2)

=

∫ β

0

dv
e(ν′−ν)β − e(ν′−ν)v

ν′ − ν
e−ν

′vcB(v)

= β

∫ 1

0

dv
e(ν′−ν)β − e(ν′−ν)vβ

ν′ − ν
e−ν

′vβcB(vβ)

=
β

ν′ − ν

∫ 1

0

dv[e(ν′−ν)βe−ν
′vβ − e−νvβ ]cB(vβ)

=
β

ν′ − ν

[
e(ν′−ν)β

∫ 1

0

due−ν
′βucB(uβ)

−
∫ 1

0

due−νβucB(uβ)

]
. (A1)

We are then led to compute

G(ν, β) :=

∫ 1

0

due−νβucB(uβ). (A2)

In order to obtain analytical expressions for the under-
damped and over-damped bath spectral density, it will
be convenient to decompose G(ν, β) in the following way,

G(ν, β) = C(−ν) + e−βνC(ν), (A3)

where

C(ν) :=

∫ ∞
0

dωJ(ω)

[
nω + 1

β(ω − ν)
− nω
β(ω + ν)

]
(A4)

=

∫ ∞
0

dωJ(ω)
νcoth(ωβ/2) + ω

β(ω2 − ν2)
. (A5)

Then, from (A1), we obtain

g(ν, ν′) =
β

ν′ − ν

[
e(ν′−ν)βG(ν′, β)−G(ν, β)

]
, (A6)

for ν 6= ν′, and for ν′ = ν,

g(ν) := g(ν, ν) = β [βG(ν, β) +G′(ν, β)] (A7)
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where G′(ν, β) := ∂
∂νG(ν, β) = −C ′(−ν)− βe−νβC(ν) +

e−νβC ′(ν) and C ′(ν) is the partial derivative with respect
to ν,

C ′(ν) :=
∂C(ν)

∂ν

=

∫ ∞
0

dωJ(ω)

[
nω + 1

β(ω − ν)2
+

nω
β(ω + ν)2

]
.

(A8)

Alternatively, in term of the function C(ν), we have
g(ν) = β

[
βC(−ν)− C ′(−ν) + e−βνC ′(ν)

]
.

1. Exact expression of C(ωS) and C′(ωS)

a. Over-damped (Lorentz-Drude) spectral density

For JOD(ω) = α
ωω2

c

ω2+ω2
c
, we have

COD(ν) =

∫ ∞
0

dωJ(ω)
νcoth(ωβ/2) + ω

β(ω2 − ν2)

=
αω2

c

β

∫ ∞
0

dω
ω

ω2 + ω2
c

ν cothωβ/2 + ω

ω2 − ν2

=
αω2

c

β

[∫ ∞
0

dω
ω

ω2 + ω2
c

ω

ω2 − ν2

+
2ν

β

+∞∑
n=−∞

∫ ∞
0

dω
ω

ω2
c + ω2

1

ω2 − ν2

ω

ω2 + ν2
n

]
(A9)

with νn = 2πn/β, called the Matsubara frequencies [1].
For the first term we have∫ ∞

0

dω
ω

ω2 + ω2
c

ω

ω2 − ν2

=
1

ω2
c + ν2

∫ ∞
0

dω

(
ω2
c

ω2 + ω2
c

+
ν2

ω2 − ν2

)
=

ω2
c

ω2
c + ν2

π

2ωc
. (A10)

Generalising that to situations where ωc is a complex
number (which will be useful for under-damped spectral
densities, see in the following), we have∫ ∞

0

dω
ω

ω2 + ω2
c

ω

ω2 − ν2
=


ω2
c

ω2
c+ν2

π
2ωc

if <ωc > 0,

− ω2
c

ω2
c+ν2

π
2ωc

if <ωc < 0.

(A11)

For the second term, we have
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∞∑
n=−∞

∫ ∞
0

dω
ω

ω2
c + ω2

1

ω2 − ν2

ω

ω2 + ν2
n

=

∞∑
n=−∞

1

ν2 + ν2
n

∫ ∞
0

dω

[
ν2
n

ω2
c − ν2

n

(
1

ω2 + ν2
n

− 1

ω2 + ω2
c

)
+

ν2

ν2 + ω2
c

(
1

ω2 − ν2
− 1

ω2 + ω2
c

)]

=

∞∑
n=−∞

1

ν2 + ν2
n

[
ν2
n

ω2
c − ν2

n

(
π

2|νn|
− π

2(±ωc)

)
+

ν2

ν2 + ω2
c

(
0− π

2(±ωc)

)]

=
π

2

∞∑
n=−∞

1

ν2 + ν2
n

1

±ωc

[
|νn|

±ωc + |νn|
− ν2

ν2 + ω2
c

]

=
π

±2ωc

[ ∞∑
n=−∞

1

ν2 + ν2
n

|νn|
±ωc + |νn|

− ν2

ν2 + ω2
c

∞∑
n=−∞

1

ν2 + ν2
n

]

=
π

±2ωc

[
2

∞∑
n=1

1

ν2 + ν2
n

νn
±ωc + νn

− 1

ν2 + ω2
c

− 2ν2

ν2 + ω2
c

∞∑
n=1

1

ν2 + ν2
n

]

= − π

±2ωc

1

ν2 + ω2
c

+
π

±2ωc

[
2
β2

4π2

∞∑
n=1

1

n2 + ν2β2

4π2

n

n± ωcβ
2π

− 2ν2

ν2 + ω2
c

β2

4π2

∞∑
n=1

1

n2 + ν2β2

4π2

]

= − π

±2ωc

1

ν2 + ω2
c

+
π

±ωc
β2

4π2

[
2π2

β2

1

ν2 + ω2
c

F (νβ,±ωcβ)− ν2

ν2 + ω2
c

νβ
2 coth νβ

2 − 1
ν2β2

2π2

]

= − π

±2ωc

1

ν2 + ω2
c

+
π

±2ωc

1

ν2 + ω2
c

[
F (νβ,±ωcβ)− νβ

2
coth

νβ

2
+ 1

]
=

π

±2ωc

1

ν2 + ω2
c

[
F (νβ,±ωcβ)− νβ

2
coth

νβ

2

]
,

(A12)

where ±ωc stands for the possibility of ωc being complex, where in such case one has to choose the sign corresponding
to <(±ωc) > 0, and

F (νβ,±ωcβ) =
1

2π

[
−(±ωc + iν)βΨ

(
1 + i

νβ

2π

)
− (±ωc − iν)βΨ

(
1− iνβ

2π

)
± 2ωcβΨ

(
1 +
±ωcβ

2π

)]
, (A13)

with Ψ(x) being the Digamma function. All together we obtain (changing the variable in the argument from ν to ω),

COD(ω) =
π

±2ωc

α

β

ω2
c

ω2
c + ω2

[
ω2
c − ω2coth(ωβ/2) +

2ω

β
F (ωβ,±ωcβ)

]
. (A14)

For C(0) =
∫∞

0
dω J(ω)

βω = Q
β , we simply have

COD(0) =
QOD
β

=
π

2

α(±ωc)
β

. (A15)

Then, C ′OD(ω) is ”just” the derivative of COD(ω), which gives

C ′OD(ω) =
π

2

α

β

ω2
c

ω2
c + ω2

[
−2ωωc
ω2
c + ω2

[1 + coth(ωβ/2)]− ω2β

2ωc
coth′(ωβ/2) +

2

ωcβ

ω2
c − ω2

ω2
c + ω2

F (ωβ, ωcβ) +
2ω

ωcβ
F ′(ωβ, ωcβ)

]
,

(A16)

where coth′(x) := ex

sinhx (1− cothx) is simply the derivative of coth(x), and

F ′(ωβ, ωcβ) :=
∂

∂ω
F (ωβ, ωcβ)

=
β

2π

[
−iΨ

(
1 + i

ωβ

2π

)
+ iΨ

(
1− iωβ

2π

)
+ (ω − iωc)

β

2π
Ψ′
(

1 + i
ωβ

2π

)
+ (ω + iωc)

β

2π
Ψ′
(

1− iωβ
2π

)]
(A17)



15

with Ψ′ is the derivative of the Digamma function.

Again, if ωc is complex, we simply have

C ′OD(ω) =
π

±2ωc

α

β

ω2
c

ω2
c + ω2

[
−2ωω2

c

ω2
c + ω2

[1 + coth(ωβ/2)]− ω2β

2
coth′(ωβ/2) +

2

β

ω2
c − ω2

ω2
c + ω2

F (ωβ,±ωcβ) +
2ω

β
F ′(ωβ,±ωcβ)

]
.

(A18)

b. Under-damped spectral density

We now consider an under-damped spectral density of
the form JUD(ω) (22),

JUD(ω) := ω
2

π

γUDΩ2λ2

(Ω2 − ω2)2 + (γUDΩω)2
. (A19)

Such spectral densities can lead to difficulties related to
analytical integration. This can be circumvented by ex-
pressing JUD as the difference of two over-damped spec-
tral densities,

JUD(ω) = J−OD(ω)− J+
OD(ω) (A20)

where

J±OD(ω) :=
2

π

γUDΩ2λ2

ω2
+ − ω2

−

ω

ω2 + ω2
±
, (A21)

with ω2
± := Ω2

(
γ2
UD

2 − 1± γUD
√

γ2
UD

4 − 1

)
, always pos-

itive for γUD ≥ 2, and complex for γUD < 2. Using this
mapping, we straightforwardly obtain

CUD(ω) = C−OD(ω)− C+
OD(ω),

C ′UD(ω) = C ′
−
OD(ω)− C ′+OD(ω), (A22)

where C±OD(ω) and C ′
±
OD(ω) are given by the above ex-

pressions (A14) and (A16) substituting ω2
c by ω2

±, and α

by α± := 2
π

γUDΩ2λ2/ω2
±

ω2
+−ω2

−
= λ2

πΩ2 f±(γUD) with

f±(γUD) =
1(

γ2
UD

2 − 1± γUD
√

γ2
UD

4 − 1

)√
γ2
UD

4 − 1

.

(A23)
However, one has to be careful (see (A11)) for γUD < 2
since ω2

± becomes complex. One can verifies that for all

γUD > 0, <
√
ω2
± > 0, so that the above expressions

(A22) still hold without change of signs, namely,

CUD(ω) =
π

2ω−

α−
β

ω2
−

ω2
− + ω2

[
ω2
− − ω2coth(ωβ/2)

+
2ω

β
F (ωβ, ω−β)

]
− π

2ω+

α+

β

ω2
+

ω2
+ + ω2

[
ω2

+ − ω2coth(ωβ/2)

+
2ω

β
F (ωβ, ω+β)

]
, (A24)

and similarly for C ′UD(ω).
As a side note, we also show that the reorganisation

energy is given by QUD = λ2

Ω . From the above mapping
into over-damped spectral densities, we have

QUD = QOD,− −QOD,+

=
π

2
α−

√
ω2
− −

π

2
α+

√
ω2

+

=
γUDΩ2λ2

ω2
+ − ω2

−

(
1

ω−
− 1

ω+

)
.

(A25)

Since,

1

ω2
+ − ω2

−

(
1

ω−
− 1

ω+

)
=

1

ω2
+ − ω2

−

ω+ − ω−
ω+ω−

=
1

ω+ + ω−

1

ω+ω−

=
1

ω+ + ω−

1

Ω2

=
1

Ω3

[(
γ2
UD

2
− 1 + γUD

√
γ2
UD

4
− 1

)1/2

+

(
γ2
UD

2
− 1− γUD

√
γ2
UD

4
− 1

)1/2 ]−1

=
1

Ω3

1

γUD
. (A26)

Note that one can easily see the last line by taking the
square of what is in the square bracket. Then, we finally
obtain

QUD =
λ2

Ω
, (A27)

Finally, note some useful identities with ω2
±,

ω+ω− = Ω2

ω+ + ω− = ΩγUD. (A28)

Appendix B: Some additional plots of dextcoh/pop and
criteria cri

In this section we provide some additional plots in Figs.
9 and 10, showing unambiguously that the criterion cr4 =
βQ (as well as cr1) accurately predicts the validity range
of the perturbative expansion.
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FIG. 9. On the left-hand-side, plots of dexppop (large purple dots)
and dexpcoh (small green dots); on the right-hand-side plots of
the criteria cri, all in function of λ (unit of ωS). The color
convention for the criteria is the same as in the main text,
namely, cr1 (black solid line), cr2 (blue solid line), cr3 (green
solid line), and cr4 (red dashed line). The other parameters
are as follows:(a) Ω/ωS = 1, ωSβ = 0.5; (b) Ω/ωS = 0.1,
ωSβ = 0.5; (c) Ω/ωS = 1, ωSβ = 20; (d)Ω/ωS = 0.1, ωSβ =
20. The remainder of the parameters are chosen as in figures
of the main text, namely γUD = 0.1, rz =

√
0.75, r = rx +

iry = 0.5.
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