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Summary

The aim of the present paper is to analyse the behaviour of the stress and displacement fields
in the vicinity of the tip of a crack moving along a bi-material interface. For simplicity, we
consider a straight interface of infinite extent. We assume that the two phases are separated
by a thin layer which is either ‘soft’ or ‘stiff’ compared to the other two phases. We derive
the transmission conditions which take into account the material properties of the layer and
model the way the load is transferred across the layer from one phase to the other. We assume
that the point of interchange in the boundary/transmission conditions coincides with the crack
tip that moves along the interface boundary with a constant speed. We develop an integral
equation formulation and derive asymptotic formulae for the out-of-plane displacement and the
Mode-III stress intensity factor associated with such a motion of the crack inside the interphase
layer. The theoretical results are illustrated by numerical examples.

1. Introduction

In recent years there has been substantial interest in static models of elasticity and heat transfer
in heterogeneous materials, where interface surfaces are modelled by transmission conditions in-
volving jumps of displacements and/or components of tractions. Examples include rigid inclusions,
adhesive joints, inertial and frictional interfaces.

A model of a two-phase composite with an interfacial surface of resistance between the phases
was considered by Lipton and Vernescu (1) who introduced new variational principles and derived
the bounds describing the effective conductivity tensor for such a composite. Asymptotic models of
dilute composites with imperfectly bonded inclusions were studied in (2). Benveniste and Chen (3)
considered the Saint-Venant torsion of cylindrical composite bars containing imperfect interfaces.
A related study involving asymptotic analysis of fields in thin beams with imperfect interfaces has
been done in (4). Hashin (5) has developed a method for evaluation of the effective elastic moduli of
a unidirectional coated fibre composite, with imperfect interface conditions modelling the effect of a
thin soft elastic coating. Imperfect transmission conditions for a thin weakly compressible interface
have been studied by Mishuris (6). The integral equations describing the transmission conditions
for rigid inclusions have been derived in (7, 8). A mathematical model for a fibre with a frictional
interface has been proposed and analysed in (9). Static models of interphases and analysis of stress
singularities in linear fracture mechanics were discussed by Atkinson (10).
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488 G. S. MISHURIS et al.

Static problems of elasticity and heat transfer in multi-phase composites containing cracks on
soft imperfectly bonded bi-material interfaces have been studied in (11, 12). Static Mode-III cracks
on stiff interfaces have been considered by Mishuris (13).

In the present paper we consider a Mode-III crack moving along a bi-material interface. We as-
sume that the two phases are separated by a thin layer which is either ‘soft’ or ‘stiff’ compared
to the other two phases. We derive the transmission conditions that take into account the material
properties of the layer and the behaviour of the mechanical fields inside it, and give their classifica-
tions. The corresponding model problems for a crack moving along an imperfect interface, which
replaces the thin layer, are solved using integral transforms. The resulting functional equations are
reduced to integral equations with fixed point singularities. We study the uniqueness of solutions
of these equations and then solve them numerically. We also analyse the behaviour of the physical
fields near the crack tip for stiff and soft interfaces. The results are compared with those for the case
of a perfectly bonded interface (14). Finally, we look at the delamination crack propagating along
a stiff interface. We present several numerical examples which illustrate our results in connection
with applications to fracture mechanics.

The paper is organized as follows. The classification of imperfect interfaces and description of
transmission conditions are given in section 2. Formulations of mathematical models and the corre-
sponding integral representations of solutions are discussed in sections 3 and 4. Section 5 includes
reduction of the model problems to singular integral equations and asymptotic analysis of their so-
lutions. We pay particular attention to the novel asymptotic representations of solutions of model
problems and their derivatives near the tip of the moving crack. Finally, section 6 presents numerical
simulations and concluding remarks.

2. Classification of interfaces. Transmission conditions

In this paper we consider a Mode-III crack propagating along an interface separating two homoge-
neous isotropic materials. Before giving the integral equation formulation modelling such a crack,
we would like to clarify the notion of imperfect interfaces and show the difference between such
interfaces and surfaces of ideal contact.

Assume that a bounded domain � of diameter L (see Fig. 1) consists of two parts �+ and �−,
separated by a thin layer �ε of width h = εh0, with ε being a small positive non-dimensional pa-
rameter. The domain is subjected to an out-of-plane shear loading; the shear moduli of the materials
occupying �± are denoted by µ±. The shear modulus µ of the interphase layer can be either small,
similar or large compared to the moduli of the surrounding materials, and this will be essential for
the classification of imperfect interfaces.

The displacement functions u± and u in �± and �ε satisfy the equations of motion,

µ�u = ρü in �ε, µ±�u± = ρ±ü± in �±. (2.1)

These equations are supplied with conditions of ideal contact on the boundaries of �ε,

u± = u, µ±
∂u±

∂n
= µ

∂u

∂n
on �±, (2.2)

where �± is the boundary between �± and �ε, and n is a unit vector normal to �±.
We consider the case when the wave speed v = √

µ/ρ characterizing the interphase layer �ε is
either comparable with or larger than the wave speeds v± = √

µ±/ρ± in the domains �±.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/487/1942050 by guest on 20 August 2022



STEADY-STATE MOTION OF A MODE-III CRACK 489

Fig. 1 Composite structure with a thin interphase

2.1 An outline

We deal with the interfaces that correspond to the following classes of transmission conditions along
the straight line y = 0.

1. Ideal contact interfaces involve continuity of the displacement and tractions, u+(x, 0+, t) =
u−(x, 0−, t) and µ+(∂u+/∂y)(x, 0+, t) − µ−(∂u−/∂y)(x, 0−, t) = 0. This is implemented
for thin interfacial layers whose elastic constants are of the same order of magnitude as the
elastic constants of the ambient media (15); u± represent the leading terms of the displacement
fields above and below the interface.

2. Imperfect weak interfaces assume continuity of tractions and allow for the discontinuity of the
displacement; the corresponding transmission conditions are given by (2.3) below. This type of
interface describes soft thin adhesive joints.

3. Imperfect stiff interfaces correspond to thin interphase layers of high rigidity. Here we distinguish
between two situations. In the first case, the thin layer is ‘replaced’ by transmission conditions
including a continuity condition for the displacement and a jump condition for the tractions; the
corresponding transmission conditions are given by (2.11) and (2.15). In the second case, the
highly rigid interphase layer also has a high mass density, the displacements u± are continuous
across the interface u+(x, 0+, t) = u−(x, 0−, t) = u(x, t) and the function u(x, t) satisfies the
wave equation (2.18).

2.2 Weak interface

Here we assume that the shear modulus of the material in �ε is small, so that µ = εµw, where µw

is of the same order of magnitude as µ±.
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490 G. S. MISHURIS et al.

To leading order, the transmission conditions for the displacements u± can be written in the form
(for V < min(v, v+, v−))

µ+
∂u+

∂y

∣∣∣∣
y=0+

= µ−
∂u−

∂y

∣∣∣∣
y=0−

, µ+
∂u+

∂y

∣∣∣∣
y=0+

= τw(u+|y=0+ − u−|y=0−), (2.3)

where

τw = µw/h0 = µ/h. (2.4)

Static problems with transmission conditions of this type were studied in (1 to 5).
In the following text, we assume that the crack moves with a constant speed V < min(v, v+, v−)

which, in particular, implies that

V < v =√µ/ρ =√εµw/ρ. (2.5)

This suggests that the material of the interface has a small density, ρ = ερw, where ρw = O(ρ±).

2.3 Stiff interface

Type I. For a stiff interface, it is assumed that

µ = µs/ε, and ρ = ρs/ε, (2.6)

where µs has the same order of magnitude as µ±, and ρs is of the same order as ρ±.
It will be shown that in this case the contact conditions for tractions are inhomogeneous. To see

this, we need several terms of the asymptotic expansion of u and u±. Let

u±(x, y, t, ε) = u±
0 (x, y, t) + εu±

1 (x, y, t) + ε2u±
2 (x, y, t) + · · · , (2.7)

u(x, ζ, t, ε) = u0(x, ζ, t) + εu1(x, ζ, t) + ε2u2(x, ζ, t) + · · · , (2.8)

where ζ = y/ε is the scaled variable of the cross-section of �ε.
It follows from the second condition of (2.2) that

µs

ε2

(
∂u0

∂ζ
+ ε

∂u1

∂ζ
+ ε2 ∂u2

∂ζ
+ · · ·

)∣∣∣∣∣
ζ=±h0/2

= µ±
∂u±

0

∂y

∣∣∣∣∣
y=0±

+ · · · = O(1), (2.9)

which implies that

∂u0

∂ζ

∣∣∣∣
ζ=±h0/2

= 0. (2.10)

From the equation of motion it follows that the leading term u0(x, ζ, t) is linear in ζ . Together
with (2.10), this implies that u0 is ζ -independent, and hence we have continuity at the interface for
the displacements u±, that is,

u0(x, t) = u+
0 (x, 0+, t) = u−

0 (x, 0−, t). (2.11)

Similarly to the leading term u0, the function u1 is also ζ -independent. The displacement trans-
mission conditions yield

u+
1 (x, 0+, t) − u−

1 (x, 0−, t) = −h0

2

(
∂

∂y
u+

0 (x, 0+, t) + ∂

∂y
u−

0 (x, 0−, t)

)
. (2.12)
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STEADY-STATE MOTION OF A MODE-III CRACK 491

For the function u2 inside the layer we derive the equation

∂2u2

∂ζ 2 = −∂2u0

∂x2 + 1

v2

∂2u0

∂t2 , (2.13)

where v = √
µs/ρs . The right-hand side of (2.13) does not depend on ζ , and hence

∂u2

∂ζ

∣∣∣∣∣
ζ=h0/2

− ∂u2

∂ζ

∣∣∣∣∣
ζ=−h0/2

= h0

(
−∂2u0

∂x2 + 1

v2

∂2u0

∂t2

)
. (2.14)

Taking into account (2.9) we deduce the following transmission condition:

µ+
∂u+

0

∂y

∣∣∣∣∣
y=0+

− µ−
∂u−

0

∂y

∣∣∣∣∣
y=0−

= µsh0

(
1

v2

∂2u+
0

∂t2 − ∂2u+
0

∂x2

)∣∣∣∣∣
y=0+

. (2.15)

Type II. It is also possible to increase the stiffness of the interface and address the issue of the
corresponding transmission conditions and equations describing such a structure. The interface will
be referred to as a ‘stiff interface of type II’, or rigid interface.

We assume that the thickness is the same as above, but the stiffness parameter is defined by
µ = ε−2µs , which is large compared to (2.6), and we also allow the interface to have high mass
density ρ = ε−2ρs .

We use the asymptotic approximations (2.7) and (2.8). The functions u0 and u1 are ζ -independent,
and u2 satisfies (2.13). The contact condition (2.9) is replaced by

µs

ε3

(
∂u0

∂ζ
+ ε

∂u1

∂ζ
+ ε2 ∂u2

∂ζ
+ · · ·

) ∣∣∣∣∣
ζ=±h0/2

= µ±
∂u±

0

∂y

∣∣∣∣∣
y=0±

+ · · · = O(1), (2.16)

which implies (2.10) and

∂u1

∂ζ

∣∣∣∣∣
ζ=±h0/2

= 0,
∂u2

∂ζ

∣∣∣∣∣
ζ=±h0/2

= 0. (2.17)

Hence, the functions u0, u1, u2 are independent of ζ , and (2.13) is reduced to

∂2u0

∂x2 − 1

v2

∂2u0

∂t2 = 0 (2.18)

(compare with (2.14)). The jump in tractions for u±
0 will be linked to the terms of higher order in

the asymptotic approximation (2.7).

3. Formulation of model problems

We consider an infinite plane which consists of two half-planes �± = {(x, y): − ∞ < x <
∞, ±y > 0}, as shown in Fig. 2. The materials occupying the half-planes �± are linearly elastic
and isotropic, with shear moduli µ± and densities ρ±. We assume that a semi-infinite crack M =
{(x, y): y = 0, x < V t} moves with a constant speed V < min{v+, v−, v} in the positive direction
of the x-axis. The displacements u± satisfy the equations of motion in �± (see (2.1)), the traction
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492 G. S. MISHURIS et al.

Fig. 2 Composite plane with a crack moving along an imperfect interface

conditions on the crack surfaces

µ±
∂u±

∂y

∣∣∣∣
y=0±

= g±(V t − x), x < V t, (3.1)

and one of the four types of transmission conditions (discussed in section 2.1) posed at the interface
ahead of the moving crack x > V t . The functions g± in (3.1) describe a self-balanced external load
which is applied to the crack surfaces and moves with a constant speed V together with the crack
tip; these functions are chosen in such a way that they decay sufficiently fast at infinity.

Assume that the displacement field has the form u±(x, y, t) = u±(x −V t, y) in �±, and at every
fixed time t it possesses a finite energy:

E(u) =
∫

�+

(
v2+|∇u+|2 + (u̇+)2) dx dy +

∫
�−

(
v2−|∇u−|2 + (u̇−)2) dx dy < ∞. (3.2)

We shall use a new system of coordinates (X, y) moving with speed V together with the crack
tip such that (X, y) = (x − V t, y). In the new coordinates, the equations of motion take the form

∂2u±

∂ X2 + a2±
∂2u±

∂y2 = 0, (3.3)

where

a± =
√

µ±
µ± − V 2ρ±

= v±√
v2± − V 2

. (3.4)

Also, we shall use the notation

a =
√

µ

µ − V 2ρ
= v√

v2 − V 2
. (3.5)

The boundary conditions (3.1) are then written as

µ±
∂u±

∂y

∣∣∣∣
y=0±

= g±(−X), X < 0. (3.6)

The transmission conditions ahead of the moving crack are written as follows.

• For an ideal contact interface

u+(X, 0+) = u−(X, 0−), µ+
∂u+

∂y
(X, 0+) = µ−

∂u−

∂y
(X, 0−), X > 0. (3.7)
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STEADY-STATE MOTION OF A MODE-III CRACK 493

• For a weak interface

µ+
∂u+

∂y
(X, 0+) = µ−

∂u−

∂y
(X, 0−),

µ+
∂u+

∂y
(X, 0+) = τw(u+(X, 0+) − u−(X, 0−))

(3.8)

for X > 0, and τw given by (2.4).

• For a stiff interface of type I

u+(X, 0+) − u−(X, 0−) = 0,

µ+
∂u+

∂y
(X, 0+) − µ−

∂u−

∂y
(X, 0−) + τs

a2

∂2u+

∂ X2 (X, 0+) = 0
(3.9)

for X > 0, and τs = µsh0 = µh.

• For a stiff interface of type II (rigid interface)

u+(X, 0+) − u−(X, 0−) = 0,
∂2u+

∂ X2 (X, 0+) = 0, X > 0. (3.10)

This is consistent with the description of a rigid inclusion (see, for example, (8)).

In the moving frame, the energy functional (3.2) can be represented by the formula

E(u) =
∫

�+

(
v2+|∇u+|2 + V 2(u+

X )2) d X dy +
∫

�−

(
v2−|∇u−|2 + V 2(u−

X )2) d X dy. (3.11)

The energy functional (3.11) is finite if the functions u± are chosen in such a way that

∇u±(X, y) = O(rγ0−1(ln r)p), r → 0, ∇u±(X, y) = O(r−γ∞−1(ln r)q), r → ∞,
(3.12)

where r =√X2 + y2, Re(γ0) > 0, Re(γ∞) > 0, and p, q are integers. In addition, we assume that

u±(X, y) = U± +O(rγ0(ln r)p), r → 0, u±(X, y) = O(r−γ∞(ln r)q), r → ∞. (3.13)

The second condition in (3.13) eliminates arbitrary additive constants in the representation of solu-
tions to the model boundary-value problems described above.

4. Integral representations

First, we introduce the coordinate transformations, X± = a± X , above and below the interface,
respectively. Equations (3.3) in the upper and lower half-planes then take the form

∂2u±

∂ X2±
+ ∂2u±

∂y2 = 0, (X±, y) ∈ �±. (4.1)

The boundary conditions (3.6) at the crack surfaces are

µ±
∂u±

∂y

∣∣∣∣∣
y=0±, X<0

= −µ±
1

r±
∂u±

∂θ±

∣∣∣∣∣
θ±=±π

= g±(r±/a±), (4.2)

where (r±, θ±) are polar coordinates defined in �±: X± = r± cos θ±, y = r± sin θ±, ±θ± ∈ (0, π).
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494 G. S. MISHURIS et al.

The applied loads g± are self-balanced, that is,∫ ∞

0
g+(X) d X =

∫ ∞

0
g−(X) d X. (4.3)

This implies that

µ±
∫ ∞

−∞
∂u±

∂y

∣∣∣∣
y=0±

d X± = µ±
∫ ∞

0

[
− 1

r±
∂u±

∂θ±

∣∣∣∣
θ±=±π

+ 1

r±
∂u±

∂θ±

∣∣∣∣
θ±=0±

]
dr± = 0 (4.4)

or, taking into account (4.2),

∫ ∞

0

[
µ±

1

r±
∂u±

∂θ±

∣∣∣∣
θ±=0±

+ g±(r±/a±)

]
dr± = 0. (4.5)

The Mellin transforms ũ± of the solutions u± of (4.1) have the form

ũ±(s, θ±) = A±(s) cos(θ±s) + B±(s) sin(θ±s), (4.6)

where ũ± are defined as follows:

ũ±(s, θ±) =
∫ ∞

0
u±(r±, θ±)rs−1± dr±. (4.7)

The boundary conditions (4.2) yield

−sµ±[∓A±(s) sin(πs) + B±(s) cos(πs)] = as+1± g̃±(s + 1), (4.8)

and the balance condition (4.3) takes the form

g̃+(1) = g̃−(1). (4.9)

The constraints (3.12) and (3.13) imply that the functions ũ±(s, ·) are analytic in a strip 0 <
Re(s) < γ∞, whereas sũ±(s, ·) and ∂ ũ±(s, θ±)/∂θ± are analytic in a wider strip −γ0 < Re(s) <
γ∞. Also, the relation (4.5) implies

lim
s→0

µ±a−1± s B±(s) = −g̃±(1). (4.10)

Finally, the integral representations for the functions u± have the form

u±(r±, θ±) = 1

2π i

∫ i∞+α

−i∞+α
{A±(s) cos(θ±s) + B±(s) sin(θ±s)}r−s± ds, (4.11)

where 0 < α < γ∞ is a real constant.

5. Asymptotics for cracks along imperfect interfaces

The problems are reformulated in terms of singular integral equations. We analyse solutions of
these equations and derive new asymptotic representations for the displacement field near the tip of
a steady-state crack moving along an imperfect interface.
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STEADY-STATE MOTION OF A MODE-III CRACK 495

5.1 Imperfect weak interface

We begin with the case of a weak interface and introduce the following notation:

D1(s) = µ+
∂

∂θ+
ũ+(s, 0+) = µ+sa−s−1+ B+(s). (5.1)

LEMMA 5.1 The function D1(s) is analytic in a strip −1 < Re(s) < γ∞ and satisfies the functional
equation†

τ1 D1(s − 1) − 1

s
cot(πs)D1(s) = 1

s sin(πs)
G1(s), 0 < Re(s) < γ∞, (5.2)

where γ∞ is a non-negative constant, and D1(0) = −G1(0) = −g̃±(1). Here τ1 is a non-
dimensional constant,

τ1 = τ−1
w µ+µ−

a−µ+ + a+µ−
, (5.3)

and the function G1 is analytic in a domain containing the strip −1 < Re(s) < γ∞, and it is defined
by the formula

G1(s) = a+µ−g̃+(s + 1) + a−µ+g̃−(s + 1)

a−µ+ + a+µ−
. (5.4)

Proof. According to (3.8), the transmission conditions across the imperfect weak interface can be
written in polar coordinates (r±, θ±) as follows:

µ+
1

r+
∂u+(r+, θ+)

∂θ+

∣∣∣∣
θ+=0+

= µ−
1

r−
∂u−(r−, θ−)

∂θ−

∣∣∣∣
θ−=0−

, (5.5)

τw

(
u+(r+, 0+) − u−(r−, 0−)

) = µ+
1

r+
∂u+(r+, θ+)

∂θ+

∣∣∣∣
θ+=0+

. (5.6)

Using the identity r+/r− = a+/a− and applying the Mellin transform to (5.5), we obtain

µ+a−(s+1)
+

∂ ũ+(s, θ+)

∂θ+

∣∣∣∣
θ+=0+

= µ−a−(s+1)
−

∂ ũ−(s, θ−)

∂θ−

∣∣∣∣
θ−=0−

. (5.7)

The representation (4.6) yields

sµ+a−(s+1)
+ B+(s) = sµ−a−(s+1)

− B−(s), (5.8)

where the functions s B±(s) are analytic in a strip −γ0 < Re(s) < γ∞.
Similarly, the second transmission condition (5.6) gives

ũ+(s, 0+) − (a+/a−)s ũ−(s, 0−) = τ−1
w µ+

∂ ũ+

∂θ
(s − 1, 0+). (5.9)

† Matrix analogues of equations of this type were studied by a different method in (16).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/487/1942050 by guest on 20 August 2022



496 G. S. MISHURIS et al.

The solutions u± are sought in the class of functions with the following asymptotics:

u± = U (w)
± + �±(θ)rγ0± ln r± + O(r±), r → 0, u± = O(r−γ∞± ), r± → ∞, (5.10)

where U (w)
± are constants, and

�′±(0) = 0. (5.11)

Thus, p = 1, q = 0 in (3.12), (3.13), and the functions ũ±(s, θ±) and (∂ ũ±/∂θ±)(s, θ±) are analytic
in strips 0 < Re(s) < γ∞ and −γ0 < Re(s) < γ∞ respectively, whereas (∂ ũ±/∂θ±)(s, 0±) are
analytic in a wider strip −1 < Re(s) < γ∞. Equation (5.9) can be written as

a−s+ A+(s) − a−s− A−(s) = τ−1
w µ+(s − 1)a−s+ B+(s − 1), 0 < Re(s) < γ∞. (5.12)

Equations (4.8), (5.1), (5.8) and (5.12) lead to (5.2), with D1 satisfying the constraint

−D1(0) = G1(0) = g̃±(1), (5.13)

the latter following from (4.9), (4.10), (5.1) and (5.4). The proof is complete.

Rearranging (5.2) gives

τ1 D1(s − 1) = D1(s) cos(sπ) + G1(s)

s sin(sπ)
. (5.14)

From (5.13) it then follows that the right-hand side of (5.14) has a simple pole at s = 0 and,
therefore, D1(s) has a simple pole at s = −1. Rewriting (5.2) in the form

D1(s) = [sτ1 D1(s − 1) sin(sπ) − G1(s)] sec (sπ) (5.15)

we deduce that the right-hand side of (5.15) has a simple pole at s = 1
2 . Consequently, for a solution

of the functional equation (5.2) the constants γ0 and γ∞ can be chosen as follows:

γ0 = 1, γ∞ = 1
2 . (5.16)

5.1.1 Reduction to a singular integral equation. Let f1 be a function whose Mellin transform
satisfies the following equation:

D1(s) = �(1 + s)

[
f̃1(s + 1) − 2

πs
G1(0)

]
sin

πs

2
, (5.17)

where �(s) is the Euler gamma function. We note that D1(s) defined by (5.17) satisfies (5.13).
Since D1(s) is analytic in the strip −1 < Re(s) < 1

2 and has simple poles at s = −1 and s = 1
2 ,

and �(s + 1) has a simple pole at s = −1, it follows that then f̃1(s + 1) is analytic in a strip
−1 − δ < Re(s) < 1

2 with δ > 0.

LEMMA 5.2 The function f1 satisfies the singular integral equation

f1(ζ ) + τ1 k1(ζ )

∫ ∞

0
m1(ζ/ζ ′) f1(ζ

′)dζ ′/ζ ′ = k1(ζ )n1(ζ ), 0 < ζ < ∞, (5.18)
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STEADY-STATE MOTION OF A MODE-III CRACK 497

where n1(ζ ) is the inverse Mellin transform of

ñ1(s) = 2

πs
G1(0) + 2τ1G1(0)

π(s − 1)
cot

πs

2
tan(πs) − G1(s)

�(1 + s) cos(πs) sin( 1
2πs)

, (5.19)

k1(ζ ) = 1

ζ + τ1
and m1(ζ ) = 1

2π i

∫ i∞

−i∞
ζ sds

cos(πs)
=

√
ζ

π(1 + ζ )
. (5.20)

Proof. The function f̃1(s + 1) solves the following functional equation:

f̃1(s + 1) + τ1 f̃1(s)
(

cot
πs

2
tan(πs) − 1

)
+ τ1 f̃1(s) = ñ1(s), (5.21)

where ñ1(s) is the same as in (5.19). Applying the inverse Mellin transform gives (5.18).
From (5.21) it follows that the function f̃1(s) in (5.17) is analytic in the strip −1 < Re(s) < 3

2 ,
and it decays as Im (s) → ±∞. The latter implies that

∫ ∞

0
| f1(ζ )|ρα,β(ζ )

dζ

ζ
< ∞, ρα,β(ζ ) =

{
ζ α, 0 < ζ < 1,

ζ β, 1 < ζ < ∞,
(5.22)

with α > −1 and β < 1·5. Equation (5.18) is uniquely solvable in a class of functions specified by
(5.22). Numerical methods and solvability results for equations of this class are discussed in (17).

For the purpose of illustration, in Fig. 3 we present the results of the numerical solution of
(5.18). The diagram shows f1 for different values of the crack tip velocity V/min{v−, v+} =
0, 0·11, . . . , 0·99. Since ñ1(s) decays as O(s−1) when s → ±i∞ (see (5.19)), the solution f1
of (5.18) is discontinuous at ζ = 1. We note that the behaviour of f1 shown in Fig. 3 is consistent
with the asymptotic estimates of (17).

Fig. 3 Numerical solution of the integral equation (5.18) for different values of the crack tip velocity
V/min{v−, v+} = 0, 0·11, . . . , 0·99, for a symmetric load g+(r) = g−(r) = pe−r , with p constant
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498 G. S. MISHURIS et al.

5.1.2 Asymptotics near the crack tip and at infinity. Here we use Lemmas 5.1 and 5.2 to obtain
asymptotic approximations of the functions u± near the crack tip and at infinity.

THEOREM 5.1 (a) In the vicinity of the crack tip, the asymptotic representation for u± is

u±(r±, θ±) = U (w)
± ∓ r±

πµ±
�1(θ±, ln r±) +O(r2±(ln r±)2), r± → 0, (5.23)

where

U (w)
± = ±a±

πµ±
[
b00 + g̃′±(1)

]
,

�1 =
{

b10

[
1 − ln

r±
a±

]
+ b11 − g̃±(0)

}
cos θ± ∓ b10(π ∓ θ±) sin θ±.

(5.24)

(b) Away from the crack tip, as r± → ∞, the displacement field has the approximation

u±(r±, θ±) = −2a3/2
±

µ±
b1∞r−1/2

± sin
θ±
2

+O(r−1± ), r± → ∞. (5.25)

In the formulae (5.24) and (5.25), b00, b10, b1∞ and b11 are constant coefficients.

Proof. Using formula (5.1), we can write the representation (4.11) in the form

u±(r±, θ±) = ±1

2π i

∫ i∞+α

−i∞+α
{D1(s) cos[(π ∓ θ±)s] + g̃±(s + 1) cos(θ±s)} as+1± r−s± ds

sµ± sin(πs)
, (5.26)

where 0 < α < 1
2 is a real parameter. Within the strip −1 � Re(s) < 1

2 , the integrand in (5.26) has
a simple pole at s = 0 and a double pole at s = −1. We deduce that the exponents γ0 and γ∞ in
(5.10) are γ0 = 1, γ∞ = 1

2 , and p = 1, q = 0. The function D1(s) admits the following asymptotic
representations:

D1(s) = b10

s + 1
+ b11 +O(s + 1) as s → −1, D1(s) = b1∞

s − 1
2

+O(1) as s → 1
2 ,

D1(s) = −G1(0) + sb00 +O(s2) as s → 0,

where the coefficients are written in terms of the solution of (5.18), that is,

b10 = − 2

π
G1(0) − f̃1(0), b11 = −�′(1)

[
2

π
G1(0) + f̃1(0)

]
− 2

π
G1(0) − f̃ ′

1(0), (5.27)

b1∞ = 1

π

{
G1
( 1

2

)+ τ1

2

√
π

2

[
f̃1
( 1

2

)+ 4

π
G1(0)

]}
, b00 = π

2
f̃1(1) − G1(0)�′(1).

Using the residue theorem we derive the asymptotic representations (5.23) and (5.25).
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STEADY-STATE MOTION OF A MODE-III CRACK 499

Fig. 4 Infinite layer with a crack

The direct computation of the gradient field shows that the components of the shear stress near
the crack tip have a weak singularity of orderO(ln r±). However, further observation shows that the
traction is bounded at the interface θ± = 0±,

µ±
1

r±
∂u±

∂θ±

∣∣∣∣
θ±=0±

= b10 +O(r±(ln r±)2) as r± → 0. (5.28)

From the asymptotic formula (5.23) we deduce that the displacement jump and the traction behave
similarly as r± → 0, namely

u+(r+, 0+) − u−(r−, 0−) = τ1b10 +O(r±(ln r±)2) as r± → 0. (5.29)

The latter is consistent with the transmission conditions (5.6).
We note that, on one hand, the asymptotic formula (5.23) does not involve the standard

√
r

asymptotic term typical for models of cracks in homogeneous elastic media. On the other hand,
one can think of fracture of the weak interface as the formation of a crack within the thin layer, as
illustrated in Fig. 4. In this case, the stress within the interphase layer will indeed be singular, and it
is described by a model problem of the boundary-layer type for an infinite strip containing a crack.
This problem is analysed in the following section, whose aim is to evaluate the coefficient near
the singular term in the asymptotic approximation rather than to construct a uniform asymptotic
expansion of the solution.

5.1.3 Boundary layer analysis for a soft interface. Assuming that we have solved the problem
with the transmission conditions (2.3) and we know the limit values u±|y=0± = U (w)

± of the dis-
placement at the crack tip, we then formulate a model problem in the scaled domain shown in
Fig. 4.

Namely, we consider an auxiliary boundary-value problem for a Mode-III crack in a strip � =
{(χ1, χ2): −∞ < χ1 < ∞, −h2 < χ2 < h1}. The crack propagates with a constant speed V along
the χ1-axis in such a way that at every finite time t it occupies the region M = {(χ1, χ2): − ∞ <
χ1 < 0, χ2 = 0}; here we use a moving frame of reference with the origin at the crack tip. The
displacement w then satisfies(

1 − V 2

v2

)
∂2w

∂χ2
1

+ ∂2w

∂χ2
2

= 0 in �\M, (5.30)
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500 G. S. MISHURIS et al.

the Dirichlet boundary conditions at the upper and lower surfaces �± of the strip �

w(χ1, h1) = U (w)
+ , w(χ1, −h2) = U (w)

− , −∞ < χ1 < ∞, (5.31)

and the traction-free condition on the crack surfaces

∂w

∂χ2
(χ1, 0±) = 0, χ1 < 0. (5.32)

LEMMA 5.3 The solution of the problem (5.30) to (5.32) has the asymptotic representation

w(χ1, 0) = 2

µ
K (w)√χ1 +O(χ1) as χ1 → 0 + . (5.33)

(a) The coefficient K (w) (the Mode-III stress intensity factor‡) is given by

K (w) = µw
U (w)

+ − U (w)
−√

a(h1 + h2)
. (5.34)

(b) Comparing this result with the outer solution for a soft interface (see section 5.1.2) gives the
following value for b10:

b10 = σ ∗
0 ≡ µw[U (w)

+ − U (w)
− ]/(h1 + h2). (5.35)

Proof. To find the solution of the above problem, we use the superposition principle, that is, we
take w = w∗ + w(1), where

w∗ = U (w)
+ − U (w)

−
h1 + h2

χ2 + U (w)
+ h2 + U (w)

− h1

h1 + h2
,

and w(1) solves the problem(
1 − V 2

v2

)
∂2w(1)

∂χ2
1

+ ∂2w(1)

∂χ2
2

= 0 in � \ M, (5.36)

w(1)(χ1, h1) = 0, w(1)(χ1, −h2) = 0, −∞ < χ1 < ∞, (5.37)

µw
∂w(1)

∂χ2
(χ1, 0±) = −σ ∗

0 , χ1 < 0. (5.38)

To solve this problem, we apply the Fourier transform with respect to χ1, F . Using the boundary
conditions (5.38) we derive the following functional equation for the Fourier transform W of the
function w(1):

[W ]−(ξ1) =
(

− iσ ∗
0

ξ1 − i0
− F+(ξ1)

)
Ĝ(ξ1), (5.39)

‡ The Mode-III stress intensity factor is defined here by the relation KIII = µ limχ1→0+ ∂w(χ1, 0)/∂χ2.
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where

Ĝ(ξ1) = a(tanh(ξ1h1/a) + tanh(ξ1h2/a))/ξ1,

[W ]−(ξ1) = W (ξ1, 0+) − W (ξ1, 0−), F+(ξ1) = µw
∂W

∂χ2
(ξ1, 0+) − F{−σ ∗

0 H(−χ1)}.

The functions [W ]− and F+ are analytic in the upper half-plane Im (ξ1) > −η and the lower half-
plane Im (ξ1) < η respectively, with η being a sufficiently small positive quantity.

The function Ĝ can be represented as follows:

Ĝ(ξ1) = Ĝ+(ξ1)Ĝ−(ξ1) = 2aψb+(ξ1)ψ
b−(ξ1)

(ξ1 − ib)
1/2
− (ξ1 + ib)

1/2
+

, Ĝ±(ξ1) = ψb±(ξ1)
√

2a

(ξ1 ± ib)
1/2
±

, (5.40)

where for any 0 < δ < b < [2πa/(h1h2)] max{h1, h2} we define

ψb±(ξ1) = exp

{ ±1

2π i

∫ ∞∓iδ

−∞∓iδ

dξ ′
1

ξ ′
1 − ξ1

ln
[
(2a)−1(ξ ′

1 − ib)
1/2
− (ξ ′

1 + ib)
1/2
+ Ĝ(ξ ′

1)
]}

.

Factorizing (5.39) (and taking into account (5.40)) we obtain

[W ]−(ξ1) = − iσ ∗
0

ξ1 − i0
Ĝ+(0)Ĝ−(ξ1), F+(ξ1) = − iσ ∗

0

ξ1 − i0

(
1 − Ĝ+(0)

Ĝ+(ξ1)

)
. (5.41)

The function F+(ξ1) admits the following asymptotic representation as ξ1 → ∞:

F+(ξ1) ∼
√

i(h1 + h2)

2a

σ ∗
0

(ξ1 + i0)
1/2
+

, ξ1 → ∞,

from which it follows that the stress intensity factor K (w) at the crack tip has the form (5.34). Taking
the limit as ξ1 → 0 in (5.41)1 yields (5.35).

5.2 Stiff imperfect interface

Here we consider the transmission conditions (3.9), corresponding to the stiff interface of type I. In
this case, the displacement is continuous across the interface, whereas the traction has a jump,

u+(r+, 0+) = u−(r−, 0−), (5.42)

µ+
1

r+
∂u+

∂θ+
(r+, 0+) − µ−

1

r−
∂u−

∂θ−
(r−, 0−) = −a2+τs

a2

∂2u+

∂r2+
(r+, 0+). (5.43)

The description of asymptotics for a stiff interface of type II will be given later as a particular case
of the results formulated in this section. Applying the Mellin transform to (5.42) we obtain

a−s+ A+(s) = a−s− A−(s), 0 < Re(s) < γ ′∞. (5.44)
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502 G. S. MISHURIS et al.

Both functions A±(s) have simple poles at s = 0, that is,

A+(s) = A−(s) = s−1 U (s) +O(1), s → 0, (5.45)

and therefore s A±(s) are analytic in a wider strip −γ ′
0 < Re(s) < γ ′∞. Define D2(s) by

D2(s) = sa−s± ũ±(s, 0±) = sa−s± A±(s). (5.46)

LEMMA 5.4 The function D2(s) is analytic in the strip − 3
2 < Re(s) < 1 and it satisfies the

functional equation§

τ2 D2(s − 1) + s−1 tan(πs)D2(s) = G2(s) sec (πs), (5.47)

where

τ2 = τsa+a−
a2(µ+a− + µ−a+)

, G2(s) = − a+a−[g̃−(s + 1) − g̃+(s + 1)]

s(µ+a− + µ−a+)
, (5.48)

and G2 is a function analytic in a strip wider than that for D2.

Proof. We show that u± admit asymptotic representations similar to (3.13), that is,

u± = U (s) + �±(θ±)r
γ ′

0± +O(r
γ ′

0+1
± ln r±) as r± → 0,

u± = O(r
−γ ′∞± ) as r± → ∞,

(5.49)

where �±(0±) = 0, and the exponents γ ′
0, γ

′∞ > 0 will be specified later. For a stiff interface,
both p and q in (3.13) are equal to zero, and the functions sũ±(s, 0±) are analytic in the strip
−1 − γ ′

0 < Re(s) < γ ′∞.
In terms of the Mellin transforms, the transmission condition (5.43) is reduced to

µ+s B+(s) − µ−s(a+/a−)s+1 B−(s) + s(s − 1)(a+/a)2τs A+(s − 1) = 0. (5.50)

This equation is valid within the strip −γ ′
0 < Re(s) < γ ′∞ + 1; here we have used the fact that

(s − 1)A+(s − 1) does not have a pole at s = 1. Using (4.8) and (5.46), (5.50) can be written in the
form (5.47). From (5.47) it follows that D2(s) is analytic in the strip − 3

2 < Re(s) < 1.

The solution of (5.47) is taken in the form

D2(s) = �(1 + s) cos (πs/2) f̃2(s + 1), (5.51)

where f̃2(s + 1) is analytic in the same strip as D2(s) and solves the functional equation

f̃2(s + 1) + τ2 f̃2(s) − τ2

1 + cos(πs)
f̃2(s) = G2(s)

�(s) sin(πs) cos (πs/2)
. (5.52)

Thus, we arrive at the following conclusion.

§ Equations of this type were also studied by a different method in (10, 18).
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Fig. 5 Numerical solution of (5.53) for different values of the crack tip velocity V/min{v−, v+} = 0,

0·11, . . . , 0·99, for a non-symmetric load g+(r) = pe−r , g−(r) = pre−r , with p constant

LEMMA 5.5 The inverse Mellin transform f2 of f̃2 satisfies the integral equation

f2(ζ ) + τ2 k2(ζ )

∫ ∞

0
m2(ζ/ζ ′) f2(ζ

′)dζ ′/ζ ′ = k2(ζ )n2(ζ ), 0 < ζ < ∞, (5.53)

where k2(ζ ) = (ζ + τ2)
−1,

m2(ζ ) = − 1

2π i

∫ i∞

−i∞
ζ−sds

1 + cos(πs)
= 2

π2

ζ ln ζ

1 − ζ 2

and

n2(ζ ) = 1

2π i

∫ i∞

−i∞
G2(s)ζ−sds

�(s) sin(πs) cos (πs/2)
.

Equation (5.53) is uniquely solvable in the class of functions specified by (5.22), with f1 replaced
by f2, and α > − 1

2 , β < 2 (17). The numerical solution of (5.53) is shown in Fig. 5. We note that,
since the right-hand side of (5.53) is continuous, the solution f2 is also continuous.

5.2.1 Theorem on asymptotics

THEOREM 5.2 (a) As r± → 0, the asymptotic representation for u± takes the form

u±(r±, θ±) = U (s) + 2

µ±
K (s)

±
√

a±r± sin
θ±
2

+O(r3/2
± ln r±). (5.54)

(b) Away from the crack tip, as r± → ∞, the solution u± has the approximation

u±(r±, θ±) = 2a3/2
±

πµ±
b(s)±∞ r−1/2

± sin
θ±
2

+O(r−1± ). (5.55)
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In the formulae (5.54) and (5.55), K (s)
± , b(s)±∞ and U (s) are given by

U (s) = D2(0), K (s)
± = − 1

π

[
g̃±
( 1

2

) ± µ±
a±

D2
(− 1

2

)]
, (5.56)

b(s)±∞ = −g̃±
( 3

2

) ± µ±
a±

D2
( 1

2

)
,

D2(0) = f̃2(1), D2
(− 1

2

) =√π/2 f̃2
( 1

2

)
, D2

( 1
2

) =√π/8 f̃2
( 3

2

)
.

Proof. Using (5.46) the integral representation (4.11) can be written in the form

u±(r±, θ±) = 1

2π i

∫ i∞+α

−i∞+α

{
µ±
a±

D2(s) cos[(π ∓ θ±)s] − g̃±(s + 1) sin(θ±s)

}

× as+1± r−s± ds

sµ± cos(πs)
, (5.57)

where 0 < α < 1
2 is a real parameter; this leads to (5.54) and (5.55). From (5.54) it follows that, for

the transmission conditions of type I associated with an imperfect stiff interface, the leading-order
asymptotic representations for stress do not include logarithmic terms (nevertheless, the logarithmic
dependence may appear in higher-order approximations). The exponents in (5.49) are given by
γ ′

0 = 1
2 and γ ′∞ = 1

2 .

Let us note that the stress intensity factors K (s)
± are the same for a symmetric load, that is, when

g+ = g−. In general, however, K (s)
+ �= K (s)

− , the traction is discontinuous across the interface ahead
of the crack tip, and its jump admits the following asymptotic representation:

σ+
yz(X, 0+) − σ−

yz(X, 0−) = 1√
X

(K (s)
+ − K (s)

− ) +O(
√

X ln X) as X → 0 + . (5.58)

5.3 Other interfaces

Ideal interface. In this case the transmission conditions are given by (3.7). Let us note that these
can be obtained from (3.8) or (3.9) by taking τw → 0 or τs → 0 respectively; the first problem is
then singularly perturbed, whereas the second one is regularly perturbed. This allows us to use the
results of section 4.2, with τ2 = 0. Thus, we derive the asymptotic representations

u±(r±, θ±) = U (i) + 2

µ±
K (i)√a±r± sin

θ±
2

+O(r±) as r± → 0, (5.59)

u±(r±, θ±) = 2a3/2
±

πµ±
b(i)∞ r−1/2

± sin
θ±
2

+O(r−1± ) as r± → ∞, (5.60)

where U (i), K (i) and b(i)∞ are

U (i) = a+a−
π(µ+a− + µ−a+)

(g̃′+(1) − g̃′−(1)), K (i) = − 1

π
G1
(− 1

2

)
, b(i)∞ = −G1

( 1
2

)
,

and G1 is given by (5.4). We mention that K (i) depends on V for a non-symmetric load.
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The above problem for a symmetric loading (g+ = g− = gsym) has been analysed by Freund
(14) using the Wiener–Hopf method. In the symmetric case,

U (i)
sym = 0, K (i)

sym = − 1

π
g̃sym
( 1

2

)
, b(i)∞ = −g̃sym

( 3
2

)
, (5.61)

and

u±(r±, 0±) = 0. (5.62)

Stiff imperfect interface of type II (rigid interface). The transmission conditions (3.10), together
with the assumption that the displacement field u± decays as r± → ∞, lead to the boundary
conditions (5.62). The solution for a stiff interface of type II can be obtained either directly from
the solution for an ideal interface or from the solution for a type I stiff interface by taking the limit
as τ2 → ∞. The asymptotic representations (5.59) and (5.60) hold in each half-plane �±, with
U (i), K (i) and b(i)∞ replaced by U (r), K (r)

± and b(r)±∞ respectively, where

U (r) = 0, K (r)
± = −π−1 g̃±

( 1
2

)
, b(r)±∞ = −g̃±

( 3
2

)
. (5.63)

5.4 Delamination on a stiff interface

In this section we consider a problem of delamination on one side of the stiff interface. Instead of the
semi-infinite crack, with Neumann boundary conditions on both faces (see Fig. 6(a)), we consider
a region of delamination shown in Fig. 6(b). While ahead of the debonding region the transmission
conditions are the same as in (5.42), (5.43), we have a new set of boundary conditions on the faces
of the delamination region as described below.

Let us assume that the delamination process takes place only at one side of the stiff interface (see
Fig. 6b). Then the corresponding boundary conditions take the form

−µ−
1

r−
∂u−

∂θ−

∣∣∣∣
θ−=−π

= g−(r−/a−), (5.64)

−µ+
1

r+
∂u+

∂θ+
(r+, π) − g+(r+/a+) = −a2+τs

a2

∂2u+

∂r2+
(r+, π). (5.65)

Fig. 6 Delamination of a stiff thin interface
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Applying the Mellin transform to (5.42) we obtain (5.44); both functions A±(s) have simple
poles at s = 0 (see (5.45)), and s A±(s) are analytic in a strip −γ ′

0 < Re(s) < γ ′∞, where γ ′
0, γ

′∞
are positive constants.

The estimates (5.49) have to be satisfied with �±(0±) = 0, γ ′
0, γ

′∞ > 0. In addition, from (5.65)
it follows that �+(π) = 0. The functions sũ±(s, 0±) are analytic in a wider strip −1 − γ ′

0 <
Re(s) < γ ′∞. The second transmission condition is reduced to (5.50).

The boundary condition (5.64) is the same as in (4.8), that is,

−sµ−[A−(s) sin(πs) + B−(s) cos(πs)] = as+1− g̃−(s + 1), (5.66)

while the second condition (5.65) can be written in the form

sµ+[A+(s) sin(πs) − B+(s) cos(πs)] − as+1+ g̃+(s + 1)

= s(s − 1)
a2+
a2 τs[A+(s − 1) cos(πs) + B+(s − 1) sin(πs)]. (5.67)

Let us introduce the function D3(s) such that

D3(s) = sa−s+ ũ+(s, π) = sa−s+ [A+(s) cos(πs) + B+(s) sin(πs)]. (5.68)

We shall also use D2(s) introduced earlier in (5.46). The functions D2(s), D3(s) have the common
strip of analyticity −1 − γ ′

0 < Re(s) < γ ′∞. It is useful to note that D2(0) = D3(0).

LEMMA 5.6 The vector function D(s) = [D2(s), D3(s)]T satisfies the functional equation

D(s) = A(s)
{

G(s) − s
τs

a2B(s)D(s − 1)
}

, −γ ′
0 < Re(s) < γ ′∞, (5.69)

where

A(s) = β

⎡
⎢⎢⎢⎣

− µ+
a+

1

sin(πs)

µ+
a+

1

sin(πs)

− µ+
a+

2

sin(2πs)

(
µ+
a+

+ µ−
a−

)
κ + cos(2πs)

sin(2πs)

⎤
⎥⎥⎥⎦, G(s) =

[
g̃−(s + 1)

g̃+(s + 1)

]
, (5.70)

B(s) =
[

− cos(πs) 0

0 1

]
, κ = µ+a− − µ−a+

µ+a− + µ−a+
, β =

(
µ+
a+

(µ+
a+

+ µ−
a−

))−1

. (5.71)

Note that, due to the balance condition (4.9), the functions A(s)G(s) and sA(s) are analytic at
s = 0. By investigating a priori properties of a solution of (5.69) one can find that D2(s) does not
have a pole at s = 1

2 , while D3(s) has a simple pole at s = 1
2 , that is,

D3(s) = d3/
(
s − 1

2

)+O(1) as s → 1
2 , (5.72)

where

d3 = a+
πµ+

G1
( 1

2

)− 1

2π

µ−
a−

βτs

a2 D3
(− 1

2

)
. (5.73)

Also, from (5.69) it follows that the functions D2(s) and D3(s) have a simple pole at s = 1.
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The direct analysis of the solution gives

D2(s − 1) = d2/
(
s + 1

2

)+O(1) as s → − 1
2 , (5.74)

d2 = 2a2

πτs

(
g̃−
( 1

2

)− µ−
a−

D2
(− 1

2

))
, (5.75)

while D3(s − 1) is analytic at s = − 1
2 . Also, D2(s − 1) and D3(s − 1) may have simple poles at

s = −1:

D2(s − 1) = D3(s − 1) +O(1) = a2µ+
τs

d1

s + 1
+O(1), s → −1, (5.76)

d1 = − 1

πa+
(D2(−1) + D3(−1)). (5.77)

Thus, D2(s) and D3(s) are analytic for − 3
2 < Re(s) < 1 and −2 < Re(s) < 1

2 , respectively.
The solution of (5.69) is taken in the form

D(s) = �(1 + s) cos
πs

2

[
1 0

1 tan(πs) tan( 1
2πs)

]
F̃(s + 1) − a+

µ+

[
0 0
0 tan(πs)

]
G(s), (5.78)

where F̃(s + 1) is analytic in the same strip as D(s). It can be verified directly that in new notation
(5.69) is equivalent to

F̃(s + 1) + τd

2

[
(κ + 1) 0

(κ − 1) 2

]
F̃(s) − τd

2 cos(πs)

[
0 (κ + 1)

0 (κ − 1)

]
F̃(s) = Ñ(s), (5.79)

where τd = τsa+(a2µ+)−1 and

Ñ(s) = a+(1 + κ)

2µ+�(s + 1) sin(πs) cos( 1
2πs)

⎡
⎣−1 1

−1 1 − 2(1 + cos(πs))

1 + κ

⎤
⎦
[

g̃−(s + 1) − g̃+(s + 1)

sτd tan(πs)g̃+(s)

]
.

(5.80)
Finally, applying the inverse Mellin transform directly to (5.79), we obtain the following lemma.

LEMMA 5.7 The vector function F = [F1, F2]T solves the integral equation

F(ζ ) − τd

2
K(ζ )

[
κ + 1

κ − 1

] ∫ ∞

0
m1(ζ/ζ ′)F2(ζ

′)dζ ′

ζ ′ = K(ζ )N(ζ ), 0 < ζ < ∞, (5.81)

where N(ζ ) is the inverse Mellin transform of the vector function Ñ(ζ ) and

K(ζ ) ≡ (ζ I +A0)
−1 =

⎡
⎢⎢⎣

2

2ζ + τd(1 + κ)
0

τd(1 − κ)

(ζ + τd)(2ζ + τd(1 + κ))

1

ζ + τd

⎤
⎥⎥⎦. (5.82)
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We note that the matrix of the system (5.81) is triangular. Thus, we first numerically solve the
second integral equation for the function F2(ζ ) only,

F2(ζ ) − τdζ(κ − 1)

(ζ + τd)(2ζ + τd(1 + κ))

∫ ∞

0
m1(ζ/ζ ′)F2(ζ

′)dζ ′

ζ ′

=
[
0
1

]T

K(ζ )N(ζ ), 0 < ζ < ∞. (5.83)

This equation is uniquely solvable in a class of function with finite norm (5.22), with α > − 1
2 ,

β < 2 (17). Then we find F1 immediately:

F1(ζ ) = τd(κ + 1)

2ζ + τd(1 + κ)

∫ ∞

0
m1(ζ/ζ ′)F2(ζ

′)dζ ′

ζ ′ +
[
1

0

]T

K(ζ )N(ζ ), 0 < ζ < ∞, (5.84)

or, taking into account (5.83),

F1(ζ ) = (τd + ζ )(κ + 1)

ζ(κ − 1)

{
F2(ζ ) −

[
0

1

]T

K(ζ )N(ζ )

}
+
[
1

0

]T

K(ζ )N(ζ ). (5.85)

Note that from (5.83) it follows that the term in braces in (5.85) decays as O(ζ 2 ln ζ ) when ζ → 0.
The results of numerical calculations are shown in Fig. 7. The functions F1 (solid lines) and F2

(dashed lines) are plotted for different values of V/min{v−, v+} = 0, 0·11, . . . , 0·99. Figure 7(a)
corresponds to a symmetric load g+(r) = g−(r) = pe−r , and Fig. 7(b) to a non-symmetric load
g+(r) = pe−r , g−(r) = pre−r , with p constant.

We note that the integral equation (5.81) has non-trivial solutions for both symmetric and non-
symmetric loads (compare with (5.53) which possesses a non-trivial solution for a non-symmetric
load only).

Fig. 7 The solutions F1 (solid lines) and F2 (dashed lines) of (5.83) and (5.84) for different values of the crack
tip velocity V/min{v−, v+} = 0, 0·11, . . . , 0·99. (a) symmetric load; (b) non-symmetric load
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5.4.1 Theorem on asymptotics

THEOREM 5.3 The functions u± admit the following asymptotic representations:

(a) in the vicinity of the crack tip,

u+(r+, θ+) = U (d) + d1r+ sin θ+ + 4

3

a2

τs
K (d)

−
(

r+
a+

)3/2

cos
3θ+
2

+O(r2+ ln r+), r+ → 0, (5.86)

u−(r−, θ−) = U (d) + 2

µ−
K (d)

−
√

a−r− sin
θ−
2

+O(r3/2
− ln r−), r− → 0, (5.87)

where d1 is given by (5.77), while the expressions for U (d), K (d)
− are similar to those for U (s),

K (s)
− in (5.56), with D2(s) being the first component of the solution D(s) of (5.69);

(b) away from the crack tip,

u+(r+, θ+) = −2
√

a+
r+

d3 sin
θ+
2

+O(r−1+ ln r+), r+ → ∞, (5.88)

u−(r−, θ−) = −2
a−µ+
a+µ−

√
a−
r−

d3 sin
θ−
2

+O(r−1− ln r−), r− → ∞, (5.89)

with d3 given by (5.73).

Proof. The integral representation (4.11) in the domain �+ can be written in the form

u+(r+, θ+) = 1

2π i

∫ i∞+α

−i∞+α
{D2(s) sin[(π − θ+)s] + D3(s) sin(θ+s)} as+r−s+ ds

s sin(πs)
, (5.90)

where 0 < α < 1
2 is a real parameter; this leads to the asymptotic representations (5.86), (5.88) for

the displacements u+. From (5.86) it follows that ∇u+ has no singularity near the crack tip.
The asymptotic formulae (5.87), (5.89) for the function u− in the domain �− follow immediately

from the representation (5.57). The proof is complete.

6. Numerical simulations and concluding remarks

6.1 Soft interface

The numerical calculations for the weak interface were done for a thin epoxy adhesive interphase
layer (h = 0·003) surrounded by either iron above and titanium below or iron both above and below.
The material parameters used in the calculations are given in Table 1.

Figure 8 shows the normalized displacement jump [U (w)](τ1(V ), V )/[U (w)](τ1(0), 0) at the
tip of a crack propagating along a weak interface for a symmetric load g±(r) = pe−r , where
p is constant and τ1 is given by (5.3). We consider two different cases: (1) both domains �+
and �− are made of iron, and (2) the domain �+ is made of iron whereas �− is made of tita-
nium. Figure 8(a) presents the displacement jump as a function of the crack tip velocity V . One
can see that the displacement jump increases monotonically with V and becomes unbounded as
V → vm ≡ min{v+, v−}. We note that the static limit (V = 0) is consistent with the earlier results
(11 to 13).
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510 G. S. MISHURIS et al.

Table 1 Material parameters used in computations for a crack propagating along
a weak interface

Material Shear modulus [N/m2] Mass density [kg/m3] wave speed [m/sec]

Iron 82 × 109 7860 3230
Titanium 44 × 109 4506 3124

Epoxy adhesive 77 × 107 1380 747

Fig. 8 The displacement jump at the tip of the crack propagating along a weak interface (curves 1 correspond
to the case when both domains �± are made of iron, curves 2 to the case when �+ is made of iron and �−
of titanium). The diagram (a) shows the displacement jump as a function of the crack tip velocity V , whereas
(b) corresponds to V = vm/2. The insert on diagram (b) presents the displacement jump as a function of τ1,
whereas diagram (b) itself shows the displacement jump against log τ1. Both diagrams were generated for a
symmetric load g± = pe−r , with p constant

Figure 8(b) shows the dependence of the displacement jump on the elastic properties of the in-
terphase layer. To generate the diagram we change the value of the parameter τw in the expression
(5.3) for τ1 = τ1(τw, V ) and take V = V∗ = min{v−, v+}/2, and τ ∗

1 (V ) = τ1(τ
∗
w, V ) for the epoxy

adhesive from Table 1. As follows from Fig. 8(b) (see the insert) the displacement jump decays as
O(τ

1/2
1 ) as τ1 → 0, and thus σθ z = O(τ

−1/2
1 ) as τ1 → 0 (see (5.28) and (5.29)).

Figure 9 shows the stress intensity factor K (w) as a function of the normalized crack speed V for
a crack propagating along a weak interface. Two cases are discussed: (a) the soft interface between
similar materials (corresponding to the curves of group 1 in Fig. 8), and (b) the soft interface
between dissimilar media (corresponding to the curves of group 2 in Fig. 8). First, we consider
the epoxy adhesive interface as in Table 1. In this case v = 0·239vm . Other weak interfaces of the
same shear modulus but different material density (and therefore different wave speed v) are also
analysed. In the case when v < vm = min{v+, v−} the stress intensity factor is decreasing with the
increase of the crack velocity V , and when V → v < vm the stress intensity factor vanishes. Hence,
in this case the crack has a tendency to slow down. When v = vm , the change in the stress intensity
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Fig. 9 Mode-III stress intensity factor K (w) for a crack propagating along a weak interface: the left diagram
corresponds to the case when both domains �± are made of iron, the right diagram is for when �+ is made of
iron and �− of titanium. The applied load is the same as in Fig. 8

Table 2 Material parameters used in computations for a crack propagating along a stiff interface

Material Shear modulus [N/m2] Mass density [kg/m3] wave speed [m/sec]

Iron (interface) 82 × 109 7860 3230
Magnesium 17 × 109 1738 3128
Aluminium 26 × 109 2700 3103

factor is negligibly small with the change of speed V , and it is similar to the stress intensity factor of
the crack moving in a homogeneous material. When v > vm the stress intensity factor grows with
speed, similarly to the growth of the displacement discontinuity [U (w)] (or the crack opening) de-
picted in Fig. 8. In the latter case, the crack opening [U (w)] can be used in the fracture criterion for
a crack propagating along a weak interface. On the contrary, other cases of weak interfaces should
use the stress intensity factors in the corresponding fracture criteria.

The presence of the boundary layer, where the stress field has a traditional square root singularity,
resolves the issue of the energy transport for this problem. We remark that an alternative approach,
implemented for the static case, was considered in (19).

6.2 Stiff interface

The computations for a stiff interphase are done for a thin iron layer surrounded by magnesium and
aluminium. The material parameters are given in Table 2. In addition, we shall also investigate the
case when the thin iron layer is situated between the aluminium half-planes.

In Fig. 10 we display the normalized stress intensity factors as functions of the crack speed; we
note that the traction components are discontinuous across the interface; K (s)

± stand for the values
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512 G. S. MISHURIS et al.

Fig. 10 Mode-III stress intensity factors K (s)
± (above and below the stiff interface) as functions of the crack

tip speed V : the diagram (a) corresponds to the case when �+ is made of magnesium and �− of aluminium;
the diagram (b) is for the case when we swap the two materials. The applied load is taken in the form g+ =
pe−r , g− = pre−r , with p constant. The Mode-III stress intensity factor K (i) for an ideal interface is shown
here for comparison

of the stress intensity factors above and below the stiff interface. For the sake of comparison, we
also depict the stress intensity factor K (i) obtained for the case of an ideal contact (continuity of
displacement components and tractions). The diagrams (a) and (b) contain different combinations of
surrounding materials above and below the interface, for the case of a non-symmetric load defined
as g+ = pe−r , g− = pre−r , with p constant. In both cases, the behaviour of the stress intensity
factors is dominated by the load g+. We note that for the case of a symmetric load, the values K (s)

±
coincide with K (i).

In Fig. 11 we show the results of computations for the case of the symmetric distribution of
materials around the interface: this diagram corresponds to the case of the iron interface surrounded
by aluminium. The dashed lines in the diagram (b) represent the stress intensity factors K (s)

± for an
additional special case of an interface that has the same shear modulus as iron but different density,
so that the wave speed v for the interphase layer is vm/2.

Diagrams (a) and (b) in Fig. 12 correspond to the same load and distribution of the materials
surrounding the interface as in Fig. 10. For the material of the interphase layer, we change the
stiffness parameter τ2 and depict the stress intensity factors K (s)

± . It is shown that when τ2 decreases
the result, in the limit, corresponds to that for the ideal contact conditions, whereas the growth of τ2

leads to the values K (s)
± for a perfectly rigid interface as defined by (5.63).

It is noted that the interchange of surrounding materials (with the same load in place) for the
case of a stiff interface gives a finite change in the values of K (s)

± , in contrast with the situation
corresponding to the soft interface.

6.3 Delamination crack on a stiff interface

In this section we discuss the results of numerical computations for the case when the crack surface
is loaded by the given traction on one side, and the other side of the crack surface is in contact with
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Fig. 11 Mode-III stress intensity factors K (s)
± (above and below the stiff interface) as functions of the crack

tip speed V for the case when both �+ and �− are made of aluminium. The applied load is the same as in
Fig. 10. The Mode-III stress intensity factor K (i) for an ideal interface is shown here for comparison

Fig. 12 Mode-III stress intensity factors K (s)
± (above and below the stiff interface) as functions of the parameter

τ2, for V = min{v−, v+}/2: the diagram (a) corresponds to the case when �+ is made of magnesium and �−
of aluminium, the diagram (b) is for the case when we swap the two materials. The applied load is the same as
in Fig. 10. The Mode-III stress intensity factors K (i) (for an ideal interface) and K (r)

± (for a rigid interface) are
shown here for comparison

the stiff interface and also subjected to the given load. The analytical study of this configuration is
included in section 5.4. In this situation, the crack runs along the lower boundary of the interphase
layer, and we classify this case as delamination along a stiff interface (see Fig. 6). For comparison,
all graphs in Fig. 13 include the dashed lines (for K (r)

− /p) corresponding to a perfectly rigid inter-
face, so that the problem is equivalent to the one for a half-plane with the homogeneous Dirichlet
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Fig. 13 Mode-III stress intensity factor K (d) for a delamination crack propagating below a stiff interface
(curves 1: �+ is made of aluminium, �− of magnesium; curves 2: �+ is made of magnesium, �− of alu-
minium; curves 3: both �± are made of aluminium). The diagram (a) corresponds to the symmetric load
g± = pre−r , p is a constant (solid lines) and the non-symmetric load g+ = pe−r , g− = pre−r (dashed
lines). The diagram (b) corresponds to the other symmetric load: g± = pe−r (solid lines) and the non-
symmetric load: g+ = pre−r , g− = pe−r (dashed lines). The Mode III stress intensity factors K (r)

− (for
a delamination crack below a rigid interface) are given here for comparison

condition along the positive semi-axis and the Neumann traction condition on the negative semi-
axis. The material parameters used in the computations are the same as those of section 6.2 and are
presented in Table 2. In all the cases the interphase layer is made of iron. The curves labelled by ‘1’
correspond to aluminium above and magnesium below the interface, these materials interchange for
the curves labelled by ‘2’, and the case ‘3’ corresponds to aluminium placed on both sides of the
interface.

In Fig. 13(a) we show the stress intensity factor K (d)/p versus V/vm . It corresponds to the
symmetric load g± = pre−r , with p constant (solid lines), and the non-symmetric load g+ = pe−r ,
g− = pre−r (dashed lines). We note that the load applied to the lower face of the moving crack is
the same in both cases, and this load vanishes as r → 0. Figure 13(b) corresponds to the case of
symmetric load with g± = pe−r (solid lines), and non-symmetric load, with g+ = pre−r , g− =
pe−r (dashed lines). Both cases have the same load on the lower face of the crack, but this load
does not vanish as r → 0, in contrast with the case of Fig. 13(a).

The computations presented in the two figures show that the relatively stiff iron interface produces
output sufficiently close to the case of a perfectly rigid interface (shown by dashed lines on the
diagrams). Also, we remark that the change of the load applied to the upper face of the crack (which
is in contact with the stiff interface) produces a small change in the values of K (d)/p. The variation
of the stress intensity factor with the crack velocity is also negligibly small.

Comparison of Fig. 13(a) and Fig. 13(b) also suggests that |K (d)/p | for the case of Fig. 13(a)
(where the load on the lower face of the crack vanishes as r → 0) is larger than |K (r)

− /p |, whereas
in the other case, shown in Fig. 13(b), |K (d)/p | < |K (r)

− /p |.
To summarize, we have obtained analytical results on regularity of solutions to problems of cracks

propagating along imperfect interfaces and presented numerical simulations that include accurate
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evaluation of displacement and stress around the delamination cracks for a range of realistic physical
parameters. It is shown that the classical concepts of fracture mechanics may require adjustments
for problems involving delamination on stiff or soft interfaces.
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