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Steady-State Response of a lultidegree 
System With an Impact Damper 
An exact solution is presented for the steady-state motion of a sinusoidally excited n-
degree-of-freedom system that is provided with an impact damper. Both the excitation 
and the damper may be independently applied to any point in the system. Experi­
mental studies with an analog computer and with a mechanical model corroborate the 
theoretical results. Results of the analysis are applied to the lumped parameter repre­
sentation of a modern 10 story building, and the effects of various system parameters, 
including mode shape, excitation frequency, damper location, and force location are 
determined. It is found that the impact damper is an efficient device for reducing the 
vibrations of mullidegree-of-freedom systems, particularly in structures such as tall 

R. IECENT studies [1, 2]1 have shown that chain-type 
impact dampers offer a simple and reliable method for attenuat­
ing wind-induced vibrations of tall flexible structures such as 
launch vehicles, antennas, smoke stacks, etc. However, al­
though impact dampers have been investigated both analytically 
and experimentally, no analytical results are available in the 
literature regarding the response of multidegree-of-freedom sys­
tems utilizing impact dampers. I t will be shown in this paper 
that the use of impact vibration dampers is feasible to suppress 
earthquake-induced or wind-induced oscillations of tall buildings. 

This paper presents the exact solution for the steady-state 
motion of a series-type multidegree-of-freedom system equipped 
with an impact damper and subjected to a sinusoidal force input. 
The lumped parameter model of the n-degree-of-freedom system 
being considered is shown in Fig. 1. The sinusoidal forcing func­
tion is applied to the fcth mass and the impact damper is attached 
to the jth mass. I t is assumed that, during a period of the forcing 
function, two symmetric impacts occur at equal time intervals 
and at opposite ends of the damper container. This assumed 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Applied Mechanics Division and presented 

at the Applied Mechanics Summer Conference, University of Cali­
fornia, La Jolla, Calif., June 26-28, 1972, of T H E AMERICAN SOCIETY 
OP MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial 
Department, ASME, United Engineering Center, 345 East 47th 
Street, New York, N. Y. 10017, and will be accepted until April 20, 
1973. Discussion received after this date will be returned. Manu­
script received by ASME Applied Mechanics Division, September, 
1971; final revision, January, 1972. Paper No. 72-APM-39. 

motion is consistent with that which has been found to pre­
dominate in the experimental studies of impact dampers as ob­
served by most investigators in this field. 

Steady-State Solution 
The equation of motion of the system in the absence of the 

damper is 

[m]x + [c]x + Wx = F(0 (1) 

where [m], [c], [k] are the mass, damping, and stiffness matrices, 
respectively, and F(<) = col {0, 0, . . . , 0, Fh(t), 0, . . ., 0}. 

Assume that the damping mechanism is the proportional-type 
satisfying the condition 

[c] = a[m] + 0[k] (2) 

where a and /3 are constants. 
Consider the steady-state motion of the system shown in Pig. 1 

with the origin of the time axis shifted to coincide with the time 
of occurrence of an impact at t = to. The result of this shift is to 
modify the excitation force, giving in the new time scale 

Fh(t) = F0 sin (Qt + ao) (3) 

where a0 = ilto is a phase angle to be determined from the steady-
state motion. 

Using the normal mode approach, equation (1) can be trans­
formed into the form 

l^M<\q + [ x C\]q + [ ^ \ ] q = Q « M (4) 

where the n-components of q are the normal coordinates, [xiW\], 
[ X C\] , and [X.K\] are diagonal matrices corresponding to the 
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Fig. 1 Model of system 

generalized mass, damping, stiffness matrices, respectively, and 
where Q e s (0 = [<p]TF(t), a n d [p] is the modal matrix. 
The i th equation of system (4) is 

M&i + C4i + K,Qi = Qex,» = <PkiFo sin (tit + a0) (5) 

and its solution is 

?,« = exp(- — tit)\- UiSiny-Slt 

+ 77; cos —'- tit ) qt>i H I sin —- tit ) qai 

Ai ( . Vi o , . i)i n \ • 
~ — I f • s l n — tit + Vi c o s — tit I sin Ti 

Vi \ ri '•» / 

— — rv I sin —- tit) cos Tt-} + A< sin (tit + 
1i V r( I J 

i = l , 2 , . . . , n (6) 

where 

- V f ; 
Vi = Vi - $-,-2 

fi = VuFo 

2£V,-
^ == t an" 1 — ~ L ± -

1 - r,-» 

?oi = ?i(0) 

f« = 
C, 

ti 

At = 
fi/K< 

V(i (1 - rW + (2f<r4)» 

g«i = g,(0+) 

and the + subscript indicates conditions immediately after the 

specified time. Letting the initial displacement and velocity at 
t = 0+ be 

x(0) = xo = [<p]qo, x(0+) = x„ = [<p]qa (7) 

then 

x(0 = [Bn(.t))ka + [B,s(*)]xo + [B23«]Si 

+ [S24(01S2 + M S „ ( 0 (8) 

k(t) = [B31(*)]X. + [B32(«)]xo+ [B„a(0]Si 

+ [iJ34(*)]S2 + [^]S4(«) (9) 

where the undefined matrices and vectors are functions of the 
system parameters. 

Letting y{t) be the relative displacement of the damper mass 
md with respect to mjt then 

y{t) = z(t) - XjOL). (10) 

Since the time origin coincides with the time of occurrence of an 
impact, 

2/(0)^=2/0 = z(0) - xj(0) = ± - (11) 

During an impact (idealized to be a discontinuous process), 
the conditions of the system remain unchanged except for the 
velocities of md and nij, whose instantaneous changes are calcu­
lated using the momentum equation and the coefficient of resti­
tution. Noting that in steady-state motion 

2ti , 
z(0)+ = (xoy + ?/o) 

7T 
(12) 

then the velocity vectors before and after an impact are related 

by 

itb = [s.Bes]x0 (13) 

-Nomenclature" 

rrit = i th mass in multidegree-of-free-
dom system 

hi — ith spring constant in multi-
degree-of-freedom system 

a, fi = constants used to specify pro­
portional-type damping 

Xj(t) = absolute displacement of ith 
mass 

Xj(t) = absolute velocity of ith mass 
z(t) = absolute displacement of damper 

md 

y(t) = relative displacement of damper 
with respect to mass m,j 

md = damper mass 
Ft, = amplitude of sinusoidol exciting 

force Fo sin tit 

ti = frequency of sinusoidol excita­
tion Fo sin tit 

#o = phase angle, initially unknown 
CO; = i th natural frequency of multi-

degree-of-freedom system 
f t = ratio of critical damping corre­

sponding to i th mode 
fiT = mass ratio of damper to total 

n 
mass of structure, md/ 2_i mi 

» = 1 

H = mass ratio of damper to mass 
rtij to which it is attached, 
mjnij 

e = coefficient of restitution 
d = clearance in which damper is 

free to oscillate 

j = mass number to which damper 
is attached 

k = mass number to which force is 
applied 

n = total number of masses in n-
degree-of-freedom system 

Xst; = static deflection of i th mass in an 
n-degree-of-freedom system 
when force is applied to mass 
mk 

Xpi = peak displacement amplitude of 
mass m,- in the absence of 
damper 

£mox; = maximum displacement ampli­
tude of mass mv with damper 
operating 
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Fig. 2 Example structure: (a) four-degree-of-freedom system; (b) 
seven-degree-of-freedom system; (c) 10-degree-of-freedom system; 
(d) first three modes of 10-degree-of-freedom system 

where [^.BON] is a constant diagonal matrix whose elements are 
equal to unity, except for the jth element which is equal to 
(1 - e - 2/*)/(l - e - 2ne). 

In steady-state motion with two symmetric impacts/cycle of 
excitation on opposite ends of damper container, 

x(«)|«=»- = - x ( 0 ) = - x o (14) 

x(«)|w=^_ = - x ( 0 ) _ = - x , = - [ \ B 6 s ] x „ (15) 

Using (14) and (15) in conjunction with (8) and (9) 

xo = S7 sin a0 + Sg cos a 0 (16) 

ka = S9 sin a0 + Sw cos ao (17) 

Equations (16) and (17), together with (13), result in 

a0
± = t a n " 1 [(hh, ± kJi^/ihzh, =F hju)] (18) 

where the h's are functions of S7 — Sio. With a0 determined from 
(18), the rest of the unknowns can be found by back substitution. 

Applications 
Consider the 10-degree-of-freedom lumped parameter system 

shown in Fig. 2(c) whose natural frequencies, mode shapes, and 
damping characteristics approximate those obtained experi­
mentally from full-scale dynamic tests of a modern 10-story 
building [3]. 

To investigate the effects of various system parameters, the 

models shown in Figs. 2(a) and (6) were also studied. The 
hypothetical systems in Figs. 2(a) and (6) consist of the first 4 
and first 7 stories, respectively, of the system in Fig. 2(c). Fig. 
2(d) shows the first three mode shapes and the corresponding 
frequencies for the lumped parameter representation of the 10-
story building in Fig. 2(c). 

Fig. 3 shows a typical solution curve for the 7-story building 
in Fig. 2(6). The left-hand-side (LHS) ordinate in Fig. 3 is the 
ratio of the maximum displacement of the i th floor, for 
the structure using the damper divided by the peak displace­
ment, xvi, of the same floor with no damper being used. This 
ratio is, therefore, a measure of the effectiveness of the damper 
(without a damper the solution curve is a straight line a t ima*,/ 
xv% — ! ) • The abscissa in Fig. 3 is the clearance ratio d/xst„, 
where x„t„ is the static deflection of the top floor with the excita­
tion force and the damper both applied a t the top. 

For a given set of parameters there are two possible solutions 
to equation (18) labeled a 0

+ and a0~, which correspond to two 
distinct steady-state solutions. Experiments with an electronic 
analog computer were conducted to check the theoretical results 
and to determine which branch of the solution, if any, was 
asymptotically stable. As indicated by the experimental results 
shown in Fig. 3, the solution curve associated with a0

+ (which, 
in general, leads to lower response amplitude than solution curve 
a0~) was found to be stable throughout most of its range. 

The validity of the analytical results were further compared to, 
and were found to be in excellent agreement with, published 
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analytical and experimental results pertaining to single-degree-
of-freedom systems provided with impact dampers [4]. 

Effects of System Parameters. A detailed investigation of the in­
dependent parameters on the response of the system was under­
taken, and the results can be summarized as follows: 

1 Mass Ratio Mr. The system under discussion is effective 
even with mass ratios on the order of 1 percent. Note from Fig. 
3 that even with a mass ratio nT = 0.005 the response amplitude 
can be reduced by as much as 80 percent. 

For " tal l" structures operating in the vicinity of their first 
mode, similar to the one under discussion, the optimum clearance 
ratio (in regard to vibration attenuation) satisfies the condition 
Hjd/xttn » 0.6 and results in a reduced amplitude which satisfies 
the relationship /xT^mai,/a;p, » 0.001, (i = 1, 2, . . . , re) for rela­
tively high values of e. 

2 Natural Mode Shapes. The response of the 10-story building 
under discussion vibrating in each of its first three modes is given 
in Pig. 4. I t can be seen that, with a given damper mass, the 
maximum percentage reduction in the response of the structure 
is achieved in the first mode. The maximum reduction de­
creases with mode number from 90 percent in the first, to 85 
percent in the second, and 60 percent in the third. One of the 
reasons for this reduction in the efficiency of the damper is tha t 
f „ the ratio of critical damping in the ith mode, increases with 
mode number from ft » 0.01 to f 2 » 0.02 and f 8 « 0.03. Figs. 
4(a), (6), and (c) also show the corresponding response of an 
equivalent single-degree-of-freedom (SDOF) system whose ratio 
of critical damping is the same as the 10-story building in a given 
mode. I t is clear from Fig. 4 that factors in addition to damping 
are involved in modifying the performance of the damper. Since 
the "moment arm" of the damper with respect to the base of the 
building is not affected by the mode shape, it appears that 
the main factor that influences the efficiency of the damper is the 
magnitude of the displacement of m, to which the damper is 
attached. 

3 Damper Location /'. Fig. 5 illustrates some of the possible 
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Fig. 5 Different combinations of force and damper location for 10-story 
building; (a) / = 1; (b) / = 5; and (e) / = 10 

damper locations in the 10-story (re = 10) building that is vibrat­
ing in its first mode. 

With the force imposed on mass TO6 (i.e., k = 5), then, for the 
parameters in Fig. 6, the maximum reduction in amplitude will 
be = 2 percent if the damper is attached to mi, Fig. 6(a), about 
50 percent if the damper is a t m5, Fig- 6(6), and more than 90 
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percent if the damper is placed a t the top floor, Fig. 6(c). This 
progressive increase in efficiency with the damper "elevation" 
above the ground floor is to be expected since the moment 
arm increases with increasing j to a maximum at the top floor 
(i.e., j = n). 

For modes other than the first, increase in moment arm must be 
modified to account for the relative locations of the damper and 
the nodal points. 

4 Force Location k. Although the application of an exciting 
force of a given amplitude a t different points along the structure 
will affect the magnitude of the response of the structure, it was 
found that the response curves for an impact damped structure 
are virtually independent of the point of application of the excit­
ing force, provided that the results are expressed in terms of 
d/xpj and Zmaxj/xp,-. 

5 Telescopic Effect. Fig. 7 shows the relation between the 
amplification ratio xmoxt'/xst,-, (i = 1, . . . , n) and the clearance 
ratio d/xst„ for the three buildings shown in Fig. 2, where each 
one is vibrating in its first mode and with both force and damper 
acting on the top floor so that j = k = n. 

I t is clear that if the damper mass ratio fiT is kept constant, 
the effectiveness of the damper is proportional to the height of 
the building. This is due to the fact that as the height of the 
building is increased, the moment arm of the impact damper 
is simultaneously increased to amplify the dampening effects. 
The deviation of the results from the corresponding ones for an 
equivalent SDOF system increases as the number of stories 
increase. 

6 Damping in the Primary System (a,/3). An increase in the vis­
cous damping of the primary system is detrimental to the effi­
ciency of the impact damper. 

7 Excitation Frequency fi. If the structure is excited at a fixed 
frequency, the design parameter can be optimized according 
to the aforementioned criteria. However, if the response is to be 
controlled effectively over a relatively wide frequency band, an 
increase in /J.T and damping or a decrease in e will improve the 
performance of the damper. 

8 Base Excitation. The present theory can also analyze cases 

where the excitation is supplied through support displacement 
rather than force excitation. The base-excited two-degree-of-
freedom system in Fig. 8(a) is equivalent to the force-excited 
three-degree-of-freedom system in Fig. 8(6) where mi replaces 
the support and the excitation amplitude is adjusted so that 
So/Wh) = 1. 

The theoretical predictions and the corresponding experi­
mental measurements obtained by using an actual mechanical 
model are shown in Fig. 8(c). As mentioned earlier, of the two 
possible steady-state solutions, the one associated with ott,+ is 
the stable one. This is true in spite of the fact that, for the case 
in the frequency range O/coi < 0.95, the solution «o + leads to 
larger amplitudes than a0~. Note also the existence of a peak 
in the response curve at 0/cOi » 1/(1 + Mr)-

Practical Design Considerations. Some of the design problems 
inherent in the application of practical impact dampers are (a) 
large accelerations developed during impact; (6) the accompany­
ing noise; (c) design of the concentrated impacting mass (in 
massive structures, such as buildings, even a damper mass ratio 
of ~ 1 percent is still a large weight to have suspended in the 
structure). Analytical and experimental studies have shown 
that the foregoing problems can be alleviated to some extent by 
the use of multiple-unit impact dampers operating in parallel, in­
stead of one single "particle." 

Summary and Conclusions 
An exact theory is presented for determining the steady-state 

motion of a damped multidegree-of-freedom lumped parameter 
system that is provided with an impact damper attached to some 
arbitrary point in the structure and is subsequently excited by a 
sinusoidal force, also applied to an arbitrary point. 

The results were applied to several multidegree-of-freedom 
systems, including a model of a modern 10-story building. A 
detailed investigation of the effects of various parameters of the 
system on the response was conducted. I t was found that re­
gardless of where the excitation is applied (including the base) 
the efficiency of the damper increases as its moment arm in-
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creases. Due to the "telescoping effect," it is feasible to use 
impact dampers, with mass ratios on the order of 1 percent of the 
mass of a lightly damped structure, to considerably attenuate 
the response of the structure over a relatively broad suppression 
band around any frequency of interest. 

Predictions of the theory were corroborated by experimental 
studies with an electronic analog computer and with a mechanical 
model. 
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