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Summary

The aim of the present paper is to analyse the behaviour of the stress and displacement fields
in the vicinity of the tip of a crack moving along a bi-material interface. For simplicity, we
consider a straight interface of infinite extent. We assume that the two phases are separated
by a thin layer which is either ‘soft’ or ‘stiff’ compared to the other two phases. We derive
the transmission conditions which take into account the material properties of the layer and
model the way the load is transferred across the layer from one phase to the other. We assume
that the point of interchange in the boundary/transmission conditions coincides with the crack
tip that moves along the interface boundary with a constant speed. We develop an integral
equation formulation and derive asymptotic formulae for the out-of-plane displacement and the
Mode-I11 stressintensity factor associated with such a motion of the crack inside the interphase
layer. The theoretical results are illustrated by numerical examples.

1. Introduction

In recent years there has been substantial interest in static models of elasticity and heat transfer
in heterogeneous materials, where interface surfaces are modelled by transmission conditions in-
volving jumps of displacements and/or components of tractions. Examplesinclude rigid inclusions,
adhesive joints, inertial and frictional interfaces.

A model of atwo-phase composite with an interfacial surface of resistance between the phases
was considered by Lipton and Vernescu (1) who introduced new variational principles and derived
the bounds describing the effective conductivity tensor for such a composite. Asymptotic models of
dilute composites with imperfectly bonded inclusions were studied in (2). Benveniste and Chen (3)
considered the Saint-Venant torsion of cylindrical composite bars containing imperfect interfaces.
A related study involving asymptotic analysis of fields in thin beams with imperfect interfaces has
been donein (4). Hashin (5) has devel oped amethod for eval uation of the effective elastic moduli of
aunidirectional coated fibre composite, with imperfect interface conditions modelling the effect of a
thin soft elastic coating. Imperfect transmission conditions for athin weakly compressible interface
have been studied by Mishuris (6). The integral equations describing the transmission conditions
for rigid inclusions have been derived in (7, 8). A mathematical model for a fibre with a frictional
interface has been proposed and analysed in (9). Static models of interphases and analysis of stress
singularitiesin linear fracture mechanics were discussed by Atkinson (10).

Q. JI Mech. Appl. Math, Vol. 59. No. 4 © The author 2006. Published by Oxford University Press;

all rightsreserved. For Permissions, please email: journals.per missions@oxfor djournals.org
Advance Access publication 12 October 2006. doi:10.1093/gjmam/hbl013

220z 1snbny 0z uo 1senb Aq 050Z161L/.81/v/6G/0101e/wew(b/woo dno-ojwspeoe//:sdiy woly pepeojumoq



488 G. S. MISHURISet al.

Static problems of elasticity and heat transfer in multi-phase composites containing cracks on
soft imperfectly bonded bi-material interfaces have been studied in (11, 12). Static Mode-111 cracks
on stiff interfaces have been considered by Mishuris (13).

In the present paper we consider aMode-111 crack moving along a bi-materia interface. We as-
sume that the two phases are separated by a thin layer which is either ‘soft’ or ‘stiff’ compared
to the other two phases. We derive the transmission conditions that take into account the material
properties of the layer and the behaviour of the mechanical fieldsinsideit, and give their classifica-
tions. The corresponding model problems for a crack moving along an imperfect interface, which
replaces the thin layer, are solved using integral transforms. The resulting functional equations are
reduced to integral equations with fixed point singularities. We study the uniqueness of solutions
of these equations and then solve them numerically. We also analyse the behaviour of the physical
fields near the crack tip for stiff and soft interfaces. The results are compared with those for the case
of a perfectly bonded interface (14). Finally, we look at the delamination crack propagating along
a gtiff interface. We present several numerical examples which illustrate our results in connection
with applications to fracture mechanics.

The paper is organized as follows. The classification of imperfect interfaces and description of
transmission conditions are given in section 2. Formulations of mathematical models and the corre-
sponding integral representations of solutions are discussed in sections 3 and 4. Section 5 includes
reduction of the model problems to singular integral equations and asymptotic analysis of their so-
lutions. We pay particular attention to the novel asymptotic representations of solutions of model
problems and their derivatives near thetip of the moving crack. Finally, section 6 presents numerical
simulations and concluding remarks.

2. Classification of interfaces. Transmission conditions

In this paper we consider a Mode-111 crack propagating aong an interface separating two homoge-
neous isotropic materials. Before giving the integral equation formulation modelling such a crack,
we would like to clarify the notion of imperfect interfaces and show the difference between such
interfaces and surfaces of ideal contact.

Assume that a bounded domain Q of diameter L (see Fig. 1) consists of two parts Q. and Q_,
separated by athin layer 11, of width h = ¢hg, with ¢ being a small positive non-dimensional pa-
rameter. The domain is subjected to an out-of-plane shear loading; the shear moduli of the materials
occupying Q. are denoted by x4 . The shear modulus x of the interphase layer can be either small,
similar or large compared to the moduli of the surrounding materials, and this will be essential for
the classification of imperfect interfaces.

The displacement functionsu® and u in Q4 and I, satisfy the equations of motion,

wAu=pii inll;, usAu® =piliT in Q.. (2.1)
These equations are supplied with conditions of ideal contact on the boundaries of I1,,

out ou
+
ur =u, — =u— on I'y, 2.2
P = o + (22)
where I' 1. isthe boundary between Q. and I1,, and n isaunit vector normal to I' ...

We consider the case when the wave speed v = /u/p characterizing the interphase layer I, is
either comparable with or larger than the wave speeds vy = /u+/p+ inthedomains Q.
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STEADY-STATE MOTION OF A MODE-I11 CRACK 489

Fig. 1 Composite structure with athin interphase

2.1 Anoutline

We deal with theinterfacesthat correspond to the following classes of transmission conditionsalong
the straight liney = 0.

1

Ideal contact interfaces involve continuity of the displacement and tractions, u™(x, 04, t) =
u=(x,0—,t) and w4 (Bu™/oy) (X, 0+,t) — u—(8u~/ay)(x, 0—,t) = 0. Thisis implemented
for thin interfacial layers whose elastic constants are of the same order of magnitude as the
elastic constants of the ambient media (15); u™ represent the leading terms of the displacement
fields above and below the interface.

Imperfect weak interfaces assume continuity of tractions and allow for the discontinuity of the
displacement; the corresponding transmission conditions are given by (2.3) below. This type of
interface describes soft thin adhesive joints.

Imperfect stiff interfaces correspond to thin interphase layers of high rigidity. Herewedistinguish
between two situations. In the first case, the thin layer is ‘replaced’ by transmission conditions
including a continuity condition for the displacement and a jump condition for the tractions; the
corresponding transmission conditions are given by (2.11) and (2.15). In the second case, the
highly rigid interphase layer also has a high mass density, the displacements u™ are continuous
across the interface u™ (x, 04, t) = u~(x, 0—, t) = u(x, t) and the function u(x, t) satisfies the
wave eguation (2.18).

2.2 \Weak interface

Here we assume that the shear modulus of the material in IT, issmall, so that u = e u,,, where u,,
is of the same order of magnitude as p .
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490 G. S. MISHURISet al.

To leading order, the transmission conditions for the displacements u® can be written in the form
(for V. < min(v, v4,v-))

out ou~ out
U —— = p-—— s Hp—— = 7 (U ly=04 — U ly=0-), (23
ay y=0+ ay y=0— ay y=0+ v
where
Tw = Mw/ho = u/h. (2.9

Static problems with transmission conditions of this type were studied in (1to 5).
In the following text, we assume that the crack moves with a constant speed V. < min(v, v, v_)
which, in particular, implies that

Vo<o=y/u/p=euw/p. (25)

This suggests that the material of the interface has a small density, p = ¢p,,, where p,, = O(p+).

2.3 Stiff interface
Type I. For astiff interface, it is assumed that
Hn = 1u3/89 and P = pS/ga (26)

where us has the same order of magnitude as .+, and ps is of the same order as p-+.
It will be shown that in this case the contact conditions for tractions are inhomogeneous. To see
this, we need several terms of the asymptotic expansion of u and u*. Let

ui(xa Y, ta 8) = u(:)t(xa Y, t) + {;‘UT(X, Y, t) + SZUEE(X, Yy, t) +---, (27)
U(X, ¢ t,8) = Uo(X, &, 1) 4 eUun(X, &, ) + £2Ua(X, &, ) + -+, (2.8)

where ¢ = y/¢ isthe scaled variable of the cross-section of I1,.
It follows from the second condition of (2.2) that

au ou ou ous
ﬂ§<60+861+8262+...> :ﬂiTO +.-- =0, (2.9
€ ¢ ¢ ¢ ¢=+ho/2 Y ly=ox
which implies that
ou
duo —0. (2.10)
OC |r=+hg/2

From the equation of motion it follows that the leading term uo(x, ¢, t) islinear in ¢. Together
with (2.10), thisimplies that ug is ¢ -independent, and hence we have continuity at the interface for
the displacementsu™, that is,

Uo(X, t) = ud (x, 0+,t) = ug (x, 0—, 1). (2.12)

Similarly to the leading term ug, the function u4 is also ¢ -independent. The displacement trans-
mission conditions yield
ho

d 0
uf (x,0+,t) —uy(x,0—,1t) = - (ayug(x, 0+, 1) + @ug(x, 0-, t)). (2.12)
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STEADY-STATE MOTION OF A MODE-III CRACK 491

For the function uz inside the layer we derive the equation

o%uz  0%up | 1 0%uo
ace  ax2 o p2 a2’

(2.13)

whereo = /us/ps. Theright-hand side of (2.13) does not depend on ¢, and hence

82U0 162U0
—ho =224 2220, 214
o2 °< ox2 T 02 o2 (2.14)
=—1lo,

Taking into account (2.9) we deduce the following transmission condition:

2,+ 2+
— 4sho 10%ug  o%ug
o 02 otz ox?

Type 1. It is aso possible to increase the stiffness of the interface and address the issue of the
corresponding transmission conditions and eguations describing such a structure. The interface will
be referred to as a* stiff interface of typell’, or rigid interface.

We assume that the thickness is the same as above, but the stiffness parameter is defined by
u = £ 2us, which is large compared to (2.6), and we also allow the interface to have high mass
density p = ¢ 2ps.

We use the asymptotic approximations (2.7) and (2.8). Thefunctionsug and u; are ¢ -independent,
and u; satisfies (2.13). The contact condition (2.9) is replaced by

ouo
o¢

ou»
o

¢=ho/2

oug
M oy

OUn
ﬂ_io
oy

(2.15)

y=0+ y=0+

ou ou ou ouZ
”§<60+861+8262+~--> =/¢i8—° +---=0(), (2.16)
& ¢ ¢ ¢ f=+ho/2 Y ly—os
which implies (2.10) and
0 0
% _o, % —o. 2.17)
S S

Hence, the functions ug, U1, U, are independent of ¢, and (2.13) is reduced to

82U0 1 62UQ
. e o 2.18
ox2 02 ot2 ( )

(compare with (2.14)). The jump in tractions for u§ will be linked to the terms of higher order in
the asymptotic approximation (2.7).

3. Formulation of model problems

We consider an infinite plane which consists of two half-planes Q1 = {(X,y): — o0 < X <
00, £y > 0}, as shown in Fig. 2. The materials occupying the half-planes Q. are linearly elastic
and isotropic, with shear moduli x4 and densities p... We assume that a semi-infinite crack M =
{(x,y):y =0,x < Vt} moveswith aconstant speed V < min{o4, v, v} in the positive direction
of the x-axis. The displacements u* satisfy the equations of motion in Q. (see (2.1)), the traction
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Q,

Moving crack Imperfect interface ahead of the crack

Q

Fig. 2 Composite plane with a crack moving along an imperfect interface

conditions on the crack surfaces

ou*
y=0+

and one of the four types of transmission conditions (discussed in section 2.1) posed at the interface
ahead of the moving crack x > Vt. The functions g4 in (3.1) describe a self-balanced external load
which is applied to the crack surfaces and moves with a constant speed V together with the crack
tip; these functions are chosen in such away that they decay sufficiently fast at infinity.

Assume that the displacement field hastheformu®(x, y, t) = u*(x = Vt, y) inQ, and at every
fixed timet it possesses afinite energy:

e’(u)z/Q (u§|Vu+|2+(u+)2)dxdy+/ (v21Vu™ ]2+ )?) dx dy < co. (3.2)

We shall use a new system of coordinates (X, y) moving with speed V together with the crack
tip such that (X, y) = (x — Vt, y). In the new coordinates, the equations of motion take the form

%ut 0%t

— +a;—5 =0 3.3
oxz T o0y2 ’ (33)
where
MU+ Ut
= . (3.9
px —Vpy /02 — V2
Also, we shall use the notation
u v
n=V2p  JpZ-V2 (39)
The boundary conditions (3.1) are then written as
ou*t
Pt =g+(—X), X <O (3.6)
Y ly=o0x

The transmission conditions ahead of the moving crack are written as follows.

e For anideal contact interface

n _ out ou~
u (X:O+) =u (X’O_)a lu-FTy(an—l—) = IU_W(X,O_)’ X > 0. (37)
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STEADY-STATE MOTION OF A MODE-I11 CRACK 493

e For aweak interface

out ou~
—(X,04+) = u_—(X,0—
M+ ay ( 5 +) M ay ( 5 ),

(3.8)
out " -
M+W(X,O+)=rw(u (X, 0+) —u™(X,0-))
for X > 0, and z,, given by (2.4).
o For astiff interface of typel
ut(X,04) —u~(X,0-) =0,
out ou~ s 02u™ (3.9
—X,04) —u-—X,0-) + = —5(X,04) =0
g 6 0) = o2 (X, 02) + 255 (X, 04)
for X > 0,and ts = ushg = uh.
o For adtiff interface of type Il (rigid interface)
2+
ut(X,04) —u"(X,0-) =0, (X,0+4)=0, X>0. (3.10)

X2
Thisis consistent with the description of arigid inclusion (see, for example, (8)).

In the moving frame, the energy functional (3.2) can be represented by the formula

£(u) :/ (v21Vut? + V2Uu§)?) dX dy+/ (v2|Vu™ 2+ V2Zuy)?) dXdy. (3.12)
Q Q.
The energy functional (3.11) isfiniteif the functions u™ are chosen in such away that

VuEX,y) = 0@ Ynr)P), r—0, VuEX,y)=00r"""nn%), r - oo,
(3.12)

wherer = /X2 + y2, Re(y0) > 0, Re(ys) > 0, and p, q areintegers. In addition, we assume that
uE(X,y) =UE+0@070(nnP), r—0, ufX,y)=00r7=(nr%, r— co. (3.13)

The second condition in (3.13) eliminates arbitrary additive constants in the representation of solu-
tions to the model boundary-value problems described above.

4. Integral representations

First, we introduce the coordinate transformations, X.- = a4 X, above and below the interface,
respectively. Equations (3.3) in the upper and lower half-planes then take the form

o%ut  p2u*
[ _|_ [
oXq = ay?

The boundary conditions (3.6) at the crack surfaces are

= O, (Xj:, y) e Q. (4.1)

ou* 1 ou*
v = —pE o =g+(re/as), (4.2)
Y ly—ox, x<0 SR P p——

where (r4, 0+) arepolar coordinatesdefined in Qi: X4+ =ry cosf+,y =rLsinfy, +0+ € (O, 7).
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494 G. S. MISHURISet al.
The applied loads g are self-balanced, that is,

/g+(X)dX:/ g_(X)dX. (4.3)
0 0

Thisimplies that

/00 ou* dx /°° 1 ou*
JIEs — + = Ut —
—00 ay y=0+ 0 r+ aei

or, taking into account (4.2),

/00 1 ou*
0 ﬂil’i 06+

The Méllin transforms G of the solutions u™ of (4.1) have the form

1 ou*
P ry 06+

dre=0 (44)
0+=0+

+ g:t(r:l:/a:t)‘| dry =0. (4.5)
04+=0+%

0% (s, 04) = AL (S) COS(0+S) + B (s) SIN(04S), (4.6)
where G are defined as follows:
0= (s, 01) = /0 ” uE(ra, o) tdrg. (4.7)
The boundary conditions (4.2) yield
—su+[FA(s)SN(xs) + B (s) cos(zs)] = aitg(s + 1), (4.8)
and the balance condition (4.3) takes the form

0+ =3g-(. (4.9)

The constraints (3.12) and (3.13) imply that the functions G*(s, -) are analytic in a strip 0 <
Re(s) < 700, Whereas sii* (s, -) and o0 (s, 6+) /06 are analytic in awider strip —yo < Re(s) <
700- AlSO, the relation (4.5) implies

lim urailsBi(s) = —g=(1). (4.10)
s—0

Finally, the integral representations for the functions u® have the form
1 ico+a
U (re, 0s) = ﬁ/ {A+(s) cos(6+8) + BL(s) Sin(@+s)}r:°ds, (4.11)
—loo+a

where0 < o < y isarea constant.

5. Asymptoticsfor cracksalong imperfect interfaces

The problems are reformulated in terms of singular integral equations. We analyse solutions of
these equations and derive new asymptotic representations for the displacement field near the tip of
a steady-state crack moving along an imperfect interface.
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STEADY-STATE MOTION OF A MODE-III CRACK 495

5.1 Imperfect weak interface

We begin with the case of aweak interface and introduce the following notation:
0 —s—
D1(s) = u+ﬁu+(s, 04) = u4sa;>1B4(s). (5.1)
+

LEMMA 5.1 The function D1 (s) is analyticinastrip —1 < Re(S) < y.0 and satisfies the functional
equation’

1

Di(s —1) — —cot(zs)D1(s) = ———G(s 0 < Re(s 5.2
11D1(s = 1) s (ws)Da1(s) ssn(s) 1(8), 0 <Re(s) < ycos (5.2)
where y., iS a non-negative constant, and D1(0) = —G1(0) = —§+(1). Here 71 is a non-

dimensional constant,

-1
1= —w Kl (5.3)
A-flp +app—

and the function G is analytic in a domain containing the strip —1 < Re(S) < 70, and it is defined

by the formula

appu-g+(+1)+a_pus§-(s+1)
A— i tayp—

Proof. According to (3.8), the transmission conditions across the imperfect weak interface can be
written in polar coordinates (r4, 1) asfollows:

Gi(s) = (54)

1out(re,0y) 1ou=(r—,0-)
pp— —p : (5.5)
ry 004 0, =0+ r-  o0- 0-=0~
1 out(ry,o
(U (4 O) — U™ (r—, 00) = gy = 2072 0) : (5.6)
v 00y g —o4
Using theidentity r /r_ = a; /a_ and applying the Mellin transform to (5.5), we obtain
_ aut(s, 0 _ o0~ (s, 06—
90+ g, o+ 90— o —o-
The representation (4.6) yields
spsa; tVBL(s) = su_a”®*VB_(s), (5.8)
where the functionssB_ (s) are analyticinastrip —yo < Re(S) < yco-
Similarly, the second transmission condition (5.6) gives
i+ _ Sg(s. 0y = e, 20 (6 _
uv(s,0+) — (a+/a-)’U~(s,0-) = 7, u+ pY: (s —1,04). (5.9)

T Matrix anal ogues of equations of this type were studied by a different method in (16).
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496 G. S. MISHURISet al.

The solutions u™ are sought in the class of functions with the following asymptotics:
uf = UM + 0 @rlInre +0(ry), r—0, uEF=001"), ri— oo, (5.10)

where U{") are constants, and
@, (0) = 0. (5.11)

Thus, p = 1,q = 0in(3.12), (3.13), and the functions G (s, 6. ) and (0% /664 )(s, 6+ ) areanalytic
instrips 0 < Re(S) < y00 and —yg < Re(S) < yoo respectively, whereas (60%/360+)(s, 0+) are
analytic in awider strip —1 < Re(S) < y~. Equation (5.9) can be written as

a; AL(s) —az®A_(s) = 1, us(s —1a®Bi(s — 1), 0 < Re(s) < yoo (5.12)
Equations (4.8), (5.1), (5.8) and (5.12) lead to (5.2), with D1 satisfying the constraint
—D1(0) = G1(0) = §= (1), (5.13)
the latter following from (4.9), (4.10), (5.1) and (5.4). The proof is complete.
Rearranging (5.2) gives

_ Da(s)cos(sz) + Ga(s)

D1~ 1) ssin(sz)

(5.14)

From (5.13) it then follows that the right-hand side of (5.14) has a simple pole at s = 0 and,
therefore, D1(s) hasasimple poleat s = —1. Rewriting (5.2) in the form

D1(s) = [s7t1D1(s — 1) sin(sz) — G1(S)] sec(sx) (5.15)

we deduce that the right-hand side of (5.15) hasasimplepoleats = % . Consequently, for asolution
of the functional equation (5.2) the constants yg and y~, can be chosen as follows:

10=1 Joo=73. (5.16)

5.1.1 Reduction to a singular integral equation. Let f; be a function whose Méellin transform
satisfies the following equation:

TS
A

Di(s) =T (1+5s)| fis+1) — % G1(0)| sin 5

(5.17)
where I'(s) is the Euler gamma function. We note that D1(s) defined by (5.17) satisfies (5.13).
Since D1(s) is analytic in the strip —1 < Re(s) < 3 and hassimple polesats = —1land's = 3,
and I'(s + 1) hasasimple pole at s = —1, it follows that then fi(s + 1) is analytic in a strip
—1- < Re(s) < 3 withd > 0.

LEMMA 5.2 The function fq satisfies the singular integral equation

f1(0) + 1 k() /0 ma(c/¢") 1N /¢ = ka(ON1(¢), 0 < ¢ < oo, (5.18)
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STEADY-STATE MOTION OF A MODE-III CRACK 497

where n1(¢) is the inverse Mellin transform of

2 211G 1(0) Gi(s)

TS
n1(s) = —G1(0) + cot — tan(ws) — R 5.19
1(6) s 10 T(s—1) 2 (s) I'd+ys) cos(ns)sjn(%ns) (519
1 1 [l 5ds NG

k =— = — = . 2

1&) 4+ and - ms(¢) 2zl J_jo COS(wS)  w(140) (5:20)
Proof. The function f1(s + 1) solves the following functional equation:
- - TS - ~

fis + 1) + 71 f1(5) (cot = tan(zs) - 1) + 71 fi(s) = Ag(s), (5.21)

wherefi1(s) isthe same asin (5.19). Applying the inverse Mellin transform gives (5.18).
From (5.21) it follows that the function f1(s) in (5.17) isanalytic in the strip —1 < Re(s) < %
and it decaysasIm(s) — =£oo. The latter implies that

% 0<¢ <1,

o0 d
/ Ifl(C)Ipoc,ﬁ(C)£ <00, papl)= { (5.22)
0 ¢ (ﬁ, 1< ¢ <oo,

witha > —1and < 1.5. Equation (5.18) is uniquely solvablein aclass of functions specified by
(5.22). Numerical methods and solvability results for equations of this class are discussed in (17).

For the purpose of illustration, in Fig. 3 we present the results of the numerical solution of
(5.18). The diagram shows f; for different values of the crack tip velocity V/min{v_,v4} =
0, 0-11,...,0-99. Since fi1(s) decays as O(s~1) when's — =ioco (see (5.19)), the solution f1
of (5.18) isdiscontinuous at ¢ = 1. We note that the behaviour of f; shown in Fig. 3 is consistent
with the asymptotic estimates of (17).

| Vio=0-99 v,,

V,=min{v,v,}

0-8
06
f1/p
041

02t

0
—02y V;=0-99 v,,]

—0-4
-5 -4 -3 -2 -1 0 1 2
log ¢

Fig. 3 Numerical solution of the integral equation (5.18) for different values of the crack tip velocity
V/min{v—,v4+} = 0,011, ..., 0-99, for asymmetric load g+ (r) = g—(r) = pe™", with p constant
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498 G. S. MISHURISet al.

5.1.2 Asymptotics near the crack tip and at infinity. Here we use Lemmas 5.1 and 5.2 to obtain
asymptotic approximations of the functions u* near the crack tip and at infinity.

THEOREM 5.1 (&) In the vicinity of the crack tip, the asymptotic representation for u® is
Ut (re, 0s) = U F i@l(ai, Inry) + OC2(Inre)?), re— 0, (5.23)
where
UL = 22 by + gL(D).
L UEE

r (5.24)
01 = {blo {1 —1In ai} + b1 — gi(O)} cosh+ F bio(r F6+)Sinb.
+

(b) Away from the crack tip, as r+ — oo, the displacement field has the approximation

3/2

2a -1/2
UF(re, 0x) = —Fbyoori?
S

.0
sm% + 00, ri— oo (5.25)

In the formulae (5.24) and (5.25), boo, b1o, b1oc and b11 are constant coefficients.

Proof. Using formula (5.1), we can write the representation (4.11) in the form

+1 /ioo+a ai—l—lr;SdS (526)

Ut (re, 0y) = 27 _ioo+a{D1(5) cod(m F 0£)s] + G=(s + 1) Cos(gis)}S#i sin(zs)’

where0 < o < 3 isareal parameter. Within the strip —1 < Re(s) < 3, theintegrand in (5.26) has
asmplepoleat s = 0 and adouble pole at s = —1. We deduce that the exponents yg and y in
(B.10)areyg =1, yoo = % and p = 1,q = 0. Thefunction D1(s) admits the following asymptotic
representations:

bloo

b
Dl(s)=5i+b11+c9(s+1) ass — —1, Di(s) = +0@1) ass— 3,

1
+1 sS—3

D1(s) = —G1(0) + shog + O(s?) ass — 0,

where the coefficients are written in terms of the solution of (5.18), that is,

bio =~ 2G1(0) ~ f10). b = ~T'(1) [jel(m + f&@} - 2610~ 0, 629

i = i{el(g) + 721\/2[?1@) + :Gl(m] } boo = 7 F1(1) ~ G1O)' (1),

Using the residue theorem we derive the asymptotic representations (5.23) and (5.25).
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X A

Fig. 4 Infinite layer with acrack

The direct computation of the gradient field shows that the components of the shear stress near
the crack tip have aweak singularity of order O(Inr4.). However, further observation showsthat the
traction is bounded at the interface 4+ = 0+,

1 ou 2
Uy——— = blO —+ O(I’i(lnri) ) as Iy — 0. (528)
r4+ 69i 0 =0+

From the asymptotic formula (5.23) we deduce that the displacement jump and the traction behave
similarly asry — 0, namely

ut(ry, 04) —u=(r—,0-) = ubgo + O(rx(Inrx)® as ry — 0. (5.29)

The latter is consistent with the transmission conditions (5.6).

We note that, on one hand, the asymptotic formula (5.23) does not involve the standard /r
asymptotic term typical for models of cracks in homogeneous elastic media. On the other hand,
one can think of fracture of the weak interface as the formation of a crack within the thin layer, as
illustrated in Fig. 4. In this case, the stress within the interphase layer will indeed be singular, and it
is described by amodel problem of the boundary-layer type for an infinite strip containing a crack.
This problem is analysed in the following section, whose aim is to evaluate the coefficient near
the singular term in the asymptotic approximation rather than to construct a uniform asymptotic
expansion of the solution.

5.1.3 Boundary layer analysis for a soft interface. Assuming that we have solved the problem
with the transmission conditions (2.3) and we know the limit values ui|y=oi = Ui“)) of the dis-
placement at the crack tip, we then formulate a model problem in the scaled domain shown in
Fig. 4.

Namely, we consider an auxiliary boundary-value problem for a Mode-I11 crack in astrip IT =
{(x1, x2): —00 < y1 < 00, —ha < y2 < h1}. The crack propagates with a constant speed V aong
the y1-axisin such away that at every finitetimet it occupiestheregion M = {(x1, y2): — o <
x1 < 0, y2 = 0}; here we use a moving frame of reference with the origin at the crack tip. The
displacement w then satisfies

V2 52 82 .
1- = |55 +52 =0 inmM, (5.30)
v 6)(1 8){2
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the Dirichlet boundary conditions at the upper and lower surfaces I of the strip IT
w(x,h1) = UL, w(z, —hp) =U,  —o0 < g1 < oo, (5.31)

and the traction-free condition on the crack surfaces
ow
—(x1,0£) =0, 1 <0 (5.32)
o2

LEMMA 5.3 The solution of the problem (5.30) to (5.32) has the asymptotic representation

2
w(y1,0) = ;K(w%/—m +0O(y1) asy1— 0+. (5.33)

(@) The coefficient K ) (the Mode-I11 stress intensity factor¥) is given by
U_(‘_m) _ U£m)
Vathi+ha)

(b) Comparing this result with the outer solution for a soft interface (see section 5.1.2) gives the
following value for byg:

K =, (5.34)

bio =05 = ,uw[U_(,_w) — in)]/(hl + hy). (5.35)

Proof. To find the solution of the above problem, we use the superposition principle, that is, we
take w = w* + wv, where

U (w) USU)) U(w)h2 + UEU))hl
== 2+ —+

*

w* =

hi+ho hy +ho '
and v solves the problem
v2\ 520D 52, .
1- 5 |+ % =0 inm\Mm, (5.36)
D 6}{1 6)(2
w1, h) =0, wP(x1,—h2) =0, —o0 < y1 < o0, (5.37)
ow® .
tw———(x1,0£) = —ag, 1 <O. (5.38)
ox2

To solve this problem, we apply the Fourier transform with respect to y1, F. Using the boundary
conditions (5.38) we derive the following functional equation for the Fourier transform W of the
function w®:

iog

& —i0

W]_(&) = (— - F+(51)>é(51), (5.39)

* The Mode-111 stressintensity factor is defined here by the relation Ky = wlimy, 04 0w(x1, 0)/0x2.
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where
G(&1) = a(tanh(¢rh1/a) + tanh(Eih/a)) /&1,

oW
[W]- (1) = W (&1, 04) =W (1, 0-),  Fy (&) = ,uwaixz(é:l, 0+) = F{—agH(—x)}.

The functions [W]_ and F,. are analytic in the upper haf-plane Im (&1) > —» and the lower half-
planeIm (1) < # respectively, with  being a sufficiently small positive quantity.
The function G can be represented as follows:

5 2 LA 2ayh (&)l (&) 5 y2(G)v2a
G — G G_ — s G =, 540
(61) +(§1) (fl) (é‘l _ |b)];/2(fl " Ib)}’—/z :I:(é:l) ((fl 1 |b)3'|:/2 ( )
whereforany 0 < d < b < [2ra/(h1h2)] max{h1, ho} we define
+1 001 df/ - / H / i A el
V() = eXp{Zni / s T M@ TG — 102 + D)6 )] }
Factorizing (5.39) (and taking into account (5.40)) we obtain
o 4 A iog G4(0)
Wl_(@) =——2-G,(0G_(&1), F =——20 (1% . 5.41
[W]-(S1) 210 +0)G-(1), F() 51_|0< G+(é‘1)> (5.41)

The function F, (£1) admits the following asymptotic representation as &1 — co:

_ [ihithy) o
F+(€Zl) 2a (é"l N |O)1'_/2’ él — 00,

from whichit followsthat the stressintensity factor K ) at the crack tip hasthe form (5.34). Taking
thelimitas&; — 0in (5.41); yields (5.35).

5.2  Stiff imperfect interface

Here we consider the transmission conditions (3.9), corresponding to the stiff interface of typel. In
this case, the displacement is continuous across the interface, whereas the traction has ajump,

ut(ry,04) =u=(r_,0-), (5.42)
1 out 1ou- a2z o2ut
— (4, 0) =y ——(@r_,0-) = ——= re, 0+). 5.43

The description of asymptotics for a stiff interface of type Il will be given later as a particular case
of the results formulated in this section. Applying the Mellin transform to (5.42) we obtain

a;’Ap(s) =a’A_(s), 0 <Re@s) < k. (5.44)

220z 1snbny 0z uo 1senb Aq 050Z161L/.81/v/6G/0101e/wew(b/woo dno-ojwspeoe//:sdiy woly pepeojumoq



502 G. S. MISHURISet al.

Both functions A (s) have simplepolesat s = 0, that is,
AL =A_(5)=stU® +01), s—0, (5.45)
and therefores A1 (s) are analytic in awider strip —y, < Re(s) < y/,. Define D2(s) by
Da(s) = saz30(s, 0+) = saz> AL (). (5.46)

LEMMA 5.4 The function D2(s) is analytic in the strip —% < Re(s) < 1 and it satisfies the
functional equation®

12D2(s — 1) + s~ L tan(ws) Da(s) = Ga(s) sec (x9), (5.47)
where
ajya_ ara_[g-(s+1) —g+(+1
7= Tsay G5 =~ [-G+1) —g+(s + )], (5.48)
a‘(uqa— + p-ay) S(uya— +u-ay)
and Gy is a function analytic in a strip wider than that for D».
Proof. We show that u* admit asymptotic representations similar to (3.13), that is,
£ _ 06 70 7o+l
Ut =U 4+ ¥, 0)rL +0O(r Inr asri — 0,
+(OL)ry + +) + (5.49)

+ _ —Yoo
um=0(rL"™) asry — oo,

where W1 (0+) = 0, and the exponents y, 5, > 0 will be specified later. For a stiff interface,
both p and q in (3.13) are equal to zero, and the functions si* (s, 04) are analytic in the strip
—1—y5 <Res) < yl.

In terms of the Mellin transforms, the transmission condition (5.43) is reduced to

11SB4(8) — p—s(@ar/a—)*™B_(s) +s(s — D(ar/a)esAy(s — 1) = 0. (5.50)

This equation is valid within the strip —y§ < Re(s) < y/, + 1; here we have used the fact that
(s —1)A, (s — 1) doesnot have apoleat s = 1. Using (4.8) and (5.46), (5.50) can be written in the
form (5.47). From (5.47) it follows that Dy (s) isanaytic in the strip —% <Re(s) < 1.

The solution of (5.47) istaken in the form
Da(s) = T'(1 + ) cos(zs/2) fa(s + 1), (5.51)

where f2(s + 1) isanalytic in the same strip as D»(s) and solves the functional equation

Ga(s)
[ (s)sin(zs)cos(rs/2)

f2(s + 1) + 12 f2(s) — fa(s) = (5.52)

72
1+ cos(zs)

Thus, we arrive at the following conclusion.

§ Equations of this type were also studied by a different method in (10, 18).
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x 10710
0

Lip -08t
V4=0-88 v,,

=127 V,,=0-99 1
V=min{v_,v.,} 10 Vm
1.4t
16 '
-6 -4 -2 0 2

log ¢

Fig. 5 Numerical solution of (5.53) for different values of the crack tip velocity V/min{fo—,v4+} = O,
0-11, ..., 0-99, for anon-symmetric load g+ (r) = pe™", g—(r) = pre~", with p constant

LEMMA 5.5 The inverse Mellin transform f, of f5 satisfies the integral equation
o0
f2(0) + 12k2(0) /O ma(¢/¢") 2N /" = ka(On2(0), 0 < ¢ < oo, (5.53)

where ko(0) = (¢ + 72)71,

1ol eSds 2 ¢Ing
m2&) =—55 _ico L+ cOS(xS)  w21—2

and

ico —sq
nz(():i/ Ga(s)¢>ds

2ri J_jso T(s)SiN(zs) cos(ns/2)

Equation (5.53) isuniquely solvablein the class of functions specified by (5.22), with f1 replaced
by fz,and a > —%, S < 2(17). The numerical solution of (5.53) is shown in Fig. 5. We note that,
since the right-hand side of (5.53) is continuous, the solution f; is also continuous.

5.2.1 Theorem on asymptotics
THEOREM 5.2 (a) Asri — 0, the asymptotic representation for u* takes the form
2 .0
ut(re, 02) =U® + =K Jarrssn ?i + 00 Inry). (5.54)
=
(b) Away from the crack tip, as r+ — oo, the solution u™ has the approximation

2a3/? 12 . O+
ut(re, 0y) = =2 b®*r Y2 sin = + 0o oh. (5.55)
Tt 2
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In the formulae (5.54) and (5.55), K(j), bé‘?i and U® are given by

1
UO =00, K =-=|g.(3) + £2Dy(-3)|, (5.56)

b+ = g2 (3) + £=Da(3),

D2(0) = (1), Da(~3) = Va2 fa(3). Da(}) = vVa/B al3).

Proof. Using (5.46) the integral representation (4.11) can be written in the form

1 icota
Us(re, 0s) = P /_ N {ZiDZ(S)COS[(” FO1)s] — G+(s + 1)9n(9is)}

astlrsds
Sp4 cos(zs)’

where0 < a < % isareal parameter; thisleadsto (5.54) and (5.55). From (5.54) it follows that, for
the transmission conditions of type | associated with an imperfect tiff interface, the leading-order
asymptotic representations for stress do not include logarithmic terms (neverthel ess, the logarithmic
dependence may appear in higher-order approximations). The exponents in (5.49) are given by

1 1
vo=7zady, = 3.

(5.57)

Let us note that the stress intensity factors Kﬂ(f) are the same for a symmetric load, that is, when

0+ = g-. Ingeneral, however, Kf) # K ®, thetraction is discontinuous across the interface ahead
of the crack tip, and its jump admits the following asymptotic representation:

1
0,5(X, 04) — 0, (X, 0-) = W(Kf) —K®)+OWXInX) asX — 0+. (5.58)

5.3 Other interfaces

Ideal interface. In this case the transmission conditions are given by (3.7). Let us note that these
can be obtained from (3.8) or (3.9) by taking z,, — 0or zg — 0 respectively; the first problem is
then singularly perturbed, whereas the second one is regularly perturbed. This allows us to use the
results of section 4.2, with 72 = 0. Thus, we derive the asymptotic representations

: 2 ; .0
ut(re, 0s) =U0 + = KO jazrg sm% +O(ry) asry -0, (5.59)
H+
3/2
2a o - .6
ut(re, 61) = ibggril/zsn% +0@0:YH asri— oo, (5.60)
T+

whereU®, KO and b are
ara_
m(pya— + p-ay)

| h_ 1 |
uo = @) - @), KY=--Ga(=3), bY=-Gi(3),

and G1 isgiven by (5.4). We mention that K 1) depends on V for a non-symmetric load.
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The above problem for a symmetric loading (9+ = g— = gsym) has been analysed by Freund
(14) using the Wiener—Hopf method. In the symmetric case,

. . 1 B ) .
Ugh=0. Kgh=-"Gym(3). DL =—-Gom(3). (5.61)
and

ut(ry, 0+) = 0. (5.62)

Stiff imperfect interface of type Il (rigid interface). The transmission conditions (3.10), together
with the assumption that the displacement field u* decays asr. — oo, lead to the boundary
conditions (5.62). The solution for a stiff interface of type Il can be obtained either directly from
the solution for an ideal interface or from the solution for atype | stiff interface by taking the limit
as 12 — oo. The asymptotic representations (5.59) and (5.60) hold in each half-plane Q. , with
U®, KO and b replaced by UM, K" and bD)* respectively, where

U0 —0, KO =—xtge(). bO* = —g.(3). (5.63)

5.4 Delamination on a stiff interface

In this section we consider a problem of delamination on one side of the stiff interface. Instead of the
semi-infinite crack, with Neumann boundary conditions on both faces (see Fig. 6(a)), we consider
aregion of delamination shown in Fig. 6(b). While ahead of the debonding region the transmission
conditions are the same asin (5.42), (5.43), we have a new set of boundary conditions on the faces
of the delamination region as described below.

L et us assume that the delamination process takes place only at one side of the stiff interface (see
Fig. 6b). Then the corresponding boundary conditions take the form

1ou™
—H-T S0 . =g-(r-/a-), (5.64)
1 out a2t o%u™t
—ﬂ+aﬁ(r+>”)—g+(r+/a+) = —%;E(Ha”)- (5.65)
(a) (L‘i)

Fig. 6 Delamination of a stiff thin interface
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Applying the Méllin transform to (5.42) we obtain (5.44); both functions AL (s) have simple
polesat s = O (see (5.45)), and sAL(s) are analytic in astrip —yy < Re(s) < yl,, where yg, 7/,
are positive constants.

The estimates (5.49) have to be satisfied with W1 (0£) = 0, yg, 7/, > 0. In addition, from (5.65)
it follows that W, (z) = 0. The functions sii* (s, 0%+) are analytic in a wider strip —1 — 79 <
Re(s) < yl . The second transmission condition is reduced to (5.50).

The boundary condition (5.64) isthe same asin (4.8), that is,

—su_[A_(s)sin(zs) + B_(s) cos(zs)] = a*t1§_(s + 1), (5.66)

while the second condition (5.65) can be written in the form

sui[A(s)sin(zs) — By (s) cos(zs)] — ai'gy (s + 1)
2
=5s(s — 1)2—215[A+(s —1)cos(zs) + BL(s — 1) sin(zs)]. (5.67)

Let usintroduce the function D3(s) such that
D3(s) =sa Ut (s, 7) = sa;*[A;(s) cos(ws) + B4(s) sin(xs)]. (5.68)

We shall also use D2 (s) introduced earlier in (5.46). The functions D2(s), D3(s) have the common
strip of analyticity —1 — y5 < Re(s) < y/.. Itisuseful to note that D2(0) = D3(0).

LEMMA 5.6 The vector function D(s) = [D2(s), D3(s)]" satisfies the functional equation

D(s) = A(s){G(s) - S%B(S)D(s - 1)}, —y{ < Re(s) < 7L, (5.69)
where
_be 1 pe 1
a; sin(zs) a; sin(zs) g_(s+1)
_ - N
Al =4 Cpe 2 Ut | = K 4 cos(2ns) 66 [@+(S+1)]’ (570)
ay sin(2zs) <a+ a_ ) sin(2zs)

_ _ -1
B(s):[ cos(s) O], P el Y (”*(”*Jr”‘)) . (571

O 1 o ,Ll+a_ + ,u_a+ ’ a+ a+ a_

Note that, due to the balance condition (4.9), the functions A(s)G(s) and s.A(s) are analytic at
s = 0. By investigating a priori properties of a solution of (5.69) one can find that D»(s) does not
haveapoleat s = 3, while D3(s) hasasimplepoleat s = 3, that i,

D3(s) =d3/(s—3) +O(1) as s— 3, (5.72)
where
a4 1 1 u_ prs 1
ds= ——G1(3) — =—— " D3(—3). 5.73
3 Tt 1(3) o7 a_ a2 3(-3) (5.73)

Also, from (5.69) it follows that the functions D2(s) and D3(s) haveasimplepoleats = 1.
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The direct analysis of the solution gives

Da(s —1) =dp/(s+3) +O(1) as s— —3, (5.74)
2a2 [ _ _
o= 2 (a-(3) - 5= oa(-)) (579

while D3(s — 1) isanayticat s = —%. Also, Da(s — 1) and D3(s — 1) may have simple poles at
s=-L

2
D(s—1)=D3s—-1)+001) = a T’u+ s(—jl—ill +0(1), s-— -1, (5.76)
S
1
dp = ———(D2(=1) + D3(=1)). (5.77)
7'L'a+

Thus, D2(s) and D3(s) are analytic for —% < Re(s) < land -2 < Re(s) < % respectively.
The solution of (5.69) istaken in the form

~ a
Fs+1) - ==

s 1 O
D(s) =TI'(1+s)cos—
1 H4

2 tan(zs) tan(37s)

[O 0

0 tan(ns)] G(s), (5.78)

where F(s + 1) isanalytic in the same strip as D(s). It can be verified directly that in new notation
(5.69) is equivalent to

x+1) O
k=1 2

Td

FGs+ 1)+ > F(s) = N(s), (5.79)

]ﬁ(s)_ 7 [o (e + 1)

2cos(zs) [0 (x —1)

where 7y = 7sa (a%u4)~ 1 and

a,(1+5) -1 1 6.5 +1) — Go(s+ 1)
Stg tan(z )G+ (s)

(5.80)
Finally, applying the inverse Mellin transform directly to (5.79), we obtain the following lemma.

N(s) =

2u4+T(s + 1) sin(zs) cos(37s) | —1 1_@
+ K

LEMMA 5.7 The vector function F = [F1, F2]" solves the integral equation

K+ 1
K

o0 d /
Fo) - T;K(c)[ 1] | MR = KNG, 0 <¢ <o (58D

where N(¢) is the inverse Mellin transform of the vector function N(() and

2
—_— 0
_ 1 20 +1q(1+x)
K@) =1+ Ay " = (L) | (5.82)

¢+t +1(l+x) ¢ +rd
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We note that the matrix of the system (5.81) is triangular. Thus, we first numerically solve the
second integral equation for the function F2(¢) only,

/

-1 > d
rocte = mC/C )

(C+ )& +7(+x) Jo

Fa(0) —

;
_ m KON, 0<¢ <o (589)

This equation is uniquely solvable in a class of function with finite norm (5.22), with a > —%,
S < 2(17). Thenwefind Fy immediately:

gk + 1) 0
2 +1q(1+x) Jo

or, taking into account (5.83),

177
F1(0) = } KON, 0 <¢ <00,  (584)

d /
M/ + |

(g + O +1)

F —
10 C—1)

o]’ 17
{Fz(c) - H K(C)N(C)} + M K(ON(©). (5.85)

Note that from (5.83) it follows that the term in bracesin (5.85) decays as O(;?In¢) when ¢ — O.

The results of numerical calculations are shown in Fig. 7. The functions F (solid lines) and F»
(dashed lines) are plotted for different values of V /min{v_,v4+} = 0,0-11, ..., 0-99. Figure 7(a)
corresponds to a symmetric load g4 (r) = g_(r) = pe~", and Fig. 7(b) to a non-symmetric load
g+(r) = pe~",g_(r) = pre~", with p constant.

We note that the integral equation (5.81) has non-trivial solutions for both symmetric and non-
symmetric loads (compare with (5.53) which possesses a non-trivial solution for a non-symmetric
load only).

x 10712 x 107"
(a’) 6 . . . . T (b) 2
V,=min{v_,v.,} Vi=0
0 -
4
-2
2, V;6=0-99 v, N
N N
a g
T 0 <
hy N
_10} V40=0-99 v,
) J
Vg=0-88 7% 12 vm=min{v_,v+} i
-4 —-14
-8 -6 -4 -2 0 2 4 -8 -6 —4 -2 0 2 4
log ¢ log ¢

Fig. 7 Thesolutions F (solid lines) and F» (dashed lines) of (5.83) and (5.84) for different values of the crack
tip velocity V/min{o—, 04} = 0,011, ..., 0-99. (a) symmetric load; (b) non-symmetric load
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5.4.1 Theorem on asymptotics
THEOREM 5.3 The functions u* admit the following asymptotic representations:
(@) in the vicinity of the crack tip,
ut(ry,0.) =U@ 4 diry sing, + ila—ZK@ (H) v cos —-
31 ay 2
+0@2Inry), ry = 0, (5.86)

2 . 0_

u=(r_,0_) =U® 4 2 kD mp sin—- + oc*?inr.), r_ - 0, (5.87)

7
where dy is given by (5.77), while the expressions for U@, K@ are similar to those for U,
K® in (5.56), with D2(s) being the first component of the solution D(s) of (5.69);

(b) away from the crack tip,

0
ut(ry,0p) = -2, /{:—“Ldgsinér + (Q(r;1 Inry), ry— oo, (5.88)
+

— _ . 0
u—(r—,0-) = _2a s A /a—dgsm— +0@0tInr.), r- - oo, (5.89)
aypu—\ r- 2

with dz given by (5.73).
Proof. Theintegral representation (4.11) in the domain Q. can be written in the form

1 [loota _ _ aSry’ds
ut(ry,04) = 27 /—ioo+a {D2(s) sin[(z — 6+)s] + D3(s) S'n(9+5)}m, (5.90)
where0 < a < % isarea parameter; this leads to the asymptotic representations (5.86), (5.88) for
the displacements u™. From (5.86) it follows that Vu™ has no singularity near the crack tip.
The asymptotic formulae (5.87), (5.89) for the function u~ in the domain Q_ follow immediately
from the representation (5.57). The proof is complete.

6. Numerical ssmulations and concluding remarks
6.1 Soft interface

The numerical calculations for the weak interface were done for a thin epoxy adhesive interphase
layer (h = 0-003) surrounded by either iron above and titanium below or iron both above and bel ow.
The material parameters used in the calculations are given in Table 1.

Figure 8 shows the normalized displacement jump [U ®](z1(V), V)/[U ®](z1(0), 0) at the
tip of a crack propagating along a weak interface for a symmetric load g.(r) = pe™", where
p is constant and 7 is given by (5.3). We consider two different cases: (1) both domains Q.
and Q_ are made of iron, and (2) the domain Q. is made of iron whereas Q_ is made of tita-
nium. Figure 8(a) presents the displacement jump as a function of the crack tip velocity V. One
can see that the displacement jump increases monotonically with V and becomes unbounded as
V — om = minfoy, v—}. We note that the static limit (V = 0) is consistent with the earlier results
(11 to 13).
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Tablel Materia parameters used in computations for a crack propagating along
awesk interface

Material Shear modulus[N/m?]  Mass density [kg/m®]  wave speed [m/sec]
Iron 82 x 10° 7860 3230
Titanium 44 x 10° 4506 3124
Epoxy adhesive 77 x 107 1380 747
(a) 8 (b)

AV CRA

0 0-2 04 06 0-8 1
V/min{v_,v+} log 74

Fig. 8 The displacement jump at the tip of the crack propagating along aweak interface (curves 1 correspond
to the case when both domains Q4 are made of iron, curves 2 to the case when Q. is made of iron and Q_
of titanium). The diagram (a) shows the displacement jump as a function of the crack tip velocity V, whereas
(b) correspondsto V = vm /2. The insert on diagram (b) presents the displacement jump as a function of 71,
whereas diagram (b) itself shows the displacement jump against log 71. Both diagrams were generated for a
symmetric load g+ = pe™", with p constant

Figure 8(b) shows the dependence of the displacement jump on the elastic properties of the in-
terphase layer. To generate the diagram we change the value of the parameter z,, in the expression
(5.3) for 11 = 71(7y, V) andtakeV =V, = minfo_, v, }/2, and 7y (V) = 71(z;,, V) for the epoxy
adhesive from Table 1. Asfollows from Fig. 8(b) (see the insert) the displacement jump decays as
O(z;/%) ast1 — 0, and thus oy, = O(z; /%) as 11 — 0 (see (5.28) and (5.29)).

Figure 9 shows the stress intensity factor K () as afunction of the normalized crack speed V for
acrack propagating along aweak interface. Two cases are discussed: (@) the soft interface between
similar materials (corresponding to the curves of group 1 in Fig. 8), and (b) the soft interface
between dissimilar media (corresponding to the curves of group 2 in Fig. 8). First, we consider
the epoxy adhesive interface asin Table 1. In thiscase v = 0-23%,. Other weak interfaces of the
same shear modulus but different material density (and therefore different wave speed v) are also
analysed. In the casewhen v < vy = min{v,, v_} the stressintensity factor is decreasing with the
increase of the crack velocity V, andwhenV — v < oy, the stressintensity factor vanishes. Hence,
in this case the crack has a tendency to slow down. When » = vy, the change in the stress intensity
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Vp=min{v_,v,} V=min{v_,v,}

2:5
S 2f
N
=
~S< 1

05 v=0-239 V| V=05V, v=v, 05 v=0-239 v,,| v=0-5v,, V=V,

0 0
0 0-2 0-4 06 0-8 1 0 0-2 0-4 0-6 0-8 1
V/min{v_,v+} V/min{v_,v+}

Fig. 9 Mode-1ll stress intensity factor K () for acrack propagating along a weak interface: the left diagram
corresponds to the case when both domains Q.+ are made of iron, the right diagram is for when Q. is made of
iron and Q_ of titanium. The applied load isthe same asin Fig. 8

Table2 Material parameters used in computations for a crack propagating along a stiff interface

Material Shear modulus [N/m?]  Mass density [kg/m3]  wave speed [m/sec]

Iron (interface) 82 x 10° 7860 3230
Magnesium 17 x 10° 1738 3128
Aluminium 26 x 10° 2700 3103

factor isnegligibly small with the change of speed V, and it issimilar to the stressintensity factor of
the crack moving in a homogeneous material. When v > oy, the stress intensity factor grows with
speed, similarly to the growth of the displacement discontinuity [U ()] (or the crack opening) de-
picted in Fig. 8. In the latter case, the crack opening [U (*)] can be used in the fracture criterion for
a crack propagating along a weak interface. On the contrary, other cases of weak interfaces should
use the stress intensity factors in the corresponding fracture criteria

The presence of the boundary layer, where the stressfield has atraditional square root singularity,
resolves the issue of the energy transport for this problem. We remark that an alternative approach,
implemented for the static case, was considered in (19).

6.2 Stiff interface

The computations for a stiff interphase are done for athin iron layer surrounded by magnesium and
aluminium. The material parameters are given in Table 2. In addition, we shall also investigate the
case when the thiniron layer is situated between the aluminium half-planes.

In Fig. 10 we display the normalized stress intensity factors as functions of the crack speed; we
note that the traction components are discontinuous across the interface; Kj(? stand for the values
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(a) 03 : . . : (b) -03
K(S) /p
—0.35 1 -0-35 -
/
K9
Q - P Q
= 04 / T 04 7
X NS 0
0 K"/p
K" /p J
—045 / IJ -0-45 / \
(s)
Kﬁ i KS/p
+
-0-5 -0-5
0-2 0-4 0-6 0-8 1 0 0-2 0-4 0-6 0-8 1
Vimin{v_,v } Vimin{v_,v }

Fig. 10 Mode-1ll stress intensity factors K(is) (above and below the stiff interface) as functions of the crack
tip speed V: the diagram (&) corresponds to the case when Q. is made of magnesium and Q_ of aluminium;
the diagram (b) is for the case when we swap the two materials. The applied load is taken in the form g4 =
pe~",g— = pre~", with p constant. The Mode-I11 stress intensity factor K () for an ideal interface is shown
here for comparison

of the stress intensity factors above and below the stiff interface. For the sake of comparison, we
aso depict the stress intensity factor K ) obtained for the case of an ideal contact (continuity of
displacement components and tractions). The diagrams (a) and (b) contain different combinations of
surrounding materials above and below the interface, for the case of a non-symmetric load defined
asgy = pe~",g- = pre~", with p constant. In both cases, the behaviour of the stress intensity
factorsis dominated by the load g.. We note that for the case of a symmetric load, the values Kj(f)
coincide with K ),

In Fig. 11 we show the results of computations for the case of the symmetric distribution of
materials around the interface: this diagram corresponds to the case of the iron interface surrounded
by aluminium. The dashed linesin the diagram (b) represent the stress intensity factors Kf) for an
additional special case of an interface that has the same shear modulus asiron but different density,
so that the wave speed v for the interphase layer isom /2.

Diagrams (a) and (b) in Fig. 12 correspond to the same load and distribution of the materials
surrounding the interface as in Fig. 10. For the materia of the interphase layer, we change the
stiffness parameter 7, and depict the stressintensity factors Kf_f). It is shown that when 72 decreases
the result, in the limit, corresponds to that for the ideal contact conditions, whereas the growth of 7,
leads to the values Kf) for a perfectly rigid interface as defined by (5.63).

It is noted that the interchange of surrounding materials (with the same load in place) for the
case of a stiff interface gives a finite change in the values of K(is), in contrast with the situation
corresponding to the soft interface.

6.3 Delamination crack on a stiff interface

In this section we discuss the results of numerical computations for the case when the crack surface
isloaded by the given traction on one side, and the other side of the crack surfaceisin contact with
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-03
035
K /p
Q — _% \J
T -04f -~ R _ d
N3 ) K77 p
—045¢ . - ————
(s)
K N /p
-0 0-2 0-4 0-6 0-8 1
Vimin{v_,v,}

Fig. 11 Mode-lll stress intensity factors KS) (above and below the stiff interface) as functions of the crack
tip speed V for the case when both Q. and Q_ are made of aluminium. The applied load is the same as in
Fig. 10. The Mode-111 stress intensity factor K () for an ideal interface is shown here for comparison

(a)025 - : (b)-0-25
03

-0-35t

1078 107 10° 10* 1078 107 10° 10
T2 T2

Fig. 12 Mode-1l1 stressintensity factors Kf) (above and below the stiff interface) as functions of the parameter
79, for V.= min{o—, v4}/2: the diagram (a) corresponds to the case when Q. is made of magnesium and Q_
of aluminium, the diagram (b) is for the case when we swap the two materials. The applied load isthe same as
in Fig. 10. The Mode-111 stressintensity factors K () (for anideal interface) and K" (for arigid interface) are
shown here for comparison

the stiff interface and also subjected to the given load. The analytical study of this configuration is
included in section 5.4. In this situation, the crack runs aong the lower boundary of the interphase
layer, and we classify this case as delamination alon? a stiff interface (see Fig. 6). For comparison,
al graphsin Fig. 13 include the dashed lines (for K" ) /p) corresponding to a perfectly rigid inter-
face, so that the problem is equivalent to the one for a half-plane with the homogeneous Dirichlet
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(a)—0-282

—0.284

K@/ p

—-0-286

—0-288

Vimin{v_,v,} Vimin{v_,v,}

Fig. 13 Mode-lll stress intensity factor K@ for a delamination crack propagating below a stiff interface
(curves 1: Q. is made of aluminium, Q_ of magnesium; curves 2: Q4 is made of magnesium, Q_ of alu-
minium; curves 3: both Q4 are made of aluminium). The diagram (&) corresponds to the symmetric load
g+ = pre~", pisaconstant (solid lines) and the non-symmetric load g+ = pe~",g— = pre™" (dashed
lines). The diagram (b) corresponds to the other symmetric load: g+ = pe™" (solid lines) and the non-
symmetric load: g+ = pre™",g— = pe™" (dashed lines). The Mode 1l stress intensity factors K(_r) (for
adelamination crack below arigid interface) are given here for comparison

condition along the positive semi-axis and the Neumann traction condition on the negative semi-
axis. The material parameters used in the computations are the same as those of section 6.2 and are
presented in Table 2. In all the cases the interphase layer is made of iron. The curveslabelled by ‘1’
correspond to aluminium above and magnesium below the interface, these materialsinterchange for
the curves labelled by ‘2', and the case ‘3’ corresponds to aluminium placed on both sides of the
interface.

In Fig. 13(a) we show the stress intensity factor K@ /p versus V /om. It corresponds to the
symmetricload g+ = pre~", with p constant (solid lines), and the non-symmetricload g = pe™",
g- = pre~" (dashed lines). We note that the load applied to the lower face of the moving crack is
the same in both cases, and this load vanishes asr — 0. Figure 13(b) corresponds to the case of
symmetric load with g+ = pe™" (solid lines), and non-symmetric load, with g, = pre™",g_ =
pe~" (dashed lines). Both cases have the same load on the lower face of the crack, but this load
does not vanish asr — 0, in contrast with the case of Fig. 13(a).

The computations presented in the two figures show that the relatively stiff iron interface produces
output sufficiently close to the case of a perfectly rigid interface (shown by dashed lines on the
diagrams). Also, we remark that the change of the load applied to the upper face of the crack (which
isin contact with the stiff interface) produces a small changein the values of K@ /p. The variation
of the stressintensity factor with the crack velocity is aso negligibly small.

Comparison of Fig. 13(a) and Fig. 13(b) aso suggests that |K @ /p | for the case of Fig. 13(a)
(where the load on the lower face of the crack vanishesasr — 0) islarger than |K(_r)/ p |, whereas
in the other case, shown in Fig. 13(b), [K@ /p| < K /p].

To summarize, we have obtained analytical results on regularity of solutionsto problemsof cracks
propagating along imperfect interfaces and presented numerical simulations that include accurate
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evaluation of displacement and stress around the delamination cracksfor arange of realistic physical
parameters. It is shown that the classical concepts of fracture mechanics may require adjustments
for problemsinvolving delamination on stiff or soft interfaces.
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