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Abstract. Mobile phone proliferation and increasing broadband pen-
etration presents the possibility of placing small cellular base stations
within homes to act as local access points. This can potentially lead to a
very large increase in authentication requests hitting the centralized au-
thentication infrastructure unless access is mediated at a lower protocol
level. A study was carried out to examine the effectiveness of using Sup-
port Vector Machines to accurately identify if a mobile phone should be
allowed access to a local cellular base station using differences imbued
upon the signal as it passes through the analogue stages of its radio
transmitter. Whilst allowing prohibited transmitters to gain access at
the local level is undesirable and costly, denying service to a permitted
transmitter is simply unacceptable. Two different learning approaches
were employed, the first using One Class Classifiers (OCCs) and the sec-
ond using customized ensemble classifiers. OCCs were found to perform
poorly, with a true positive (TP) rate of only 50% (where TP refers
to correctly identifying a permitted transmitter) and a true negative
(TN) rate of 98% (where TN refers to correctly identifying a prohibited
transmitter). The customized ensemble classifier approach was found to
considerably outperform the OCCs with a 97% TP rate and an 80% TN
rate.

Keywords: Machine Learning, Classification, Ensemble Classifiers,
Support Vector Machines, One Class Classifiers.

1 Introduction

The increase in broadband penetration and mobile phone proliferation allows for
the deployment of Femto cellular base stations directly into the home, allowing
the owners to make mobile calls using their broadband connection. The recep-
tion area from a Femto cell would however allow external traffic to access the
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Fig. 1. Example Femto Deployment

base station, which results in an increase in authentication traffic to determine
their access rights. This increase can be exponential and runs the serious risk
of overloading the cellular service provider’s authentication backend[1]. Figure 1
shows the deployment of Femto stations FM1 through FM7 within the larger
macro cell serviced by base station BS. Passing mobiles, such as H1, will rapidly
establish connections between the Femto cells and the macro cell. Each connec-
tion requires an authentication request. Using local authentication on the Femto
itself without a need to access the authentication server would relieve this pos-
sible problem. Filters, power amplifiers, inductors, capacitors, PCB materials
and soldering used in the manufacture of a transmitter all imbue unique char-
acteristics onto the transmitted signal, and using these differences a transmitter
can be identified using Radio Frequency (RF) fingerprinting. The 3GPP UMTS
standard recommends the uniquely identifying IMSI (International Mobile Sub-
scriber Identifier) should not be sent in plain text over the air. We discuss this
and other motivating aspects of the problem in more depth in papers published
previously by the authors[2,3].

There are typically two ways of identifying RF signal sources, transient state
analysis and steady state analysis[4]. Transient state analysis is more commonly
used and operates by detecting transient state signals which are generated as a
transmitter is powered up for the first time. In data communications different
communicating entities have limited common signal portions and as such steady
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state analysis is a less commonly used method. The Random Access Channel
(RACH) preamble is used in mobile communication to synchronize communica-
tion and in our novel approach is used as a steady state signal common to all
transmitters.

The rest of the paper is organized as follows. In Section 2 we provide the prob-
lem context and the specific problem addressed in this work. Section 3 describes
the various classification algorithms selected and designed for experimentation.
In Section 4 we describe the experimental setup and implementation, followed
by results and discussion in Section 5. Finally, we conclude in Section 6.

2 Problem Definition

This work addresses a Femto deployment issue that we refer to as the five in

the house problem. Simply stated this is where we have five known handsets,
(the quantity is assumed to be representative of the average number of mobile
phones in a household), that all require access to a Femto base station. The
challenge is to distinguish these five known handsets from any other handset
which might come into range of the Femto cell. Classification under these spe-
cific conditions has two additional constraints. Denying access to a permitted
handset is completely unacceptable, so much so that it is to be avoided even if
it means allowing additional unwanted (prohibited) handsets onto the Femto.
These prohibited handsets will later be denied by the traditional authentication
measures. This adds the requirements that the true positive (TP) rate must be
as close to 100% as possible, where TP refers to correctly identifying that the
handset belongs to the house and should be allowed access to the Femto base
station. Additionally, although of lesser importance, a high true negative (TN)
rate must be achieved where TN refers to correctly identifying where a handset
does not belong to the house and should be refused access.

Previous work on RF fingerprinting has focussed mainly on identifying differ-
ent mobile phone handsets by manufacturer and by model[2,3]. While this work
is relevant, the approach used is not sufficient for the five in the house problem.

3 Classification

In this Section we describe a number of different approaches to tackling the five

in the house classification problem. All approaches are based on the Support
Vector Machine, so we start in Section 3.1 by providing an overview of a Support
Vector Machines and in Section 3.2 we describe an alternative set of classifier
implementations.

3.1 Support Vector Machines

Support Vector Machines (SVMs) are a relatively recent set of supervised ma-
chine learning algorithms that have been shown to have either equivalent or
significantly better generalization performance than other competing methods
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on a wide range of classification problems [5]. They can be used to classify lin-
early separable data using the original input space or non-linearly separable data
by mapping to a higher dimensional feature space in which a linear separator
can be found.

In a typical binary classification problem composed of a training dataset
{(x1,y1), (x2,y2), ..., (xm,ym)} where xi ∈ ℜd and yi ∈ {±1}, SVMs seek a
solution to the following Lagrangian optimization function:

W (α) =
m

∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjK(xi,xj) (1)

subject to the following constraints

C ≥ αi ≥ 0 ∀i and

m
∑

i=1

αiyi = 0. (2)

C is an optional parameter that controls the trade off between allowing training
errors and forcing rigid margins. That is, it represents a soft margin that allows
some misclassifications which can be beneficial in noisy datasets. Where a soft
margin is not allowed, the constraint is simply αi ≥ 0. K represents the kernel
function and numerous choices exist, including linear, Polynomial and Radial
Basis Functions (RBF). RBF SVMs are currently the most popular choice of
non-linear SVM and are implemented in this study[5,6]. Once an optimal solution
is found, the decision function for a new point z is given by

f(z) = sign

(

m
∑

i=1

yiαiK(xi, z) + b

)

. (3)

z is a training example, b is the bias and non-zero αi values represent support
vectors, the points that lie closest to the hyperplane.

The ‘One-against-one’ [7] multiclass approach is implemented in this study as
it has been shown to have comparable if not better generalized accuracy than
alternative techniques and requires considerably less training time [8], [9]. The
method consists of constructing an SVM for each pair of classes. Thus for a
problem with n classes n(n− 1)/2 SVMs are trained to distinguish between the
samples of one class form the samples of another class. For an unknown pattern,
each SVM votes for one class and the class with the highest number of votes is
chosen.

SVM One Class Classifiers (OCCs) operate on a different principle. Whilst
traditional classifiers are trained on 2 or more classes, OCCs are only trained
on a single class of samples (positive samples) and attempt to learn the unique
features of this class so that it can accurately identify an unseen sample of this
class as distinct from a sample of any other class. OCC distinguish between the
trained class and other samples by identifying the other samples as outliers in
the distribution described by the training set.
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3.2 SVM Classifier Implementations

The SVM and OCC SVM implementation utilized in this study are the imple-
mentations provided by the libSVM library[10]. However not all of the function-
ality required in this study was implemented in the library and the following
Section describes the changes in methodology that were used.

While an SVM typically outputs only the predicted class of an unknown sam-
ple, it can be enhanced to also output a Probability Density (PD) estimate. The
estimates are based on the distance each test point is from the separating hyper-
plane, the further the point is from the hyperplane, the higher the probability
it belongs in the class [11].

It has already been shown that standard RBF kernel SVMs have a high ac-
curacy distinguishing between different transmitters[2]. Using this knowledge
coupled with the PD estimates allows us to use these classifiers on the five in

the house problem. It was found that if the SVM was shown a handset present
in the training set, a positive sample, the PD showed a high Standard Deviation
(SD). Conversely if the SVM was shown an unknown handset, one not present in
the training set, the PD showed a low SD. To take advantage of this difference
in SD between known and unknown samples a number of different composite
classifiers were constructed using the RBF SVM as a base. While these classi-
fiers are all multi-class classifiers, they are trained only on the handsets that it
is to recognize. When the classifier is tested it is shown both positive samples
and negative samples. It has also been shown that handsets of the same model
can be harder to distinguish than handsets of a different model[2,3]. The Tiered,
Weighted and Double classifiers are constructed in such a way as to potentially
allow one of the sub-classifiers to avoid having multiple identical handsets, or if
unavoidable at least favor one over the other.

Single Classifier. The Single classifier is an RBF SVM, using the PD output
to determine classification. Because this is a RBF SVM at least 2 handsets are
required in the training set in order for the classifier to attempt to distinguish
between them.

Tiered Classifier. The Tiered Classifier is slightly more complex in construc-
tion, but follows the basic principle of the Single classifier. If presented with n
handsets, it consists of n RBF SVM classifiers each trained on unique group of
n− 1 handsets. As an example, if presented with handsets A, B and C then the
three classifiers are each trained on the only one of the sets (A and B), (A and
C) and (B and C).

This classifier requires at least 3 handsets in the training set, as each sub-
classifier is effectively a Single classifier requiring a minimum 2 handsets. The
resulting PD output by each sub-classifier is summed per label and then nor-
malized to sum to 1 again before classification is made.

WeightedTieredClassifier. The Weighted Tiered (Weighted) Classifier is con-
structed similarly to the Tiered Classifier, but uses weights to assign greater im-
portance to a particular class. In each sub-classifier one unique class is weighted as
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more important than the rest. This means handsets A, C and B respectively in
the training sets (A and B), (A and C) and (B and C) from the Tiered Classifier
example will be the weighted handsets.

Double Weighted Classifier. Following the same principle as the Weighted
Classifier, the Double Weighted Classifier (Double) weights a unique pair of
handsets in each classifier as more important than the rest. At least 4 handsets
are required to construct this classifier, as each sub-classifier requires at least 1
class not weighted otherwise it would effectively be identical to a Tiered classifier.

4 Experimental Setup and Implementation

The RACH preambles, representing the handsets, used in the classification tasks
were captured in an anechoic chamber using a Rhode and Schwarz FSQ26 signal
analyzer at 20MSamples/s. An Alcatel-Lucent 2100 MHz UMTS base station,
transmitting on very low power (less than 100mW), with a modified software
load was used. The modified software ensured that:

1. The base station never responded to the RACH preambles thus ensuring
the handset would continue the transmission of the RACH preamble ramp
sequence, simplifying RACH transmission capture.

2. Modified system information blocks (SIBs), used by the UMTS standard to
configure handset operation, allow us to restrict the handset to only use a
single RACH preamble signature and scrambling code meaning every RACH
preamble transmission contains the same digital Inphase/Quadrature (I/Q)
content.

Sixty nine handsets of varied manufacturer and model were used and approxi-
mately 1200 RACH preambles captured per handset. We extracted 177 features
using the frequency domain binning algorithm described in [3].

These captured RACH preambles were used in two classification tasks using
the SVM OCC setup. In the first experiment 69 OCC SVMs were each trained
on data from a single handset. Then they were tested using preamble samples
from all 69 handsets to determine how accurately each classifier could identify
individual handsets. The second experiment was to verify the results from the
first experiment and to ascertain how the OCC responded to multiple handsets
in the training set. Five classifiers were trained to identify 5 handsets, as opposed
to only 1 handset in the first experiment, and then were again used to distinguish
between the known handsets and a selection of the unknown handsets.

The third experiment used the ensemble classifiers. For each classification task
the number of known handsets, referred to here as positive samples, was selected
at random from a normal distribution with mean 5, representing the number of
handsets present in the five in the house problem. The width of the distribution
was chosen such that at least 2 and at most 8 handsets were chosen1. A test
set was also chosen for each classification task, consisting of random samples

1 The resulting distribution had a standard deviation on 1.23.
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from between 10 and 69 handsets were selected as the test set, which included
at least one of the training handsets. Each of the custom classifiers was trained
and tested using identical training and test sets, taking into account that the
Double classifier required at least 4 different handsets in the training set, and
the Tiered and Weighted classifiers require at least 3 handsets in the training
set.

5 Results and Discussion

The results from the two different types of classifiers are quite different. Initially
the output from the OCC looks exceedingly good with an average accuracy of
98% across the classifiers. A more detailed analysis of these results, specifically
focussing on TP and TN, shows that while a high TN rate of 98% is achieved
the more important TP rate is exceedingly low at 50%. Table 1 outlines the per-
formance of the OCC (accuracy, TP and TN) as well as the associated standard
deviation values. This discrepancy between the accuracy and TP and TN rates
stem from the unbalanced nature of the data. Approximately 98.5% of the data
presented to any of the classifiers consisted of prohibited handsets, whereas only
the remaining 1.5% were permitted handsets.

Table 1. Experiment 1: Single Handset One Class Classifier Results Summary

Average Maximum Minimum Standard Deviation Median

Accuracy 97.76% 99.28% 90.14% 0.01 97.99%

True Positive 49.03% 56.70% 39.72% 0.03 48.75%

True Negative 98.48% 99.9986% 90.66% 0.01 98.72%

The second experiment further validated the previous results. The five clas-
sifiers obtained similar accuracies to the individual classifiers, specifically: 93%,
95%, 91%, 91% and 86%. The TP and TN rates remained consistent as can be
seen in Table 2. These results show that the use of OCC SVMs aren’t ideally
suited to the five in the house problem.

The third experiment with the ensemble RBF SVM classifiers showed promise
as the threshold, based off the SD, determining classification could be directly
modified. Table 3 shows the resulting TP and TN rates associated with different

Table 2. Experiment 2: Five in the House One Class Classifier Results Summary

True Positive True Negative

Experiment 1 48% 96%

Experiment 2 47% 98%

Experiment 3 48% 94%

Experiment 4 45% 95%

Experiment 5 50% 89%
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Table 3. Custom Classifier Potential Thresholds

Threshold TP TN

0.05 1.0000 0.0001

0.10 1.0000 0.1483

0.15 0.9977 0.5798

0.20 0.9962 0.6447

0.25 0.9894 0.6794

0.30 0.9705 0.7121

0.35 0.9402 0.7472

0.40 0.8735 0.7855

0.45 0.0000 1.0000

... ... ...

0.95 0.0000 1.0000

Table 4. Custom Classifier Results Summary

Classifier
Average Standard Deviation

Tests
True Positive True Negative True Positive True Negative

Single 96.77% 79.13% 0.031 0.115 636

Tiered 93.63% 84.89% 0.051 0.079 825

Weighted 10 93.41% 85.33% 0.052 0.086 845

Weighted 100 93.41% 85.29% 0.053 0.088 845

Double 10 93.07% 85.75% 0.053 0.074 766

Double 100 93.05% 85.77% 0.053 0.074 765

threshold values for the PD SD where any value higher than the threshold is
classified as a known handset, and any lower as unknown. These results are the
combined average of all the ensemble classifiers over a total of approximately
1200 experiments in total.

The threshold values between 0.15 and 0.35 are broadly in line with the re-
quirements of the five in the house problem, as per Section 2, and as such 0.25
was chosen as the threshold value that would be used in the classifiers. The re-
sults from the third experiment, using only the chosen threshold, are outlined in
Table 4 which shows the averages for the different classifier rates as well as their
associated standard deviations and the number of tests run using that classifier.

It should be noted that the Single classifier has a higher TP rate than all the
other ensemble classifiers, and that the spread on these is also lower, as evidenced
by the lower standard deviation. While the associated TN rate is lower than the
other classifiers’, the difference in performance shows that the Single classifier is
overall a better classifier. An ANOVA test, with p = 0.01, confirms this difference
as being statistically significant.

The performance difference is partly due to the smoothing effect experienced
when combining the output from the different sub-classifiers resulting in a less
pronounced difference in SD for these ensemble classifiers. The net result is that
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any advantage gained from the construction of these classifiers is negated by
this. The Single classifier also has the added benefit that it is the easiest to
implement.

6 Conclusion

We have described the five in the house problem, a telecommunications Femto cell
system problem, and experimentally investigated a number of machine learning
classifier solutions. Statistically verified experimental results show that a Single
Classifier, a custom ensemble classifier based on the Probability Density output
from a Support Vector Machine, achieves the best results. Based on 636 tests,
the Single Classifier achieves the best combination of True Positive and True
Negative results, 97% and 79% respectively. The result offers great encourage-
ment for more research, including the possibility of combining the results from
multiple RACH preambles to further improve accuracy.
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