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Steady State Memetic Algorithm for PartialShape MatchingEnder Ozcan and Chilukuri K. Mohaneozcan/mohan@top.cis.syr.edu2-120 Center for Science and TechnologyDepartment of Electrical Engineering and Computer ScienceSyracuse University, Syracuse, NY 13244-4100, U.S.A.Abstract. Shape matching techniques are important in machine intel-ligence, especially in applications such as robotics. Currently, there arethree major approaches to shape recognition: statistical, syntactic andneural approaches. This paper presents a fourth approach: evolutionaryalgorithms. A steady state memetic algorithm is shown to be successfulin matching shapes even when they are partially obscured, and even inthe presence of noise in the input image.1 IntroductionMany intelligent applications, such as VLSI design and part inspection, use shapematching algorithms to identify the model shapes whose instances are presentin an input shape . This task is computationally expensive when objects inthe input image overlap, touch, or occlude one another. Existing approaches tosolve the shape recognition problem ([3, 1, 4, 7, 8, 18, 17]) do not perform wellin such situations. We show that appropriate evolutionary algorithms performextraordinarily well for such problems.In related work, Bala and Wechsler [2] apply genetic algorithms (GAs) todevelop morphological operators for shape classi�cation, not directly for shapematching. Di Ianni [6] uses genetic algorithms (GAs) for matching shapes butthe results obtained were not encouraging, possibly because of using raw pixelarrays for the representation of shapes rather than image features.In our earlier work, we obtained preliminary results on a small set of shapes,showing that GAs can be used for shape matching[11], and that they performbetter than than simulated annealing[12]. This paper shows that even betterresults are obtained using a steady state algorithm: we present results for alarge set of shapes, and with noisy perturbation of input shapes. Our algorithmgave robust matching results for the test shapes, providing translation, rotationand size independence. The new algorithm is introduced in Section 2. Section 3describes experimental results, and the conclusions are presented in Section 4.



2 Steady State Memetic Algorithm for Shape Matching2.1 Memetic AlgorithmsEvolutionary algorithms are population-based search procedures drawing inspi-ration from the biological processes of genetics and evolution. Many researchers,such as Moscato [9] and Radcli�e et al. [13] have pointed out the usefulness ofhill climbing and local search operators in evolutionary algorithms. Our researchapplies such a Memetic Algorithm (MA) that invokes hill climbing after gen-erating o�spring using evolutionary operators. This approach has already beenapplied successfully to several problems such as the Traveling Salesman Problem(Moscato et al. [9]).Dawkins [5] coined the word meme to refer to a \contagious" piece of in-formation. If a person is infected by a meme, that person processes the meme;understands it, adapts it and passes it on, whereas genes get inherited unchanged.This adaptation process resembles local re�nement, hence the use of the term\memetic algorithm" for evolutionary algorithms that make extensive use oflocal search.2.2 FeaturesThe results of shape matching depend signi�cantly on the features chosen torepresent the shapes. For specialized problems such as face recognition, problem-speci�c features may lead to best results. For the general problem, however, weneed a description of each shape in terms of generic features (such as line seg-ments), that are also easy to extract using well-known algorithms. Furthermore,the choice of the representation is crucial if size-invariant and rotation-invariantshape recognition is desired.To meet these requirements, we have chosen attributed strings[14, 15] to rep-resent shapes. Each shape is considered to be a polygon, de�ned by a stringof features (x1; x2; :::; xi; :::; xn). Each feature xi = (li; �i) is a set of attributesbelonging to the ith line segment on shape x: The length li of the correspondingline segment, and the relative angle (turn angle) �i it forms with the preced-ing line segment xi�1. The choice of these attributes provides invariance undertranslation and rotation transformations. Normalization of lengths provides areliable scale invariant measure (Figure 1), and the following functions are usedby our algorithm: l(li) = li=li�1, �(�i) = �i:
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Fig. 1. After the normalization, thequadrilateral representation becomes((1:33; �2 ); (1:05; �4 ); (1:67; 3�4 ); (0:43; �2 )):



2.3 RepresentationIn the MA for shape matching, each individual maps each input shape featureto one of the model shape features. Each individual is represented as a list oflists in which each entry has two slots, one showing the matching model shapeand the other showing its corresponding feature. We use the following notation:{ Input shape I = (I1; I2; :::; Ip; :::; In). Size of input shape jIj = n, the numberof features in I.{ The model shapes are M1;M2; :::;Mj; :::;MS, where Mj = (Mj;1; :::;Mj;mj):Size of the jth model shape jMjj = mj .{ Each individual P = (P1; P2; :::; Pk; :::; Pn) corresponds to a mapping �Pfrom input shape features to model shape features such that Pk = �P (Ik) =Mj;i, where 1 � k � n, 1 � j � S, and 1 � i � mj .The initial population is a set of randomly chosen individuals. The shaperecognition problem now reduces to multiple substring matching. The searchspace is immense, since multiple partial instances of the same model shape maybe present in the input shape2.4 FitnessThe �tness of an individual describes how well each feature of the input shapematches with the model shape feature to which it is matched. Fitness also de-pends on the degree of consistency between model features to which neighboringshape features (Ij ; Ij+1) are mapped.Fitness is calculated by testing the compatibility of the input shape featuresand the corresponding model features to which an individual maps them. Thedi�erence (dissimilarity) between input shape feature Ik and model feature fk =�P (Ik) is measured by means of a distance function d(Ik; �P (Ik)), de�ned below.d(Ik; �P (Ik)) = 8>>>>>>>>>>>><>>>>>>>>>>>>:d�(Ik; �P (Ik)) + dl(Ik; �P (Ik)) if �P (Ik�2) = Mi;j�2,�P (Ik�1) = Mi;j�1,�P (Ik) = Mi;j and�P (Ik+1) = Mi;j+1for some i; jd�(Ik; �P (Ik)) if �P (Ik�1) = Mi;j�1 and�P (Ik) = Mi;jfor some i; j1 otherwise:This measure has angle and length components. The �rst component, fromangle measurements, is de�ned as follows:d�(Ik; �P (Ik)) = c� abs(�(Ik)� �(�P (Ik)))The constant c� is chosen in our experiments so that di�erences up to �=18are considered negligible. For angle information (d�) to be useful, it is necessary



for two successive input shape features to be mapped to two successive features ofthe same model shape. The length component of the distance measure comparesthe normalized feature lengths as follows:dl(Ik; �P (Ik)) = j(l(Ik)� l(�P (Ik)))=max(l(Ik); l(�P (Ik))jThis measure is invoked only if four successive input shape features to be mappedto four successive features of the same model shape. This is because normalizedlength information for the kth feature is reliable only if the (k � 1)th feature' slength is known, and the latter information is unreliable if the (k � 2)th inputfeature is not matched to the corresponding feature of the same model. Alsonotice that overlapping may occur at kth feature, mapping the (k + 1)th inputfeature to a di�erent model shape feature, making the length information (dl)unreliable. For example, a rectangle and a hexagon are overlapped to form an
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c Fig. 2. Overlapped rectangle and a hexagon asan input shape.input shape in Figure 2, whose features include w; x; y and z. For the mostappropriate matching, only d� must be used to calculate the distance of featuresw and y, whereas both d� and dl can be used for z. Neither d� nor dl is reliablefor x, since x and its preceding feature c belong to di�erent model shapes.The distance between two features is compared with a threshold value. Ifthe distance is small, then the corresponding primitive is marked as matched.Otherwise, the features are not considered to have matched:Matched(Ik; �P (Ik)) = �1 if d(Ik; �P (Ik))< threshold0 otherwiseThe �tness function penalizes the number of partially matched objects in theinput shape to which features are mapped by an individual. Fitness is calculatedusing the following formula:Fitness = �(No. of partial shapes + No. of unmatched input shape features)2.5 Selection and CrossoverSteady State evolutionary algorithms apply one crossover or recombination stepat a time, then apply selection. One point crossover (1PTX) was used in allexperiments reported in this paper. Experiments showed that 1PTX performsas well as two point crossover. Each application of 1PTX produced two o�springfrom two parents selected randomly for mating. The best two among these four(parents and o�spring) were chosen to survive in the population. This processwas iterated until either the population converges to a relatively unchangingstate, or until computational limitations were exceeded.



2.6 MutationDe�nition: An input shape feature and a model shape feature are consideredto be Similar when the error for each of the next two successive turn angles isless than �=18:Similar(Ik ; �P (Ik)) = 8<:1 if d�(Ik+1; �P (Ik+1)) and d�(Ik+2; �P (Ik+2))<�=18for some k0 otherwiseDe�nition: Similarity List is an array of lists, where the size of the arrayindicates the size of the input shape and each list consists of features of themodel shapes that are similar to each feature of the input shape.We have used a mutation operator that replaces a subsequence with a �xedlength of 3, from an individual by an equally longmodel shape subsequence. Eachallele is mutated with a probability of 1/n The start feature for the subsequenceis chosen randomly from the similarity list.2.7 Hill ClimbingHill climbing is applied, primarily to improve the mappings obtained at theborders between feature sequences mapped to di�erent model shapes. Each hillclimbing step attempts to improve the �tness of an individual by shifting the \in-tersection point" (between feature sequences mapped to di�erent model shapes)�rst in one direction, then in the opposite direction, replacing the relevant com-ponent by the most appropriate feature from the model to which neighbor-ing shape features are mapped. For instance (Figure 3), if �P (Ik) = Mj;i and
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OR Fig. 3. Hill climbing inaction.�P (Ik+1) = Mp;q, hill climbing �rst attempts to change �P (Ik) toMp;q�1. If thisattempt does not improve the �tness, hill climbing attempts to change �P (Ik+1)to Mj;i+1. The change is not implemented if the �tness does not improve.3 Experimental ResultsThe matching threshold is a nonlinear function of t = max(l(Ik); l(�P (Ik))),allowing less error for high values, e.g. 0.2 for t > 0:5, and higher error for lowervalues, e.g. 0.9 for t < 0:005. In our MA experiments, we used a population sizetwice the number of features of the input shape. Each MA run was terminatedwhen the correct solution was reached, or if the number of crossovers equals500,000. Each test was repeated 100 times for all input shapes on a Sun work-station. 100 model shapes were used (s0 � s99), subset of which are shown in



Figure 4. The rest of the model shapes can be found in [12]. All of the inputshapes(j0�j15) were obtained by overlapping two or more model shapes (Figure5). In the tables, \fr:" refers to the frequency of matching, i.e., how often thecorrect result was obtained.
Fig. 4. Subset of normalized model shapesFig. 5. Normalized input shapesIn the experiments reported here, we utilized steady state MA with the bestmutation operator from [10]. A larger database of model shapes was used forsteady state MA experiments. In the recent experiments, even though the totalnumber of model features increase by a factor of 3.41, hence expanding the searchspace by a factor of 3:41n, the number of states visited increases at most 50%.Initial experiments were conducted using j0� j10 and s0� s39 to determinethe e�cacy of various operators. Performance became poorer if hill climbingwas omitted, i.e., when a GA was used instead of MA (Table 1). The algorithmworks best if all of the three operators (crossover, mutation and hill climbing)are used.



Table 1. Steady state MA test results using mutation and crossover (without hillclimbing): Averages (�), and standard deviations (�) are based on over 100 experimentsfor each input shape in which the correct solution is found within 500,000 attempts ofcrossovers. Shape No. of attempts Time (sec.)label fr: � � � �j0 0.46 110,614.44 130,619.29 61.79 72.85j1 0.96 34,263.77 83,897.43 11.24 27.49j2 0.00 500,000.00 0.00 293.05 4.13j3 0.38 196,686.42 145,355.65 126.07 93.51j4 0.73 37,469.96 76,595.18 17.66 36.49j5 0.57 61,420.72 109,533.77 24.09 43.00j6 0.83 70,718.06 97,432.07 130.24 181.15j7 0.48 149558.77 154531.94 173.90 179.90j8 0.14 431837.66 169001.91 606.30 237.35j9 0.02 24,053.00 8,210.00 25.77 8.87j10 0.30 165,728.73 132,817.56 242.95 195.21Table 2 shows the results obtained by applying the GA to noisy versionsof j4 against s0 � s39. Locations of 5%-25% of the input image vertices wererandomly perturbed (higher noise levels may completely alter a shape). Ouralgorithm successfully found the correct (expected) matching results in almostall runs for all input shapes at di�erent noise levels.Table 2. Test results for input image j4: Success rates are averages of over 100 exper-iments, for di�erent noise levels (fraction of features perturbed).Noise Levels 0.05 0.10 0.15 0.20 0.25Success Rate 1.00 1.00 1.00 0.93 1.00De�nition: Visibility ratio (v:r:) is the ratio of total number of input shapefeatures and the total number of features of each composing shape.Several experiments were conducted to observe the behavior of our algorithmas the number of occluded features increases, using input shapes shown in Figure6. Shapes s26 and s27 are overlapped forming r0� r6 and shapes s21, s26 ands27 are overlapped forming r7 � r15 with di�erent visibility ratios. The lastshapes are overlapped keys where the number of partial shapes increases withlabel number; the average visibility ratio is 0.89.Visibility ratio test results (Table 3) show that decrease in the visibility ratiocauses a decrease in the number of states visited. Meanwhile as the number of



Fig. 6.Overlapped shapes r0�r19 withdi�erent visibility ratios.partial shapes forming an input shape increases, the number of states visitedincreases as well. Still, MA found the correct matching result for visibility ratiotests in all runs. Experiments were performed using all operators and input andTable 3. Steady state MA test results while varying visibility ratioShape No. of Crossovers No. of HC steps Time (sec.)label v:r: fr: � � � � � �r0 1.00 1.00 537.96 288.96 12.60 3.11 1.19 0.50r1 0.91 1.00 783.08 566.33 10.61 3.15 1.45 0.87r2 0.77 1.00 189.69 121.64 16.71 6.81 0.42 0.24r3 0.64 1.00 175.70 106.82 11.69 3.55 0.35 0.19r4 0.55 1.00 192.48 207.23 10.22 2.99 0.33 0.29r5 0.43 1.00 136.29 93.08 9.34 5.28 0.21 0.13r6 0.32 1.00 85.10 59.12 7.70 2.47 0.11 0.07r7 1.00 1.00 881.83 387.98 11.98 2.36 2.43 0.90r8 0.93 1.00 1,173.69 665.35 10.31 2.59 2.88 1.40r9 0.83 1.00 400.97 136.11 14.64 2.97 1.10 0.34r10 0.73 1.00 478.96 213.73 10.93 1.84 1.18 0.47r11 0.66 1.00 378.14 246.28 11.50 2.22 0.89 0.48r12 0.58 1.00 480.81 237.88 8.73 1.45 0.98 0.42r13 0.49 1.00 238.61 131.05 10.40 2.54 0.46 0.22r14 0.46 1.00 255.67 148.78 9.34 2.31 0.47 0.24r15 0.39 1.00 243.68 132.39 8.19 1.88 0.41 0.20r16 1.00 1.00 716.62 327.07 12.91 2.06 2.57 0.92r17 0.81 1.00 1,617.98 377.26 11.07 1.35 7.60 1.55r18 0.89 1.00 4,216.15 1,742.46 9.96 1.07 27.74 9.38r19 0.88 1.00 4,539.13 1,903.92 8.29 0.74 26.94 9.62model shape database, demonstrating the success of memetic algorithm (Table4). The execution times were not a�ected by the enlargement of database. Asresults show, steady state MA found the correct matching for all input shapes(except j2 with fr: 0.99).



Table 4. Steady state MA test results using all operators: Averages (�), and standarddeviations (�) are based on over 100 experiments for each input shape in which thecorrect solution is found within 500,000 crossovers.Shape No. of crossovers No. of HC steps Time (sec.)label fr: � � � � � �j0 1.00 236.82 157.69 12.68 7.03 0.47 0.25j1 1.00 55.45 32.26 16.61 7.93 0.09 0.04j2 0.99 17,974.36 65,989.43 7.12 2.22 29.56 106.79j3 1.00 634.21 430.21 10.18 2.54 1.40 0.80j4 1.00 192.48 207.23 10.22 2.99 0.33 0.29j5 1.00 129.96 112.26 14.18 4.42 0.27 0.19j6 1.00 722.80 268.93 21.34 2.99 3.45 0.97j7 1.00 3,860.49 3,332.53 8.38 4.10 8.27 6.64j8 1.00 353.71 101.68 25.40 3.62 1.54 0.38j9 1.00 501.71 271.52 12.00 1.95 1.70 0.74j10 1.00 2,290.88 3,684.49 8.62 1.38 8.86 11.46j11 1.00 8,188.33 7,998.94 6.55 1.13 29.47 26.15j12 1.00 1,381.74 1,699.11 15.05 3.22 8.23 6.69j13 1.00 2035.80 642.78 16.44 2.71 18.95 4.77j14 1.00 4,346.20 3,751.22 12.85 2.54 37.73 23.5j15 1.00 7,145.50 3,268.92 10.65 1.68 73.16 25.454 ConclusionsWe have used a steady state memetic algorithm for shape matching, utilizingattributed string representations. Outline features of shapes are represented us-ing attributed strings. Each line segment is associated with a feature of twoattributes: length and angle. Relative lengths and angles are used for size invari-ance. The algorithms we propose have many advantages:{ They are much more computationally e�cient than exhaustive search algo-rithms.{ They are space-e�cient compared to neural networks, with much smallermemory requirements.{ The algorithms are fast, and explore a relatively small number of elementsof the search space.{ The results obtained are better than a traditional GA without hill climbing.{ Operators used by MA help avoid getting stuck in locally optimal solutions.{ Steady state MA performs better than transgenerational MA, even undernoise.{ Steady state MA performs better than simulated annealing.If multiple instances of the same model shape are overlapped to form aninput shape, or if two model shapes are almost identical, MA might get stuck in
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