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STEADY STATE SIMULATION OF QUEUEING PROCESSES: 
A Survey of Problems and Solutions . 

K. Pawlikowski 

SUMMARY . For years computer-based stochastic simulation has been a commonly 
used tool in the performance evaluation of various systems. Unfortunately results of 
some studies can be given little credibility, since they are presented neglecting their 
random nature. On the other hand, a variety of techniques for collection and statistical 
analysis of simulation data have been proposed that vary in efficiency and sometimes 
required a deeper knowledge of the statistical methods involved. Practitioners still 
await a possibly general automatic technique that could be applied in stochastic 
simulation by users having little knowledge or interest in the statistical analysis of 
output data. 

In this report we discuss the main factors that can affect the accuracy of stochastic 
simulations designed to give insight into the steady state behaviour of queueing 
processes. The most promising methods for achieving suitably accurate simulation 
results are also surveyed. 

Key Words: stochastic discrete-event simulation, steady-state simulation, statistical 
analysis of simulation output data, length of initial transient period, warm-up period in 
stochastic simulation, simulation output data collection and analysis, sequential 
analysis of confidence intervals . 
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1. INTRODUCTION 

Computer-based stochastic simulation, traditionally regarded as a 'last resort' tool (if 
analytical methods fail), has become a valid and probably one of the most commonly 
used methods of performance evaluation. This popularity is due to the continuing 
development of more powerful and cheaper computers, as well as significant 
achievements in software engineering. One can observe a trend towards integrating 
simulation methodology with concepts and methods of artificial intelligence; see for 
example [ARTl88]. Various user-friendly simulation packages offer visual interactive 
capabilities; traditional discrete-event simulation modeling is more and more 
frequently supported by object- and logic-oriented programming; see for example 
[BELL87], [NIEL86], [OKEE86], [OREN87], [REDD87], [RUIZ87] and [STAl88] . All these 
developments offer users increasingly powerful and versatile techniques for 
performance evaluation, leading towards automatic, knowledge-based simulation 
packages. Simulation programming techniques and languages are discussed in 
numerous publications, including textbooks by Bulgren [BULG82], Kreutzer [KREU86], 
Law and Kelton [LAWK82], and Payne [PAYN82]. 

Regardless of how advanced the programming methodology applied to simulation 
modeling is, experiments in which events are controlled by random numbers produce 
results that are nothing more than statistical samples. Despite this fact, from time to 
time various simulation studies have been reported primarly as programming 
exercises. Their authors, after putting much intellectual effort and time into building 
models, and then writing and running programs, have very little or no interest in a 
proper analysis of the simulation results. It is true that " ... the purpose of modeling is 
insight, not numbers ... " (Hamming, [HAMM62]) but proper insight can only be 
obtained from correctly analyzed numbers. In the stochastic simulation of queueing 
systems " ... computer runs yield a mass of data but this mass may turn into a mess ... ", 
and then " ... instead of an expensive simulation model, a toss of the coin had better be 
used ... " (Kleijnen, [KLEl79]), if the random nature of the results is ignored. Statistical 
inference is an absolute necessity in the situation where the same (correct) program 

produces different ( but correct ) output data from each run.# Simulation applied to 
modelling and performance analysis has been compared to the surgical scalpel, 
[SHNN81], that ... "in the right hand can accomplish tremendous good, but it must be 
used with great care and by someone who knows what they are doing." 

The simplest objective of simulation studies is the estimation of the mean of an 
observed process, which is done by calculating the average of an ensemble of its 
observations x1, X2, ... , Xn , i.e., by · 

n 

- ~ Xi 
X(n)=.:L, n 

i=1 

( 1 ) 

# In an example given in [LAW83] , see also [LAWK82, p.287], estimate's of the mean delay of the first 25 

customers, from simulation studies of a M/M/1 queue, range from 0.4 to 6.4 , whilst the exact theoretical mean 
value of this delay is 2.1 (utilization 90%, the system initially empty). For another illustration of randomness of 
simulation results see e.g. [WELC83, Sec.6.1 ]. 
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The accuracy of the estimator X(n) of an unknown average µx can be assessed by the 
probability 

P ( IX(n) - µx I < fix ) = 1 - a , (2) 

or, equivalently, by 

P ( µx -fix ~ X(n) ~ µx +fix ) = 1 - a , (2a) 

where fix is the half-width of the confidence interval for the estimator and (1-a) is the 

confidence level, 0<a<1. Thus, if the width 2fix of the confidence interval is found for 

an assumed confidence level of (1-a), then roughly speaking, if the simulation 

experiment were repeated a number of times, the estimate X(n) would fall in the 

interval (µx -fix, µx +fix ) in 100(1-a)% of cases, and in 100a% of cases it would not. 
It is well known that if observations x1, x2, ... , Xn can be regarded as realizations of 

independent and normally distributed random variables, then the 100(1-a) % 

confidence interval for an unknown mean µx is given by 

- A-
X(n)± tn-1,1-cx/2 cr[X(n)] , (3) 

where 
n 

&2[X(n)] = L, {Xi - X(n)}2 I n(n-1) (4) 
i=1 

is the (unbiased) estimator¥ of the variance of X(n), and tn-1, 1-cx12, for 0<a<1, is the 

upper (1-a/2) critical point obtained from the t-distribution with (n-1) degrees of 

freedom#. The formula (3) can be also applied if the observations are realizations of 
independent and identically distributed (i.i.d.) random variables , since then, 
according to the central limit theorem (see e.g. [TRIV82, Sec.4. 7]), the distribution of 

the variable X(n) tends to the normal distribution as the number of collected 
observations, n, increases. In practice the formula (3) gives a good approximation 
for n> 100. Results obtained from Eqs. (1) and (3) are called point and interval 
estimates, respectively. Both of them are very important: the former characterizes the 
system analyzed, while the later states the accuracy of these characteristics. 

If the assumption of independent and identical distributions for the observations x1, 
x2, ... , Xn is invalid then we have to consider some modifications to the above 
estimators. This raises the problem of measuring the quality of estimators. There are 
three common measures of estimator effectiveness : 
- the bias , ,which measures the systematic deviation of the estimator from the true 

value of the estimated parameter, for example in the case of X(n) : 

¥ Estimators are distinguished in the text from the parameters they estimate by placing a " over the 
parameter's symbol. 

# For n>30 the t-distribution can be replaced by the standard normal distribution, and tn-1, 1-a/2 by 

21 -a/2 , which is the upper (1-a/2) critical point obtained from the standard normal distribution . 
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Bias [X(n)] = E[X(n)- µx ] (5) 

- the variance which measures the mean (squared) deviation of the estimator from its 
mean value, i.e., 

cl[X(n)] = E{X(n) - E[X(n)]}2 (6) 

and 
- the mean square error (MSE) of the estimator, defined as 

MSE[X(n)] = E{[X(n)- µx ]2} (7) 

Note that from these definitions 

MSE[X(n)] = {Bias [X(n)]}2 + cl[X(n)] (8) 

The main analytical problem encountered in the analysis of simulation results is that 
they are usually highly correlated, and thus do not satisfy the precondition of 
statistical independence. If the sequence of observations x1, x2, ... , Xn is considered 

to be autocorrelated, and stationary, then the variance of X(n) is given by the following 
formula: 

where 

n-1 

cr2[X(n)] = [ R(O) + 2 L ( 1 - ~ ) R(k) ] I n 

k=1 

R(k) = E [( Xi - µx )(Xi-k - µx )] , O:s;k:s;n-1 , 

(9) 

(10) 

is the autocovariance of order k ( the lag k component of the autocorrelation function# 
{R(k)}) of the original observations. Note that Eq.(9) can be reduced to R(O)/n if and 
only if the observations are uncorrelated. Neglecting the statistical correlation of the 
observed variables x1, x2, ... , Xn is equivalent to removing all the components except 
R(O) from Eq.(9). Such an approximation is usually unacceptable. For example, in an 
M/M/1 queueing system with 90% utilization , the variance of the mean queue length 
calculated according to Eq. (9) is 367 times greater than that from Eq. (4), [BLOM67]; 
see· [LAWK82, p.146] for another example. Any variance analysis disregarding 
correlations among the observations would lead to either an excessively optimistic 

confidence interval for µx , in case of positively correlated observations, or to an 

excessively pessimistic confidence interval for µx , in the case of negatively correlated 

observations, see Eq. (3). A positive correlation between observations is typical in 
simple queueing systems without feedback connections, and it is stronger for a higher 
system utilization; see e:g. [DALE68] for correlation analysis of the M/M/1 queue. 

Generally the variance analysis of correlated processes , and the analysis of their 
autocorrelation functions in particular, is a complex statistical problem and therefore 
creates a major problem in the statistical analysis of simulation output data. In 
terminating (or finite-horizon) simulation, used for studying the behaviour of systems 

# Independence from the index i in Eq.(10) is due to the assumed stationarity of the analysed 
processes. 
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during specified intervals of time, the above problem can be overcome simply by 
making a number of independent replications of the simulation experiment, since then 
the means of individual observations collected during different simulation runs can be 
regarded as a sequence of independent (secondary) output data, and Eq.(4) can be 

applied. Exhaustive discussions on the statistical analysis of output data from 
terminating simulation can be found for example in [KLEl79], [LAW80], and 
[LAWK82, Sec.8.5]. 

In this report we discuss steady state (infinite horizon) simulation, aimed to give insight 
into the behaviour of queueing processes after a (very) long period of time. The 
methodology for this kind of simulation study is much more complicated. After 
'launching" a queueing process is initially in a nonstationary phase (warm-up period), 
and then, if the· process is stable, it moves asymptotically towards a steady state 
(statistical equilibrium). Since observations gathered during the initial transient period 
do not characterize the steady state, a natural idea is to discard all such observations 
before further analysis. This requires an estimation of the effective length of the initial 
transient period. Ignoring the existence of this period can lead to a significant bias of 
the final results. On the other hand, the removal of any observations increases the 
variance of estimates, which in turn can increase the value of the mean-square error; 
see [FISH72], [TURN??], [WILS78] and [DONN81 ]. Thus a decision whether to delete 
or not to delete initial observations depends on the assumed criterion of goodness of 
the estimators . This also affects methods used to collect observations, which are 
discussed in the next section. These and other aspects of the problem of initialization 
are presented broadly in Section 3. 

A number bf analytical techniques has been proposed to overcome the theoretical 
problems which arise from the correlated nature of observations collected during 
steady state simulation. They are distinguished by the way they estimate the 
variance of observed processes, which is needed for determining the width of the 
confidence intervals. Usually they impose special requirements on how the output 
data from simulation experiments should be collected and preprocessed. All these 
methods of data collection and analysis proposed for steady state simulation can be 
divided into two groups: 

- methods which attempt to weaken or even remove statistical dependencies among 
observations, and 
-. methods which attempt to take into consideration the actual correlations among 
observations. 

The former group is represented by: 

- the method of replications, 
- the method of batch means, and 
- the regenerative method, 

while the latter one contains: 

- the method based on spectral analysis, 
- the method based on standardized time series, and 
- the method based on autoregressive model. 
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Any statistical analysis of simulation output data involves approximations that bias the 
final estimates. The robustness of the methods listed above is usually measured by. 
the coverage of confidence intervals, defined as the frequency with which confidence 
intervals contain the true parameter, at a particular confidence level, [SCRUSO]. Thus 
coverage analysis can be applied only to systems with theoretically well known 
behaviour. After a series of independent simulation runs one can determine the 
fraction of experiments which had confidence intervals covering the true mean value 
of the estimated parameter. In more detailed studies one can estimate confidence 
intervals for the coverage (see e.g. [LAVE??]) and conclude that a given method of 

data collection and analysis produces valid 100(1-a)% confidence intervals ( for, say, 
the mean delay ) if the upper bound of the confidence intervals for the coverage is at 

least (1-a). Othe,rwise, confidence intervals for the estimated parameter sho'uld be 
regarded as invalid and the method should be assessed as inaccurate ( at least for a 
given class of simulated processes ). A few additional measures for the effectiveness 
of methods used for data collection and analysis were proposed in [SCRl81 ]. The 
weakest point of such analyses is that there is. no theoretical basis for extrapolating 
results found for simple, analytically tractable systems to more complex systems, 
which are the real subjects of simulation studies, [FOX78]. However, ... a better 
approach has not been proposed yet. 

Even if we were able to collect independent and identically distributed output data 
from simulation runs, we cannot be fully protected from erroneous conclusions 
because of inherent variations of simulation output data caused by the pseudo
random nature of input data; see [PIDD84, Sec.8.4.2] for a more detailed discussion. 
To neutralize this undesired effect we can use a variance reduction technique (VRT), 
which can reduce the variance of recorded results without affecting their mean value; 
see for example [KLEl74, Ch.3], [LAWK82, Ch.11], [BRAT83, Sec.2] and [FROS88] for 
a survey of variance reduction techniques. Unfortunately, despite the fact that these 
techniques have been extensively studied theoretically, they have found limited 
practical application, as they are either strongly model-dependent or difficult to 
implement in simulation studies of even moderately complex systems. The simplest 
VRT in the context of queueing processes consists in direct estimation of the mean 
time-in-queue (without service time), since this estimator has the smallest variance, 
see [CARSSO]. Other parameters, like the mean time-in-the-system or the mean 
queL,Je length, can be obtained indirectly by adding the assumed mean service time, or 

from Little's formula, when this estimate is known.# 

The methods for data collection and analysis are surveyed in Section 2. Note that any 
of these methods can be used either' in its fixed-sample-size version or in its 
sequential version. In the former case, statistical analysis is performed once, at the 
end of the simulation experiment, when a predetermined number of observations, 
assumed to be sufficientto get results of a required accuracy, has been collected. The 
present survey of methods for data collection and analysis, used in steady state 
simulation, focusses on their sequential versions, in which the length of simulation is 
increased sequentially, from one checkpoint to the next , until a prespecified accuracy 
of the point estimators is obtained. Such procedures, automatically controlling the 
length of simulation experiments, are very desirable in user friendly simulation 

# The efficiency of this VRT has been proved for G/G/c queueing systems, see [CARS80], but we can 
expect that it is efficient for more complex queueing systems as well. As much as a 90% variance 
reduction due to this technique has been reported, although generally the reduction tends to O as the 
system utilization tends to 100%. 
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packages. Sequential statistical analysis is also more efficient , since usually it is very 
difficult to determine a priori the length of simulation needed by a fixed-size 
procedure that would be sufficient to obtain a required width of confidence intervals 
at the assumed level of confidence; c.f. [LAW82] and [LAWK84]. 

The criterion for stopping the simulation is usually the relative (half) width of the 

confidence interval at a given confidence level (1-a) , i.e., the ratio 

e = ~x/X(n) , (11) 

0<e<1; c.f. Eq. (2). This is also called the relative precision of the confidence interval. 

The simulation experiment is stopped at the first checkpoint for which e ~ emax, where 

emax is the required limit relative precision of the results at the 100(1-a)% confidence 

level, 0< emax < 1. Note that if 

1-a~P[IX(n)- µx l~elX(n)I ], (12) 

then, for µx =FD, 

P [ I X(n) - µx I ~ e I X(n) I l = P[ I X(n) - µx I~ e I X(n) - µx + µx I l ~ 
~ P[ I X(n) - µx I~ e I X(n) - µx I +e I µx I l 

and finally 

where 

I X ( n) - µx I I I µx I ( 1 4) 

is called the relative error of the confidence interval . 

Sequential reasoning about the statistical accuracy of results is particularly advisable 
if. higher precision is required, although there is a danger that when prec1s1on 
requirements are increased the resulting confidence intervals have a greater chance 
of not containing the true value of parameters (the narrower the confidence interval, 
the worse the coverage effect). One can expect, too, that lower coverage is more 
probable in the case of negatively correlated observations, for which it is more likely to 
get an underestimated value of their variance. Higher accuracy requirements can 
also unacceptably lengthen simulation runs controlled by a sequential procedure. In 
this context any variance reduction technique can be regarded as a technique for 
speeding-up. the simulation, since any decrease in the value of the variance 
decreases the width of the resulting confidence intervals, and a specified accuracy 
can be met more quickly. 

The sequential approach is regarded by some as the only alternative to steady state 
simulation, see [BRAT83, p.101 ]. Many consider that it is possible to devise a 
procedure that would fully automatically conduct data collection and analysis, using a 
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sequential rule for assessing the accuracy of estim.ates; however, a fully acceptable 
solution has not yet been invented. Relatively few simulation packages offer some 
degree of automation of statistical analysis, c.f. [CATA87]. For example, sequential 
procedures, automated to some extent and based on independent replications, 
regenerative and spectral methods of data collection and analysis, are implemented in 
RESQ (Research Queueing Package), [SAUE82] and [SAUE84], and its network
oriented extension PET (Performance Evaluation Tool), [BHAR84]. A method of batch 
means is incorporated in SIMSCRIT 11.5, [MILS87], and its specialized variations, such 
as Network 11.5 and COMNET 11.5. Partial automation of data analysis is also offered 
in QNAP2 (Queueing Network Analysis Package Version 2), see [POTl84] and 
[POTl86]. The effectiveness of proposed solutions generally depends on the level of 
a priori knowledge of the system's behaviour. A fully automatic procedure that could 
be used in stochastic simulation studies of a broader class of systems by users having 
a little knowledge or interest in the statistical analysis of output data is a matter for the 
future, although some doubt that it is possible at all. In Section 4 two examples of 
sequential procedures are presented 'i'n more detail, together with an automatic 
procedure for determining the effective length of the initial transient period. 

This report is not addressed to statisticians. We try to avoid the strict mathematical 
formulation of the problems considered, and only basic statistical terminology is used. 
Interested readers are referred to the references for more details. 
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2. METHODS OF DATA COLLECTION AND ANALYSIS 

During the last 25 years of discussion on the methodology of statistical analysis of 
output data from steady-state simulation, initiated by Conway's paper on "Some 
Tactical Problems in Digital Simulation", [CONW63], a variety of methods for data 
collection and analysis has been proposed to circumvent the nonstationarity of 
simulated queueing processes (especially the initial nonstationarity caused by the 
existence of the initial transient period) and autocorrelation of events (correlations 
among collected observations). As has been mentioned, these methods either try to 
weaken (or remove) autocorrelations among observations, or to exploit the correlated 
nature of observations in analysis of variance needed for determining confidence 
intervals for the estimated parameters. 

In the method of replications , adopted from terminating simulation, the 
autocorrelated nature of the original output data, i.e. correlation among collected 
observations, is overcome in a conceptually simple way: the simulation is repeated a 
number of times, each time using a different, independent sequence of random 
numbers, and the average value of observations collected during each run is 
computed. These means are used in further statistical analysis as secondary, 
evidently independent and identically distributed, output data. 

Thus, if m observations are collected during any replication, the sequence of primary 
observations from kb replications (x11, X12, ... , X1m }, (x21, X22, ... , X2m }, ... , (xkb1' Xkb2, ... , 

Xkbm) is replaced by the sequence of their means X1(m), X2(m}, ... , Xi<b(m) , where 

1 m 
X i(m) = -r Xi] 

m. 1 
J= 

(15) 

which are used to obtain the point and interval estimates of the process. Namely, 
adopting Eqs. (1 )-(4), in the case of kb replications, each of which is of length m, we 

get the estimator of the mean µx as 

(16) 

and the 100(1-a)% confidence interval of µx is approximated by 

= . A= 
X(kb,m) ± tkb-1,1-a12 cr[X(kb,m)] (17) 

where 

kb 

&2[X(kb,m)] = L {Xi(m) - X(kb,m)} 2 I kb(kb-1) (18) 
i=1 

is the estimator of the variance of X(kb,m) and tkb-1,1-cx12, for 0<a<1, is the upper (1-al2) 



1 1 

critical point from the t-distribution with kb-1 degrees of freedom#. 

There exists a discrepancy of opinions on the effectiveness of this method, comparing 
it with other methods of data collection and analysis, all of which are based on a single 
(longer) run of the simulation experiment. Arguments defending the method of 
replications are provided by the results of [TURN77], [LAVE81, p.114] and [KEL T84] 

which reveal that better accuracy of the estimator X(kb,m), measured by its MSE (see 
Eq.(7) ), can be achieved if the simulation is run a few times, than if it is run one time 
only. But Cheng [CHEN76] argues that such a policy cannot be always correct ; see 
also [MADA76]. On the other hand, the method of replications appears to be much 
more sensitive to the nonstationarity of observations collected during the. initial 
transient period, than methods based on single simulation. runs, since any new 

replication begins with a new warm-up period. If the bias of the estimator X(kb,m) is 
our main concern, then data collected during the initial transient period should be 

discarded, see Section 3, and in Eq.(16) Xi(m) should be replaced by 

1 m 
X i(m-no) = m-r, L Xij (19) 

0 . 1 . J=no+ 
where n0 is the number of observations discarded from each replication¥. Thus the 
total number of initial observations discarded from kb replications would be about kb 
times larger than in corresponding single run methods. In the sequential version of 
the method new replications are generated until the required accuracy is reached. It 
was found that proper estimation of the length of the initial transient period can 
significantly improve the final coverage of confidence intervals obtained by the method 
of replications. There is a trade-off between the number of replications and their length 
for achieving a required accuracy of estimators. Fishman suggests choosing m ~100, 
to secure normality of the replication means; see [FISH78, p.122]. Results of [LAW??] 
and [KEL T84] show that it is better to keep replications longer than to make more 
replications, since it will usually improve the final coverage too. 

All other methods of data collection and analysis have been developed for obtaining 
steady state estimators from single simulation runs rather than from multiple 
replications. In the method of batch means the recorded sequence of original 
observations x1, x2, x3 , ... , is divided into a series of nonoverlapping batches 

(x11, x12, ... , X1m ), (x21, x22, ... , X2m ), ... , of size m, and batch means X1 (m), X2(ni), ... , 
corresponding to the means over replications from Eq. (15), are next used as 
(secondary) output data in statistical analysis of the simulation results. The point and 
interval estimators of the mean are given by Eqs. (16)-(18), with kb meaning now the 
number of batches and m being the batch size. This approach is based on the 
assumption that observations more separated in time are less correlated, so for 
sufficiently .long batches of observations, batch means should be (almost) 

uncorrelated. If the bias of the estimator X(kb,m) is our main concern, then again the 
effective length of the initial transient period should be determined, see Section 3, and 
the first no observations collected during this period should be deleted. Thus the 
division of observations into batches should begin with setting x11 = Xn

0 
+1. 

# See the footnote on p.4. 
¥ This number is generally different for different replications. 
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Selection of a batch size that ensures uncorrelated batch means appears to be the 
main problem associated with the method of batch means, besides the problem of 
selecting a suitable length of the initial transient period. A natural solution is to 
estimate correlation between batch means starting from an initial batch size m1, and, if 
the correlation cannot be ignored, increase the batch size and repeat the test. At this 
stage, the method of batch means in its sequential version requires two procedures: 
the first sequentially testing for an acceptable batch size, and the second, sequentially 
testing the accuracy of estimators. 

Correlation between the means of batches of size m can be measured by estimators of 
the autocorrelation coefficients 

where 

A A , A 
r(k,m)= R(k,m) I R(O,m) 

kb 

R(k,m) = k 
1 

k L (Xi(m)-X(kb,m)][Xi-k(m)-X(kb, m)] 
b- i=k+1 

(20) 

(21) 

is the estimator of autocovariance of lag k, k= 0, 1, 2, .... , in the sequence of batch 

means X:1 (m), X2(m), ... , Xkb(m). The definitions of Xi(m) and X(kb,m) are given in Eqs. 

(15) and (16), assuming that m is the batch size, and kb is the number of batches. 

The sequence of batch means can be regarded as non-autocorrelated when all 

~(k,m), k = 1, 2, ... assume small magnitudes, say, if they are less than 0.05. One can 
also determine the threshold for neglecting the autocorrelations in a statistical way, 
by testing their values at an assumed level of significance; see [ADAM83] and 

[WELC83, p.306]. The main analytical problem is caused by the fact that ~(k,m)'s of 

higher order are less reliable since they are calculated from fewer data points#. The 
higher the lag of an autocovariance, the fewer the observations which are available to 
estimate this autocovariance within a batch. Usually it is suggested to consider 
autocovariances of the lag not greater than 25% of the sample size ([BOXJ70, p.33]) 
or even not greater than 8-10% (c.f., [GEIS64]). Law and Carson [LAWC78] have 
proposed a procedure for selecting the batch size for processes with autocovariances 
monotonically decreasing with the value of the lag; see also [LAWK82]. In such a case 
only the lag 1 autocorrelation has to be taken into account . In this procedure three 

types of behaviour of 1(1,m) as a function of m are distinguished. In the same class of 
processes Fishman has proposed testing against autocorrelation using von 
Neumann's statistic of batch means. One version of his procedure can be applied to 

processes with positive values of ~(1,m), which decrease monotonically with m, 

[FISH78a], while another one includes cases when ~(1,m) is a function oscillating in 
a damped harmonic fashion, assuming both positive and negative values [FISH78, 
p.240]. 

One might suppose that discarding some observations between consecutive batches 
should be an effective way for attaining an additional decrease of correlation between 

# The variance of the estimator of R(k,m) is reduced if the factor 1/(kb·k) in Eq.(21) is replaced by 1/kb, 
But this variance reduction is followed by an increase of the bias of the estimator; see [PARZ61]. 
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batch means. Solomon [SOL083, p.200] proposed a more extreme action: to retain 

only every v th observation, v >1, and to discard all observations between selected 
ones. This is equivalent to using (separated) batches of size m=1. In the example 

considered in [SOL083, p.99] an interval of length v =25 was selected by applying the 
Spearman rank correlation test. No results on effectiveness of this approach are 
given, but discarding 96% of collected observations seems to be quite wasteful. In 
fact, as shown by Conway [CONW63], the benefit of introducing the separation 
intervals is doubtful: it increases the variance of estimates and creates the problem 
of selecting the length for such intervals. Thus separating intervals are rarely used in 
practice. 

Procedures for s!3lecting the batch size employ different statistical techniques to find 
the batch size m* for which correlations among batch means can be neglected, and 
hence they usually select different batch sizes. It has been reported that some of 
these procedures can consequently lead to interval estimates with very poor 
coverage, probably caused by accepting batch sizes which are too small . For 
example, the above-mentioned Fishman's procedures can select batches of as few as 
8 observations. Law [LAW83] refers to simulation studies of M/M/1 queues in which 
the method of batch means with the procedure proposed in [LAWC78] was used. 

Using kb =1 O batches of size m=32, for system utilisation p=0.9, and 500 repeated 
simulation experiments, the achieved coverage of the nominal 90% confidence 
intervals was only 63%. For these reasons, Kleijnen et al. [KLEl82] suggested the use 
of a modified Fishman's procedure accepting batches at least 100 observations long, 
while Welch [WELC83, p.307] recommends constructing batches at least 5 times 
larger than the size m* given by a test against autocorrelation, provided that at least 
1 O such batches can be recorded. 

Schmeiser [SCHM82] analysed theoretically the trade-off between the number of 
batches, the batch size and the coverage of confidence intervals. These results 
suggest that the number of batches used in the analysis of confidence intervals should 

usually not be greater than 30, and 1 O ~ kb~ 30 is reasonable for most simulation 
experiments, regardless of the simulation run length. For better coverage, it is much 
more important to use longer batches than a greater number. Although the problem 
of selecting a proper batch size has not yet been fully satisfactorily solved, the 
method of batch means generally behaves better than the method of replications, see 
[LAW??], and can be regarded as a candidate for implementation in packages offering 
automated analysis of simulation output data. 

In the regenerative method observations are also grouped into batches, but the 
batches are of random length, determined by successive instants of time at which the 
simulated process starts afresh (in the probabilistic sense), i.e. at which its future state 
transitions do not depend on the past. In the theory of regenerative processes, see for 
example [CINL75], which gives theoretical support for this method, such instants of 
time are called regeneration points. The special nature of the process behaviour after 
each regeneration point - its fresh "re-birth" - causes batches of observations 
collected during different regenerative cycles (i.e. within periods of time bounded by 
consecutive regenerative points) to be statistically independent and identically 
distributed. So are the means of these batches. For example, the regenerative points 
in the behaviour of simple single-server queueing systems are clearly the time instants 
at which newly arriving customers find the system empty and idle. From any such 



14 

moment on, no event from the past influences the future evolution of the system. More 
examples are given, for example, in [WELC83, p.317]. Note that usually a few, or 
even infinitely many, regenerative points of different nature can be distinguished in 
the behaviour of a system. 

As a consequence of the identical distributions of output data collected within 
consecutive regenerative cycles, the problem of initialization vanishes if a simulation 
experiment commences from a selected regeneration point. The regenerative method 
was first suggested by Cox and Smith [COXS61, p.136 ], and then independently 
developed by Fishman ( [FISH73a], [FISH74] ), and by Crane and lnglehart 
([CRAN74], [CRAN75]). Because of the random length of batches, these methods 
require special estimators, usually in the form of a ratio of two variables. In particular, 
if observations x1, x2, ... , Xn are collected during N consecutive regenerative cycles, 

then the mean µx of the observed process is estimated by 

X(N) = Y(N) I T(N) 
where 

N 

Y(N) = L Yi /N 
i=1 

·N 

T(N) = L T1 /N 
i=1 

In the above formulae, 

(22) 

(23) 

(24) 

(25) 

is the length of the ith regenerative cycle, or equivalently the number of observations 
collected during the cycle i, ni is the serial number of an observation collected at the ith 
regeneration point, and 

n1+ 1-1 

Yi= L,Xj 
i=ni 

(26) 

Thus Y1 is the sum of observations collected during the ith regenerative cycle. If 

sufficiently many regenerative cycles is recorded then the 100(1-a) % confidence 

interval of unknown parameter µx is bounded by 

- s 
X(N) ± z1-o:12 _ (27) 

T (N)#J 

where z1-o:12 is, as usual, the upper (1-a/2) critical point from the standard normal 
distribution, and 

s
2 = s~ - 2 X(N) ~ + [X(N)f s? (28) 



N 

s2 = L, {Yi - Y(N)}2 I (N-1) 
y . ~ 

I= I 

N 

SYT = L, {Yi - Y(N)} {Ti - T(N)} I (N-1) 
i=1 
N 

s2 = L, {Ti - T(N)}2 I (N-1) . 
T . ~ 

1=1 
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(29) 

(30) 

(31) 

It can be shown that X(N) given by Eq. (22) is a biased estimator of µx (we approximate 
the mean value of the ratio of two variables by the ratio of their mean values, see 
Eq.(22), which generally is not correct), although it is a consistent estimator, which 

means that X(N) tends to µx with probability 1 as N~ =. Additionally, the asymptotic 

normality of the ratio estimator X(N), on which the formula given by Eq.(27) is based, 
is questionable even for relatively large N. Thus these methods eliminate the bias of 
initialization but introduce new sources of systematic errors , caused by special 
forms of estimators. Some efforts have been made to obtain less biased estimators 

than those of Eqs. (22) - (25). Less biased estimators of µx have been proposed in 
[FISH??] (Tin's estimator) , [IGLE75] (the 'jackknife" estimator) and [MINH87]. 
Comparative studies reported in [IGLE75], [IGLE78], [GUNTSO] and [LAWK82a] show 
that using the jackknife approach for the mean and variance estimation can 
significantly improve the accuracy of the estimates, although some question the 
generality of these results [BRAT83, p.92]. In some reported cases, especially if a 
small number of regenerative cycles is tecorded, the performance of the regenerative 
method appears to be poor indeed, worse than that of the method of batch means, see 
[LAWK82a], [LAWK84]. 

A very effective sequential, regenerative procedure for output data analysis has been 
proposed by Fishman [FISH??]. Because of reservations about the appropriateness 

of the assumption of the approximate normality of X(N), the procedure is equipped 
with a statistical test for normality of the collected data ( the Shapiro-Wilk test, see 
[SHAP65] or [BRAT83, App. A]. This normality test requires grouping output data ( 
means over observations collected during consecutive regenerative cycles ) into fixed 
size batches. Fishman [FISH??] proposed using batches containing data collected 
during at least 100 cycles and increasing the size of batches if the normality test fails. 
Results presented in [LAWK82a] show that this method, although rather more 
complicated numerically because of testing for normality, produces more accurate 
results in comparison with both a sequential "plain" regenerative method, proposed 
by Lavenberg and Saver [LAVE??], and a sequential method of batch means 
proposed by Law and Carson [LAWC79]; see discussion in [LAWC79]. A 
sophisticated modification of the regenerative method was also proposed by 
Heidelberger and Lewis [HEID81 b], who suggest interactive intervention by users in 
the process of data collection and analysis, for achieving better accuracy. The 
regenerative method of data collection and analysis requires regenerative points to be 
well chosen to ensure that sufficient data can be collected for statistical analysis. To 
satisfy the last requirement a few approximations to the method have been proposed; 
see [CRAN75a], [CRAN??], [HEID79] and [GUNTSO]. Gunter and Wolff proposed 
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replacing single regenerative states by sets of states and defining (almost) 
regenerative cycles, bounded by entries of the simulated process to such sets of 
states rather than to a single regeneration state as in the original method. Such 
modification can lead to even better accuracy of results than that obtained by the 
original (accurate) regenerative method, at least in the cases reported in [GUNTBO]. 
But users must still, of course, select a proper set of (almost) regenerative states, 
which can sometimes involve substantial preparatory work. This method certainly 
deserves to be more thoroughly compared with others. 

Any variant of the regenerative method offers very attractive solution to the main 
"tactical" problems of stochastic simulation, but it requires a deeper a priori 
knowledge of the simulated processes. Continuous repeated checking for 
regeneration conditions can increase the time of simulation experiments. The random 
length of regenerative cycles makes the control of the accuracy of results more difficult, 
since stopping the simulation at a non~regenerative point can cause a substantial 
additional bias [MEKE82]. 

As has been said, some methods of data collection and analysis specially 
exploit the correlated nature of observations when the variance, needed for the 
analysis of confidence intervals, is estimated. The simplest, but usually heavily 

biased, estimator of the variance cl [X(n)] can be obtained directly from Eq. (9). 

Namely, 
n-1 

A2- 1 A ~ k A 

cr [X(n)] =;,[ R(O) + 2 L..J (1- ;,) R(k)] (32) 

k=1 
where 

n 

A 1 ~ - -
R(k) = n-k LJ {x1 - X(n)}{x1-k - X(n)} 

i=k+1 
(33) 

for O~k~n-1. 
A 

This estimator can be improved by discarding R(k)'s of higher order, since, as has 
been mentioned on p.12, they are less reliable when calculated from fewer data 
points. Usually it is assumed that the largest lag of autocorrelations included in Eq. 
(32) should equal 8-10% of the sample size; see [GEIS64]. Thus the number of 
components in Eq.(32) should be correspondingly decreased. The methods that we 

will present now offer further improvements of the estimator &2[X(n)]. All of them can 
be applied to a single simulation run and require the analyzed process to be .a 
stationary one; thus they should be supµorted by an efficient procedure detecting the 
effective length of the initial transient period so that initial data may be discarded if 
necessary. .. 

In the spectral method the analysis of a recorded sequence of observations is 
shifted into the frequency domain by applying a Fourier transformation to the 
autocorrelation function {R(k)}, k= 0, 1, 2, ... , yielding the spectral density function 

00 

Px(f) = R(O) + 2 L R(j)cos{2Ilfj) 
i=1 

(34) 
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for -oo~ f ~+oo; see e.g. [BRIL81] or [JENK68]. 

Note that because of the randomness of the collected observations, the spectral 

density function is a random function too¥. Comparing Eq. (34) with Eq. (9) one can 
see that, for sufficiently large n, ;:-', 

a2[X(n)] ~ Px(O) In . (35) 

Thus the estimator of cr2[X(n)] can be obtained from an estimator Px(f) at f=O. Several 
techniques have been proposed for obtaining good estimators of the spectral density 
function Px(f). Most of them follow classical techniques of spectral estimation,· based 
on the concept of spectral windows ( special weighting functions introduced for 
lowering the final bias of the estimators); see e.g. [JENK68], [FISH73], [FISH78] and 
[MARK81]. The best results were obtained by applying the Tukey-Hanning window, 
[JENK68], [LAWK84]. Using this approach, the confidence interval can be determined 
by assuming that the normalized variable 

( X(n) - µx) I &[X(n)] (36) 
where 

&2[X(n)] = Px(O) In (37) 

has the t-distribution with Ks degrees of freedom, where Ks depends on the ratio of 
n/kmax, and kmax is the value of the upper lag considered in the autocorrelation 
function {R(k)}, i.e., O~k~kmax; see [FISH73], also [BRAT83, p.97]. This approach can 
sometimes produce quite accurate final results, see [LAWK84], but it cannot be 
regarded as a good candidate for a more user friendly implementation because of its 
rather sophisticated nature. In particular there is no definitive method for choosing 

the parameter Ks, c.f. [FISH78, p.265], [BRAT83, p.97] and [LAWK84]. 

The usefulness of spectral windows in reducing the bias of the estimate Px(O) has 
been questioned in [DUKE78], [WAHBBO], [HEID81] and [HEID8i a]. The last three 
papers propose estimating Px(O) by using the periodogram of the sequence x1, x2, ... , 

Xn, The periodogram {Ilx(i/n)}, j = 0, 1, ... , is a function of the discrete Fourier 
transforms {Ax(j)} of the observations x1, x2, ... , Xn , namely 

and 
Ilx(i/n) = 1Ax(Dl2 /n 

n 

Ax(D = L, Xs exp[-21ti(s-1 )j/n] , 
S=1 

where# i2 = -1. It can be shown that for O<j<n/2 

Px(i/n) ,,. E [Ilx(j/n)] . 

(38) 

(39) 

(40) 

¥ Some point out that applications of the spectral method in analysis of simulation output results are 
natural only in the case of experiments in which, following the basic assumption of discrete Fourier 
transformation, observations are collected at equally spaced time intervals, [BRAT83, p.96]. 
# The symbol i has this special meaning only in Eq.(39). 

··, 
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To find an unbiased estimate of Px(O) the periodogram is transformed into a smoother 
function, namely into the logarithm of the averaged periodogram 

Lx(fj) = log { [ IIx((2j-1 )/n) + IIx(2j/n)] I 2} (41) 

for fJ = (4j-1 )/n. Next, this smoother function (but still not the smoothest one) is 
approximated by a polynomial to get its value at zero; see Appendix, and [HEID81] 
or [HEID81 a] for details. Despite a number of approximations involved, the method 
produces quite accurate results, in particular in terms of coverage. Heidelberger and 
Welch proposed a sequential method of spectral analysis that uses a constant 
number of (aggregated) output data points instead of a growing number of individual 
observations, since, as they show, both individual observations and their batch 
means (of arbitrary size) can be used in the variance analysis. Namely, if n 
observations are grouped into b batches of m observations each, then for n = bm 

A A 
Px(O) I n = P- (0) I b 

X(m) 

where, for - 00~ f ~ +oo, 
00 

p~ (f) = R(O,m) + 2 L R(j,m)cos(2IIjf) 
X(m) j=1 

(42) 

(43) 

is the spectral density function of the autocorrelation function {R(k,m)} ( k=O, 1, 2, ... , ) 
of the batch means, see definition (21 ). This insensitivity of the method to batching the 
observations allows the batch size to be increased dynamically ( starting from m=1 ), 
keeping in memory only a limited number of the batch means. A special batching I 
rebatching procedure is presented in [HEID81] and [HEID81 a]. It appears to be an 
efficient way of limiting the required memory space. A modified version of this method 
is presented in Section 4 .. 

The method of standardized time series was originally proposed by Schruben 
[SCRU83a]. According to this approach, after having discarded the initial n0 

observations representing the nonstationary warm-up period, a sequence of collected 
observations Xn

0
+1, .. Xn

0
+2, ... , Xn

0
+n is divided into b batches (x11, X12, ... , X1 m ), (x21, 

X22, ... , X2m ), ... , (Xb1, Xb2, ... , Xbm) of size m, b~1. X11 = Xn
0 

+1· The batch i is then 

transformed into a standardized sequence {Ti (t)}, for t = 0, 1/m, 2/m, ... , m/m=1; which 
has a mean of zero and variance equal to 1. In this sequence: 

(44) 

with Ti (0) defined to be zero, and 

. ni 

- 1 ~ 
Xi(mt) = mt /-I Xi,mt 

J=1 

(45) 

for t = 1 /m, 2/m, ... , m/m=1. Thus Xi(k), 1 ~k~m , is the cumulative average of the first k 

observations in the ith batch, and &2(Xi(m)] is the variance estimator , which should 

take into account the correlated nature of the original observations, c.f. Eq. (9). 
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It can be proved that in the limit, as m--)oo, the sequence {Ti (t)}, 0 s: ts: 1, becomes the 
(standard) Wiener process, known also as the Brownian bridge, with independent 
increments; see [BILL68]. This fact is employed to get b (secondary) asymptotically 
independent output data, one from each batch, that are then used in two procedures 
proposed by Schruben for determining confidence intervals; see [SCRU83a]. A 
sequential version of one of them has been described in [DUER86]. The authors 
understressed the numerical simplicity of their proposal, despite the sophisticated 
statistical techniques that were applied . No results of studies comparing this method 
with other methods of data collection and analysis have been published yet. 

Another approach for estimating the variance of correlated observations collected 
during a single simulation run is applied in the autoregressive method, 
developed by Fishman [FISH71], [FISH73] and [FISH78]. Again it is assumed that 
after having decided about observations gathered during the initial output period, the 
recorded sequence of n observations represents a stationary process. 

Let these observations be numbered starting from x1. The main assumption of this 
method is that the sequence of originally correlated observations x1, x2 , ... , Xn 
possesses an autoregressive representation y1, y2, ... , Yn of order q, where 

q 

Yi = L· Ck (X1-k- µx) (46) 
k=O 

( for i = q+1, q+2, ... ,n ) are i.i.d. variables with 

E[ Yi]= 0 
n 

E[Y(n)] = L Yi In = C [X(n)- µx] 
i=1 

cr2[Y(n)] = c2 cr2[X(n)] 

(47) 

(48) 

(49) 

where C = c0+c1+ ... +cq ; c0 = 1. cr2[Y(n)], as the variance of the mean of i.i.d. variables, 
can easily be estimated using Eq.(4), provided the coefficients q, c1, c2, ... , cq are 
known. The correct auto-regressive order q can be determined by examining the 

convergance of the distribution of a test statistic to an F distribution# ( see [HANN70, 

p.336], [BRAT83]), or to a x2 distribution ([HANN70, p.336], [FISH78, p.251] ). Having 
selected q, the estimates of the coefficients of c1, c2, ... , Cq can be found from a set of k 
linear equations of the form 

q 

""1 " " " /..; c1 R (k-i) = - R(k) , 
1=1 . 

(50) 

" fork= 1,2, ... , q, where R(k) in the estimator of the lag k autocovariance of the original 
sequence x1 ;- x2 , ... , Xn , see Eq. (10) and the discussion after Eq. (33). Next, having 

determined ~2[Y(n)], one can easily find the estimator of the variance of X(n), since 
from Eq. (49): 

# The F distribution, where F stands for Fisher, is also known as the variance-ratio distribution , the 
Fisher distribution or the Snedecor distribution. 
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II - II -
a2[X(n)]= a2[Y(n)]/ c2 · (51) 

Finally, the confidence interval for X(n) can be determined assuming that 

-{n (X(n) - µx) I &[X(n)] is governed by the t-distribution with 
q 

Kr = n C I 2 4' ( q - 2 j) ~i ( 5 2) 
J=O 

degrees of freedom; see arguments given in [FISH78, p.252]. Thus the resulting 
confidence interval is determined by 

- II -
X(n) ± tx:r,1-cx/2 a[X(n)] (53) 

where tx:r,1-cx/2 is 'the upper 1-a/2 critical point obtained from the t-distribution with Kr 

degrees of freedom. 

The main restriction of the method seems to be the required existence of an 
autoregressive representation of the simulated process. Results of empirical studies 
of the method's efficiency published in [FISH71] were not very encouraging, since 
frequently the final coverage was below 80%. However these results were achieved 
in short simulation runs. Andrews and Schriber, in their studies of the autoregressive 
method reported in [ANDR78], [SCRl79] and [SCRl81], observed a significant 
variability of the average half-widths of confidence intervals produced by the 
considered variants of the method. Law and Kelton [LAWK84], after comparative 
studies of different fixed-size methods of data analysis, found also that the 
autoregressive approach does not offer better results than other, computationally 
simpler methods of data analysis. And, in contrast to both the method of batch means 
and the method of spectral analysis, the improvement of the final coverage when 
increasing the number of collected observations was very slow. Continuous 
execution of the test for determining the autoregressive order q and solving the sets of 
equations for determining the coefficients c1, c2, ... , cq could be time consuming in a 
sequential version, especially if longer sequences of observations have to be 
collected. Taking all these reservations into account, it is unlikely that the 
autoregressive method will find broader applications in user friendly simulation 
packages. 
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3. THE PROBLEM OF INITIALIZATION 

It is well known that just after initialization any queueing process is in a transient 
phase, during which its (stochastic) characteristics vary with time. This is caused by 
the fact that , like any (stochastic) dynamic system, every queueing system or network 
initially "moves" along a nonstationary trajectory. After a period of time the system 
approaches its statistical equilibrium on a stationary trajectory if the system is stable, 
or remains permanently on a non-stationary trajectory if the system is unstable. Note 
that in practice only queueing systems with infinite populations of customers and 
unlimited queue capacities can never enter a stationary trajectory and this happens if 

the average request for service is greater# than the average supply of service, i.e., if 

(54) 

where 'A. is the mean arrival rate, 1 /µ5 is the mean service time , and c is the 

number of service facilities. In such a case the systems become congested and then 
deadlocked as a result of queues increasing in length with time. On the other hand, 
queueing systems with limited queue capacities always reach an (inner) statistical 

equilibrium, even if the system's load expressed by the traffic intensity p = 'A./cµ5 is 
much greater than 1. In such a case internally stationary queueing systems are in the 
non-stationary environment of streams of rejected customers. Of course output data 
collected during transient periods do not characterise steady state behaviour of 
simulated systems and so they can cause quite significant deviation of the final 
"steady state" results from their true values. Although it seems quite natural that the 
deletion of untypical initial observations should result in better steady state 
estimators, the problem " to delete or not to delete" is a perennial dilemma of 
stochastic simulation practice. Each of these two alternatives has its advocates. The 
answer depends on the assumed measure of goodness and the resource limitations 
of simulation experiments (the maximum possible number of recorded observations). 
The influence that the initial transient data can have on the final results is a function of 
the strength of the autocorrelation of collected observations. With no restrictions 
imposed on the length of the simulation run, this influence can be arbitrarily 
weakened by running the simulating program sufficiently longer. But in most practical 
situations simulation experiments are more or less restricted in time, and that time 
can be more or less effectively used to calculate estimators. If the initial output data 

are retained, the bias of the point estimat_or X(n) is greater than if they were deleted. 

Contrary opinions on the usefulness of deletion are caused by the fact that it 
increases the variance of the point estimator ( see [FISH72] and [FISH73, Sec.10.3), 
[TURN77] ), and, in effect, can increase its MSE, see Eq. (8). Let us note that an 
increase of the variance can be compensated for by applying one of the variance 
reduction techniques. Deletion of initial observations seems to be justified if the 
variance of the estimator is smaller than the squared bias, and/or if observations are 
strongly correlated ( the initial conditions have a longer effect on the evolution of the 
system in time). 

#The D/D/c queueing systems are stable also if "A= c µ8. 
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On the other hand, Blomqvist [BLOM70] showed that for long run simulations of 
GI/G/1 queueing systems the minimum MSE of the mean delay usually occurs for the 
truncation point n0 = 0, which supports the thesis that no initial observations need to 
be deleted. Results of experiments conducted by Turnquist [TURN77], and Wilson and 
Pritsker [WILS78a] provide the same argument. 

The usefulness/uselessness of data deletion depends also on methods used for data 
collection and analysis. Independent replications give much more "contaminated" 
data than methods of data collection based on single runs, since each replication 
begins with a new initial transient period. In consequence data deletion seems to be 
more crucial for plurality of transient periods than for just one transient period in one 
long run. In an example discussed in [KEL T83) , the estimator of mean delay in an 
M/M/1 queue obtained from replications of 500 observations, without initial deletions, 

was biased -43.2%, for p=0.95. In the case of higher accuracy requirements, a 
significant bias of estimators will normally increase their chances of being outside the 
theoretical confidence intervals, thus it will decrease the coverage of confidence 
intervals. Law and Kelton ( [LAW83) and [KEL T84] ) analyzed the influence of initial 
data deletion on the coverage of the final results in the case of the method of 
independent replications and stated a clear improvement of the actual coverage 

( "effective" confidence levels )# to levels near nominal theoretical values (1-a), 
without unduly widening confidence intervals, especially if replications were not too 
long and/or not too many observations were deleted. In methods of data analysis 
based on single runs and an assumption that the observed process is (covariance) 
stationary deletion of data from the initial nonstationary period improves approximate 
stationarity of the remaining process. 

The nature of the convergence of simulated processes to steady state depends on 
many factors; the initial conditions of simulation are one of them. Conway [CONW63] 
advised a careful selection of starting states ( typical ones for steady state of the 
simulated process) to shorten the duration of the initial transient phase. Since then 
many trials have been undertaken to determine the optimal initial conditions, in the 
sense that they would cause the weakest influence of the transient phase on the 
steady state results, but ambiguous conclusions have been reached. Madansky 
[MADA76) proved that the MSE of the mean queue length in simulation studies of 
M/M/1 queueing systems (without data deletion) can reach its minimum value if they 
are initialized as empty-and-idle, i.e., in their modal states. Wilson and Pritsker 
[WILS78a], having examined a slightly broader class of queueing processes, 
concluded that the optimal ( in the MSE sense ) initial state is the most likely state in 
statistical equilibrium (the mode of the steady state distribution), if it differs from the 
empty-and-idle state. Moreover they found that a judicious selection of initial 
conditions can be more effective than the deletion of initial data. Similar conclusions. 
were reached also by Donnelly and Shannon [DONN78) after a more methodical 
investigation. i, 

On the other hand Kelton and Law [KELT84], and Kelton [KEL T85a], investigating 
queueing systems with exponential and Erlangian distributions of interarrival and 
service times, discovered that the shortest transient periods occur if the simulated 
processes start from states slightly larger than their steady state means, for example 

# For the reasons mentioned in the introduction, in steady state simulations the real confidence levels 

of estimators usually differ from their theoretical (1-a) values, assumed in the formula (2). 
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in the M/M/1 queue the mean delay reaches its steady state in the shortest time (with 

accuracy ± 0.01, p = 0.9) if the initial queue length is 15, while the steady-state mean 
equals 9. These results have no theoretical explanations yet, but they clearly 
indicate that it is better to start from the initial state equal to the steady-state mean 
rather than from the mode of the distribution. However it was also shown that starting 
from states greater than the mean usually gives a much longer transitive period than 
starting from states the same distance from the mean, but below it. Thus, because in 
real situations the steady-state mean is unknown, it is much safer to initialise systems 
as empty-and-idle, particularly if the bias of an estimator concerns us more than its 
MSE. 

Having decided to discard data collected during transient periods we face th·e next 
problem : how long such periods last. In simulation practice we can encounter both 
very short initial transient effects and transient effects that are spread over tens of 
thousands of observations, see e.g. [HEID83]. 

THE DURATION OF THE INITIAL TRANSIENT PERIOD. The problem of 
determining the duration of the initial transient period in simulation runs appears to 
be quite complicated . Conway [CONW63] suggested that 

R1. in a time series of observations x1, x2, ... , Xn the initial transient lasts until the 
first of the series is neither the maximum nor minimum of the rest. 

._, 

This rule of thumb, associating the beginning of steady state with the occurrence of the 
first "typicalfl observation, appears to give a very poor approximation of the duration of 
the initial transient. As was shown in [GAFA78], using this rule we can significantly 

overestimate the length of the initial transient for small p and underestimate it for high 

p, c.f. also [WILS78a]. 

The duration of the initial transient period is also analyzed in the queueing theory. It 
has been shown that the rate at which queues tend to their steady state is, after some 

period of time, dominated by a term of the form exp (-t /'C), where 'C is called the 
relaxation time of the queue . We could assume that 

R2. 'the initial transient period is over after the time tp = - ~ In f3 , where f3 is the 

p'ermissible relative residue of the initial state , O < f3 < 1, 

since at t = t~ the queue characteristics retain only about 100~ % of their initial 
value, and output data collected from that point of time on should be biased by initial 

states by less than 100~ %. The analysis of relaxation times was initiated by Morse 
[MORS55], who considered the correlation function of the M/M/1 queue length. Cohen 
[COHE69] analyzed transient distributions of queue lengths and determined the 
relaxation time for GI/G/1 queueing systems. These appear to be from 9 to 2 times 

greater than Morse's results for M/M/1 systems, as p changes from 0.1 to 1.0. This 
diversity of results has stimulated search for approximate formulae for relaxation times, 
such as Newell's result for GI/G/1 under heavy traffic queues, [NEWE71 ]. Probably 
the most accurate results for Markovian queueing systems have been obtained by 
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Odoni and Roth [ODON83]. Having studied various Markovian systems, they 
determined the relaxation time to be 

(55) 

where C7i. and C§ are the coefficients of variation for the interarrival and service 

times, respectively, and 1/µ8 is the mean service time. · This result shows clearly 
that more heavily loaded systems tend more slowly to their statistical equilibrium . 

Relaxation times have also been analysed theoretically in some simple queueing 
networks; for example Blanc [BLAN84] analyzed the relaxation time in an open 
network of K service centers with a Poisson arrival stream, an unlimited number of 
servers at each center, general distribution of service times and a homogenous 
transition matrix. He showed that the relaxation time in such a network has an upper 
limit, namely 

(56) 

The equality occurs for the tandem Connection of queueing systems. Also a 
conjectural relaxation time for Jacksonian queueing networks with K single server 
centers has been proposed. For more complex queueing networks the relaxation 
times have not yet been theoretically determined. But the usefulness of even known 
formulae for relaxation times can be questioned in simulation studies.They can be 
used only as first approximations of the duration of simulated initial transients, since it 
has been shown that estimators of the mean values from simulation tend to their 
steady state more slowly than exponentially; e.g. Anderson [ANDE85] showed that in 
queueing systems with limited queue capacities the rate at which the estimator of 
mean queue length tends to its steady state eventually becomes inversely 
proportional to time. It has also been shown that the standard deviation of estimators 
converges even more slowly, namely in inverse proportion to the square root of time, 
see [FISH68] and [ANDE85]. Both these facts have found application in various 
heuristic rules proposed for determining the duration of the initial transient period. 

Studying the convergence of a moving average of output data to determine a possible 

end of the initial transient period is attributable to Gordon [GORD69, p.285]#. The 

simplest way would be to find an instant of time at which the running mean X(n) ( see 

Eq.(1) ) approaches a constant level with a given accuracy 8, o>O. Thus , we can 

assume that 

R3. in a time series of observations x1, x2, ... , x;, ... , the initial transient period is over 

after n0 observations if k consecutive values of the running mean X(i) recorded 

after the observation n0 differ less then 1008 % from X( n0 +k), i.e., for all i, 

n0 < i::; no + k, 

I><( no+k) - X(iJ I I /X( no+k)! < o (57) 

# Solomon [SOL083, p.195] attributed this approach to Emshoff and Sisson , referring to [EMSH70, Sec. 
8.2.]. 
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The stabilization of X(n) should be tested over a sufficiently long sequence of 

observations, so the parameter k should be large (in the statistical sense), i.e. k ~30. 
The above rule has two weaknesses. Firstly, as has been indicated already by 
Conway [CONN63], accumulative stati~tics such as running means usually stabilize 
very slowly with time, and so usually give overestimated values of no . Additionally, 

fluctuations of the running mean X(n) , calculated over data collected during a single 
simulation run, can be significant for a longer time . For these reasons the above rule 
and its various modifications are usually employed with the method of replications, 
and the inequality of rule R3 is applied to the running mean after having additionally 
smoothed it by averaging over replications. Despite this the resulting length of the 
initial transient period is usually still overestimated, c.f. [GAFA78], [WILK78] and 
[ROTH85]. Welch proposed a special technique for smoothing running means that 
uses the concept of a "moving window", within which mean values over replications 
are additionally averaged, producing a smoother (but still highly correlated ) process 
[WELC83, p.293]. The effectiveness of this technique has not been studied yet . 

Another rule of thumb can be based on the supposition that in steady state typical 
observations are evenly dispersed around the mean value. For example, Fishman 
[FISH73, p.275] proposed that 

R4. the initial transient period is over after n0 observations if the time series 

x1, x2, ... , 
110 

crosses the mean X(n0 ) k times. 

This rule is sensitive to the value of k, see [GAFA78] . Too large a value will usually 
lead to an overestimated value of n0 regardless of system's utilization, while too 
small a value can result in an underestimated n0 in more heavily loaded systems. 
In [GAFA78] k = 25 was recommended for M/M/1/oo queueing systems, while in 
[WILS78a] k = 7 was chosen for the M/M/1 /15 system. The system-dependent 
selection of the parameter k in the rule R4 seems to be too arduous for potential 
users. 

Solomon [SOL083] proposed# applying the xz ( chi-square ) goodness-of-fit test to 
selE1ct a time from which the number of observations below and above the running 
mean are equal (in the statistical sense). According to this test, the sequence of 
observations should be partitioned into batches of at least m0 =10 observations .each 
(Solomon selected m0 =30) and then one can conclude 

R5. in a time series of observations x1, x2, ... , Xn the initial transient is over after n0 

observations, if the x2 goodness-of-fit test confirms that in the batch of observations 

x 
1 

, x 
2 

, ... , x following the observation n0 the numbers of observations 
n0 + n0 + n0 +mo 

above and below the running mean X(n0 ) are about the same. 

This rule seems to be quite simple and independent of any system-related parameter. 
No results are available on its effectiveness and relationship to other criteria. 

# Solomon attributed this approach to Emshoff and Sisson. 
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For reducing the fluctuations of analyzed sequences, and saving memory space if 
long transient periods are expected, batches of individual observations can be. 
replaced by their mean values. Let us note that such batches must be introduced 
before the procedures for selecting the size of uncorrelated batch means, discussed in 
Section 2, can be applied. There are no established rules in this case for selecting the 
batch size. If a statistical test is used to help in deciding about the length of the initial 
transient, then we should follow the requirements of the test or use statistically large 
batches, which usually means taking mo>30. Otherwise the only recommendation is 
to select a batch size which gives the desired data reduction while retaining the 
stabilizing trend of the original sequence. After the batch size m0 is selected the 

sequence of batch means X1 (m0 ), X2 (m0 ), ... , can be tested in a similar way to the 
sequence of the original observations. For example, Wilson and Pritsker [WILS78] 

formulated the foll,owing rule which they attributed to Schriber'[SCRl74]# : 

R6. in a time series of batch means Xt(m0 ), X2(m0 ), ••• , the initial transient is over 
after b0 batches, i.e. , after n0 = b0 m0 observations, if the k most recent batch 

means all fall within an interval of width 81, i.e. , if 

/ Xb0 -i(mo) - Xb0 -j(mo) / < 81 , (58) 

for O<i<k-1,0<j<k-1. 

This rule, like rule R3, is sensitive to the value of the parameter k, which should 
depend on the variability of the observed process. A small value for k, for example 
k=2, as was assumed in [WILS78] and [SOL083, p.196], can lead to an under
estimation of n0 , since the difference between averages, having dropped only k 

times below 81, can easily rise again to an unacceptable level , as in an example 
considered in [SOL083, p.197]. 

For further data reduction and additional smoothing of the tested sequence, Kelton 
and Law [KEL T83] proposed applying such a batching technique also tb simulation 
experiments based on independent replications, see Section 2. Namely they batched 
the sequence of mean observations (means over replications), and then analysed the 
sequence of the means of these batches. Thus they assumed : 

R7. in a time series Xt(m0 ), X2{m 0 ), ••• , the initial transient period is over after the 
batch b0 , i.e., after n0 = m0 b0 observations, if the means of batches after the batch 
b0 can be approximated by a straight line with zero slope. 

This rule can be applied only in the case of monotonic convergence to steady state 
but , as was proved by .Kiefer and Woitowitz [KIEF55], in any stable, initially empty
and-idle GI/G/c queueing system the mean delay-in-queue grows monotonically in 
time. The procedure implementing rule R7 appears to be quite effective, if properly 
used, see [ROTH85]. Kelton and Law proposed testing the slope of the regression 
line backwards, after collecting an assumed number of observations. The test for 
zero slope is over a fixed number of batch means and , if zero slope is accepted, the 

# Solomon [SOL083, p.195] attributed this approach also to Emshoff and Sisson , and referred to 
[EMSH70, Sec. 8.2.]. 
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test is repeated over an earlier sequence of batch means, to find whether the initial 
transient period had expired earlier. Otherwise, if the test fails at the beginning, a new 
check point is chosen after gathering further output data from the simulation. Note that 
this requires that the process of collecting new observations in all previously stopped 
replications be continued again. Because correlations between batch means can still 
be significant, they are approximated by a straight line using a generalized least 
squares procedure proposed by Amemiya [AMEM73], which allows for autocorrelation 
of the analyzed data. For additional saving of memory space, the number of batches 
could be kept constant, by allowing the size of batches to grow when simulation runs 
are continued. 

Rules R3 - R7 are based on the convergence of the mean of observations to Its 
steady state value. Other criteria have been proposed taking advantage of the fact 
that queueing processes in steady state are stationary. Namely, because the variance 
of the mean of observations taken from a (covariance) stationary process is 
approximately inversely proportional to the number of observations (see [FISH73, 
p.281) or [GAFA78] ), i.e., 

&2[X(n)] = C1 In + o(1/n) , (59) 

c.f. Eq.(9), where C1 is a positive constant, and n is the number of observations, 
Gordon [GORD69] proposed that , 

RS. in a time series x1, x2, ... , Xn the initial transient is over after the observation n0 

if the graph· ( lg n, lg ~fx(n)] ), becomes approximately linear with slope -0.5 from this 
observation on. 

To smooth variations of the analysed curve, Gordon [GORD69] proposed analyzing 
the variance of the mean of observations averaged over a number of replications. 
This rule was analysed in. [GAFA78] and [WILS78], using formula (4) to calculate 

&2[X(n)], thus rejecting existing correlations between observations. In this case rule R9 

can give a very overestimated values of n0 • No results are known about the 

effectiveness of this rule if more accurate estimators of a 2[X(n)] are applied. 

Fishman [FISH71, p.29] proposed equating the variance of the mean of autocorrelated 
observations with the variance of the mean of a hypothetical sequence of independent 
observations, to find the number of collected (autocorrelated) observations equivalent, 
in the above sense, to one independent (hypothetical). observation. After some 
simplification we get the following rule : 

R9. in a time series of observations x1, x2, ... , Xn , ... , the initial transient is over after 
n-1 

no = 2 L, (1- ~) R(k) I R(O) (60) 

k=1 
A 

observations, where R(k) is the estimator of the autocorellation of the lag k, O~k~n-1; 
see Eq. (33). 
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The sequence of observations collected after the observation n0 should be 
(approximately) independent of the initial conditions. The autocovariance estimators 
A 

R(k) should be analyzed with caution; see the comments after Eq.(33). Comparing 
this with the results given for example in [ROTH85], one can state that rule R9 
usually gives underestimated values of n0 ; no exhaustive comparisons of this rule 
with other criteria are available. 

The above-mentioned rules proposed for determining the length of the initial transient 
periods are either quite elaborate and, as such, do not ensure an accurate control of 
the initialization bias, or they can determine quite precisely the length of the initial 
transient period, but only for restricted classes of simulated processes and/or by 
applying quite sophisticated techniques to collect and analyze the output data. This 
can unnecessarily lengthen the time of simulation experiments, especially if the 
required accuracy is tested sequentially, c.f. the rule R7. Some of these rules have 
been implemented as built-in options offered in simulation packages such as GPSS, 
SLAM and SIMSCRIPT 11.5, [LAWK82]. Thus potential users should be aware of their 
Ii mitatio ns. 

A promising approach for detecting the expiration of the initial transient period is 
offered by statistical stationarity tests, based on the theory of dependent stochastic 
processes, developed by Billingsley [BILL68]. According to this approach 

R.1 O the initial transient data have been removed from a given sequence of 
observations if the (standardized) sequence determined over the remaining 
observations behaves in a way consistent with a standard (stationary) stochastic 
process. 

Schruben et al. ( [SCRU80] and [SCRU81] ) have proposed transforming the 
sequence of original observations x1, x2, ... , Xn into the standardized sequence {T(t)}, 
t = O, 1/n, 2/n, ... , n/n=1; which has a mean of zero and variance equal 1, and 

T(t) = (nt) [ X(n) - X(nt)] I & [X(n)] ...Jn , (61) 

for t = 1/n, 2/n, ... , n/n=1; T(O) = O ; and then to test the convergence of the sequence 

{T(t)} to the Brownian bridge process# , i.e., applying the same approach as in the 
methods of standardized time series discussed in Section 2. Heidelberger and Welch 
[HEID83] listed a few other standardized sequences that can be used to find statistics 
for the above rule. Rejection or acceptance of the hypothesis that a given 
subsequence of observations is stationary, or equivalently, that the initial transient 
period is not included in the observations, depends on the probability characterizing 
the scalar value calculated from the considered sequence. Despite the sophisticated 
theory hidden behind these tests they appear to be quite simple numerically, and can 
be applied to a wide class of simulated processes. A sequential version of one of the 
tests proposed by Schruben et al. in [SCRU83] is presented in Section 4. 

'("i 

The main problem with practical implementation of the last rule is that usually a priori 
knowledge of the variance of the simulated process in steady state is required. To 
estimate this variance one can use a sequence of observations collected at some 
distance from an assumed truncation point, assuming that the process is then at 

# The mathematical model of Brownian motion on the [O, 1] interval. 
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least closer to steady state. One of the tests presented in [SCRU82] does not need 
the steady state variance to be given ( the final inference is drawn from the Fisher 

distribution¥, with 3 and 3 degrees of freedom); but no results on the robustness of 
this test are available. To shorten searching for the beginning of the stationary 
phase, the rule R10 can be preceded by one of the simple rules of thumb to find a 
rough approximation of the beginning of this phase. For this purpose one can use, for 
example, the rule R1 or R5. 

¥ See the footnote on p. 19. 
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4. SEQUENTIAL STEADY STATE PROCEDURES: EXAMPLES 

In this section we present an implementation of a sequential procedure that uses a 
statistical test for detecting the length of the initial transient period, and 
implementations of two sequential procedures for stopping the simulation run when 
the required relative accuracy is achieved. The former is based on the spectral 
method proposed by Heidelberger and Welch [HEID83], and the latter is based on the 
method of the batch means proposed by Adam [ADAM83]. 

4.1. DETECTING THE LENGTH OF THE INITIAL TRANSIENT PERIOD 

As was mentioned in Section 3, the stationarity tests proposed by Schruben et al. 
([SCRU82] and [SCRU83]) can be used to test the hypothesis that a sufficient number 
of initial transient data has been (or has not been) discarded. As in any statistical test, 
the value of a chosen statistic calculated from the tested sequence of observations is 
compared with the corresponding value from the standard sequence, and the decision 
about rejection or acceptance of the hypothesis is taken at an assumed significance 

level <Xt #, 0<<Xt<1. To get a first approximation for the truncation point, n;, we can use 
one of the heuristic rules R1- R9, presented in Section 3. For example, in simulation 
studies of satellite communication protocols, [PAWL88], the rule R4 was applied with 
the parameter k = 25. 

The problem encountered during testing ~!'.l sequence of nt observations for stationarity 

is that the steady state estimator for the variance cr2[X:.(n)], and the number K of degrees 

of freedom for its distribution¥, has to be known earlier than we know that the process 
has entered the stationary region. To get a robust estimate of that variance the 
estimation should be done using only a subsequence of the last nv observations from 
the sequence of nt observations tested for stationarity; these nv observations are 
more likely to be already from the stationary region, even if the truncation point of the 
initial transient period has been initially underestimated. One can for example assume 
nv = 0.5nt, Of course both the value of nv and nt should be selected after having taken 
into account the minimum sample sizes required by the method of variance analysis 
and the stationarity test. Heidelberger and Welch assumed nv ~100, [HEID83]. Having 
assumed this value of nv we have at least nt =200 observations stored in a buffer for 
testing against nonstationarity, which is the size of the sample assumed by Schruben 
[SCRU82]. Since the number of observations tested for stationarity should be larger if 
longer transient periods are suspected, one can assume that 

nt = max( ~n. yn~ ) , (62) 

where ~n is the smallest. sample size required by the stationarity test , and yn; is the 

smallest number of new observations selected to represent a given process, for a 

given truncation point n; and 0<y<1. 

#The value at can be interpreted as the probability of erroneously rejecting the hypothesis that the 
tested process is stationary. 

¥ As usual, the distribution of ~X(n)] is approximated by the x2 distribution with K degrees off reedom. 
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Thus, after having discarded n; observations, the next nt observations are collected 

and the last nv observations are used to find &2[X(n)] and K. The variance and the 

degrees of freedom of. its xz distribution can be estimated using a few different 
methods, presented for example in [FISH73, p.289], [SCRU82] and [HEID81 ]. The last 
method, based on spectral analysis of the sequence of observations, was used in 
[PAWL88] and is summarized in Appendix. Having estimated the variance that by 
assumption represents steady state of the process, we can start testing the first nt 
observations for stationarity. If the test accepts the hypothesis that the end of the initial 
transient has been detected correctly and the process has already entered its 
stationary region, this stage of analysis of the simulation output results is finished and 
the program may start to analyze confidence intervals, see Section 4.2. Otherwise 

transient effects have been detected. Consequently an additional rn; observations 

from. the beginning of the tested sequence is discarded, rn; new observations are 

collected, the last nv observations are again used to estimate · cr2[X:(nv)] and K, and 
the first nt observations in the stored sequence are tested for stationarity. This 
procedure is continued until the stationarity of the sequence of observations is 
confirmed or no.max, the upper limit of the number of tested observations, is reached. 
As the longest acceptable length of the initial transient period one can assume 
n0 max=0.5nmax, where nmax is the maximum length of the simulation run. If, at any 
stage of this procedure, the transient phase extends beyond no,max observations, then 
it is either an unstable system or the allowed maximum length of the simulation run is 
too short. · 

Summing up, the procedure requires the following parameters : 

nmax : the maximum allowed length of the simulation run measured in the number 
of recorded observations ( to be decided in advance ); 
no.max : the maximum allowed length of the initial transient period ( the default value: 
no.max = 0.5 nmax ); 
nv : the length of the sequence used for estimating the steady state variance ( the 
default value: nv = 100 ); 

Lin : the minimum length of the sequence tested for stationarity ( Lin >nv; the default 

value Lin =2nv); 

at : the significance level of the stationarity test ( 0<at<1; the default value: at =0.1) 

'Y : the "exchange" coefficient, determining the length of a step in sequential 

testing for stationarity ( 'Y >0; the default valu~: 'Y = 0.5); 

and it can be described as follows: 

procedure Detectlnitia/Transient ; 
{ determine the length of the initial transient period applying the Schruben's test preceded by 

an heuristic rule of truncation } 

Step 1: 
Start the simulation run from the empty-and-idle state ; 
apply one of the heuristic deletion rules R1-R9 {see Section 3} to determine n; ; 
{ n~ is the first approximation of the number of observations to be deleted} 
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if ( the in.itial transient period embraces more than no,max observations ) then 
goto Step 6 

else n0 : = n; ; discard first n0 observations 
endif; 

if Lln;:::: yn; then n1 := Lln else n1 := yn; end if; 

Llt := llt ; { the number of new obseNations which should be appended to the tested sequence } 

Step 2: 
if no + n1 ~ n0 , max then 

append Llt observations to the tested sequence; {some of these obseNations may have 

been already collected when the heuristic deletion rule was applied} 

goto Step 3 
else { if no + nt > no,max } 

goto Step 6 
end if; 

Step 3: 

Determine the variance &2[X(nv)] and K, the degrees of freedom of its distribution, 
using the last nv collected observations starting from the observation (no+nt -nv+1); 
{e.g. apply the procedure SpectralVarianceAnalysis described in Appendix, assuming m=1, and 

Xs(m) = x no+nt -nv+s , for s = 1, 2, ... , nv } 

Step 4 : { the Schruben test for stationarity, {SCRUB3, p. 1173]} 

Take all n1 observations, starting from the observation (n0 +; ), and calculate the test 
statistic 

n1 n0 +i 

T = ("145 I n~ ·
5 

~2 [X(nv)] ) L k(; -k/n1) [ X(n1) - X(k)] , where X(i) = I Xj Ii 
k:;:1 i=no+1 

if ( a negative bias of the mean X(n1) is suspected ) then goto Step 5 

elsif ( a positive bias is suspected ) then T: = -T 

else T : = I T I { if a sign of the initial bias is difficult to predict either sign is equally likely# } 

end if; 

Step 5: 

if T ~ tK,1-a
1
/2 then 

{ t K:, t-at/
2 

is the upper (1-at/2) critical point from the t distribution with K: degrees of freedom} 

write ('the initial transient period is n,:i.t longer than n0 observations '); 
start sequential analysis of confidence intervals 

{ call e.g. one of procedures presented in Section 4.2} 

else {if T > tK:, t-ar/2 } 

discard first yn; observations from the tested sequence;· 

# The reason for considering bias of an assumed sign is that two-sided tests are usually less powerful 
than their one-sided correspondents. 



no : = no + ,yn; ; L\1 := ,yn; ; goto Step 2 
end if 

Step 6: {if the initial transient period embraces more than no,max observations} 

stop the simulation run; 
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write ('the length of initial period is longer than no,max observations or the simulated 
process is unstable ') 
end Detectlnitia/Transient . 

The effectiveness of this procedure depends mainly on the effectiveness of the 

variance estimator &2[X(n)]. 

4.2 SEQUENTIAL TESTING FOR A REQUIRED ACCURACY OF RESULTS 

The sequential procedures for stopping a simulation experiment which are presented 
here require the analyzed sequence of observations to be representative of steady 
state, so n0 observations representing the initial transient period have to have been 
discarded beforehand. 

The first procedure applies the spectral method of analysis proposed by Heidelberger 
and Welch ( [HEID81], [HEID81 a] and [HEID83] ), in which confidence intervals are 

calculated from the sequence of means of batches of size 2v, v = 1, 2, ... ; see 

comments on p.17. The batch means are introduced here not for decreasing 
autocorrelat.ions among analyzed data, but for reducing the amount of data kept in 
memory. If 2M is the maximum number of batch means that can be stored in the buffer 
AnalyzedSequence, then whenever 2M means over batches of m observations are 
recorded, they are consolidated into M' means of batches of size 2m. Subsequent 
observations are lumped into M successive batches of size 2m, and if more than M 
such new batches are needed, the rebatching procedure is repeated. Thus the buffer 
AnalyzedSequence can be implemented simply as a one-dimensional array of size 

2M. The accuracy of estimators is measured by the relative precision e. of confidence 

intervals, defined in Eq. (11 ), and the simulation is stopped if e. ~ Emax , where Emax is 
the acceptable maximum value of the relative precision of the final results. The current 

values of e. are evaluated at consecutive checkpoints rok ( k = 1 , 2, ... ; rok ~ nmax ) , i.e., 

each time that (rok - rok-1) new observations have been collected, with ro0 = n0 . To limit 
the number of possible checkpoints one can assume that they are geometrically 

distributed, i.e., for a given ro1 

(63) 

where k=1,2, ... ; 'Ya >1 #. To avoid too large a distance between consecutive checkpoints 

one can assume ro1 = max( 2M, 2n0 ), c.f. [ASGABB]; although note that for example a 

value of ro1 such that 

L 0.1 (nmax - no)J +no::;; ro1 ~ L0.2(nmax • no)J + no (64) 

# LxJ denotes the "floor function" of x, that gives the greatest integer not greater than x. 
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was suggested in [HEID83]. The estimator of variance, and the number ~ of its 

degrees of freedom, needed in analysis of confidence intervals, are calculated using· 
the procedure SpectralVarianceAnalysis. It requires at least nv ~100 batch means to 
be available (see Appendix). This approach is described below by a pseudocode 
procedure which uses the following parameters: 

n0 : the number of discarded initial observations ( determined by the procedure 
DetectlnitialTransient ); 
nmax : the maximum allowed length of the simulation run, measured in the number of 

recorded observations ( nmax ~ max(3n0 , n0 + 2M) ; to be decided in advance); 
nv : the length of the sequence used for estimating the steady state variance ( nv ~ 
100; the default value: nv =100 ); . 

Ya : the checkpoint incremental coefficient for sequential testing for accuracy (Ya> 1; 

the default value : 'Ya= 1.5); 

(1-c.x.) : the assumed confidence level of the final results ( O<c.x.<1; the default value: 

C.X.=0.1); 

Emax : the maximum acceptable value of the relative precision of confidence intervals 

(0< Emax<1; the default value: Emax = 0.1 ). 

procedure Spectra/Analysis ; 
{ sequential analysis of simulation output data based on spectral analysis of the series of collected 

observations } 

const M = 100; {the default value of the minimum number of data points for the analysis of 

confidence intervals; M;;::: nv ::: 100 ; see Section 4. 1 } 

procedure Batching ; 
{ preparation of secondary output data ; transformation of individual observations into the sequence of 

no more than 2M batch means of sequentially increasing batch size } 

begin {calculate the batch mean Xj(m), and store it as the jth data item in the buffer 

AnalyzedSequence } 

Xj(m) := sum/m; 
if j = 2M then {consolidate 2M means of batches of size m into M means of batches of size 2m} 

for s:=1 to M do 

X8 (2m) := 0.5 (X2s-1 (m)+X2s(m)) 
enddo 
m := 2m; j := M 

end if 
j := j+ 1 ; sum :=0 { start to calculate the next batch mean} 

end Batching ; 

procedure Estimation ; 
{sequentially calculate estimates and test their precision until the required precision is reached} 

begin 

find cr2[X(nv)L the variance estimator of the sequence Xi·n)m), Xi-nv+1 (m), ... , Xi(m), 

the last nv batch means stored in the buffer AnalyzedSequence, and 



determine K, the number of degrees of freedom of a2[X:(nv)]; {apply the procedure 

SpectralVarianceAnalysis; see Appendix } 
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calculate the relative half width of the confidence interval at the confidence level 

(1-a) for the current checkpoint rok: 

" - -e = tK. 1-a12 a[X(nv)] I X(jm), 
j 

where X(jm) = Lxs(m) I j 

S=1 

is the current value of the estimated mean after jm observations, and tK. 1-a12 ,is the 

upper (1-a/2) ·critical point of the t-distribution with K degrees of freedom ; 

{ test conditions of stopping the simulation run } 

if (e ~ emax ) then {print the final results and stop the simulation} 

write('the required precision of results has been obtained after', n0 +jm, 
'observations recorded'); 
StopSimulation := true 

else{ the required precision has not been reached yet; determine the next , (k+ 1 )st, checkpoint} 

k := k + 1; 

rok := min ( L 'Ya( ffik-1 -no)J + no, nmax) 

end if 
end Estimation ; 

begin { main procedure} 

m := 1 ; { the initial batch size} 

k := 1 ; { the initial checkpointis after COk = co1 observations} 

ro0 := n0 ; i := 1; {having discarded n0 observations, collect next observations starting from the 

observation ( co0 +i) } 

ro1 := max(2M, 2n0 ); { the defaultlocation of the first checkpoint } 

sum := O; j := 1; {start calculating the 1st batch mean} 

StopSimulation := false; { a condition of stopping the simulation has not been met yet } 

while (not StopSimulation ) do {collect and process new (cok - COk-1) observations} 

get the observation Xroo+i ; 

sum := sum + xffio+i ; 

if ( i mod m = O ) then Batching end if; 

if ( i = rok ) then Estimation endif; 
if ( not StopSimulation ) then 

i := i+1; 
if( i>nmax -no ) then 

write ('having collected nmax observations the required precision has 

not been achieved; increase nmax or a or emax '); 
StopSimulation := true -\ 

end if 
end if 

enddo; 

write ('the final relative precision:', 100 e % , 'the final (1-a)100% confidence 
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interval:' ,X(jm}{1± t:} ) 

end Spectra/Analysis . 

The next sequential procedure for simulation output analysis applies a method of 
analysis of weakly correlated batch means, c.f. Section 2. As in the case of the 
procedure SpectralAnalysis, it should be preceded by the procedure 
DetectlnitialTransient for discarding an initial nonstationary sequence of n0 

observations. For weakening serial correlations of analyzed output data individual 
observations are replaced here by the less correlated means of their batches. Thus 
the problem of direct analysis of confidence intervals from correlated observations is 
replaced by the problem of determining the batch size m*, such that batch means are 
(almost ) uncorrelated at a given level of significance. Generally, in a sequence of 
correlated data the autocorrelation coefficients of lag k, k = 1,2, ... , (see Eqs. (20) and 
(21) ) are not necessarily decreasing as the lag increases, although all autocorrelation 
coefficients are zero if the sequence contains uncorrelated observations. For this 
reason we follow here the test proposed by Adam [ADAM82]: a given batch size can 
be accepted as the batch size for approximately uncorrelated batch means if all L 
autocorrelation coefficients of lag k (k = 1, 2, ... , L) are statistically negligible, at a given 

significance level Pk, 0<Pk<1. The analytical problems encountered during estimation 
of the autocorrelation coefficients suggest that the number of considered lags should 
be limited to L=0.1 kbo, where kbo is the number of batch means tested for 
autocorrelation; see comments on p.12. The autocorrelation coefficients can be 
better estimated by the so-called jackknife estimators [MILE74], which are usually less 
biased than the ordinary estimators defined by Eqs. (20) and (21 ). A jackknife 
estimator of autocorrelation coefficient of lag k for a sequence of batch means of size 
m is calculated from the following formula: 

, (k,m) = 2~ (k,m) - [ ~· (k,m) + ~" (k,m)] /2 (65) 

where the estimators on the right hand side of Eq. (64) are the ordinary estimators of 

autocorrelation coefficients (see Eq. (20) and (21 )) but ~(k,m) is the estimator over all 

kbo batch means, while ~'(k,m) and ~"(k,m) estimate the same coefficient, but only 
over the first and the second half of the analyzed sequence of kbo batch means, 
respectively. Let us note that: 

(I) to get acceptable estimators of the autocorrelation coefficients, at least 50 batch 
means should be available, [BOXJ?O, p.33]; thus in the case of jackknife estimators 
one should assume kbo ~ 100; 

(ii) to ensure approximate normality of batch means: the size of considered batches 
should not be less than.50, [ADAM83]; 

(iii) to get an acceptable overall significance level p when testing the value of L 

autocorrelation coefficients of lag k (k=1, 2, ... ,L), each at the significance level Pk, we 
have to assume 

L 

P < I. Pk (66) 
k=1 
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hence in practice L should not be chosen to be too large. This restriction is, of course, 
irrelevant if the autocorrelation coefficients decrease monotonically with the value of 

the lag, since then only ~ (1,m) has to be considered. 

To avoid wastefully collecting an excessive number of observations, especially when 
testing batch sizes, the procedure BatchMeansAnalysis uses two buffers for storing 

batch means: a buffer called ReferenceSequence is used to store the batch means 

X1(m0 ), X2(m0 ), ... of a batch size m0 , and a buffer AnalyzedSequence used for storing 
an assumed number kbo of batch means of batch size ms= sm0 (s = 1, 2, ... ), formed 
from the batch means kept in the ReferenceSequence for consecutive tests against 
autocorrelations: Thus, since the number of data items collected in the 
ReferenceSequence grows in time during a simulation run, a linked list of batch 
means seems to be a proper data structure for this buffer. The number of data items in 
the AnalyzedSequence is limited to kbo, so it can be implemented as an ordinary one
dimensional array. By selecting mo properly, we can secure a sequential increase 
of tested batch sizes slower than in the batching schemes, proposed in [FISH73], 
[LAWC73] and [ADAM83], which should reduce the resultant simulation run length; 
also when, to neutralize the observed randomness of the estimators of correlation 
coefficients, m* = ms is selected as the final batch size of weakly correlated means iff 
the hypothesis of all zero autocorrelation coefficients is accepted in two successive 
tests, both for the batch size ms-1 and m~ . 

Having selected the batch size m· one can sequentially analyse the accuracy of 
results by calculating confidence intervals from Eq. (17) and (18), which are valid for 
independent and identically distributed batch means. The sequence of batch means 
for batch size m· kept in the buffer ReferenceSequence can have sequentially 
appended new batch means if more observations are needed to improve the accuracy 
of results. 

Schmeiser [SCME82] showed that using 1 O to 30 batch means over longer batches 
one can usually obtain more accurate results (and a better coverage of the estimators) 
than using more batch means but over smaller batches. Following these 
recommendations, when the accuracy test of the estimator from kbe batch means 
stored in ReferenceSequence fails, then these kbe batch means are used to form 
kbo=30 batch means in the AnalyzedSequence buffer for the additional accuracy test. 
Such test is done before a new batch mean is appended to ReferenceSequence: 

The whole method can be summarized by the following pseudocode procedure , 
which requires the following parameters: 

n0 : the number of discarded initial observations ( determined by the procedure 
DetectlnitialTransient ); 
nmax : the ·maximum allowed length of the simulation run, measured as the number 
of recorded observations (nmax ~ no+ m0 kbo; to be determined in advance); 

1-a : the assumed confidence level of the final results ( 0<a<1; the default value : 

a =0.1 ); 

Emax : the maximum acceptable value of the relative precision of confidence 

intervals (O<emax<0.5; the default value: Emax = 0.1 ). 
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The initial values of other parameters are given in the procedure below. 

procedure BatchMeansAnalysis ; 0 

{ sequential analysis of simulation output data based on analysis of uncorrelated means of batches of 

observations } 

con st m0 = 50; { the default value of the batch size for means stored In ReferenceSequence } 

kbo = 100; { the default value of the number of batch means stored in AnalyzedSequence} 

procedure DetermineBatchSlze ; 
{ determine the batch size for approximately uncorrelated batch means } 

begin 

s: = 1 ; j := 1 ; sum := 0; { these are the Initial values of parameters for determining Xj(m0 }, the jth 

batch mean of size m0 , at the sth sequential step } 

while ( (not StopSimulation} and ( not Uncorrelated ) ) do 
{ (l-1) observations have been already recorded } 

for v := i to i + kbo mo - 1 do 
{ collect new kbo m0 observations for the next kbo batch means of size m0 to be store in 

ReferenceSequence } 

get the observation Xn
0 

+ v ; { the Initial n0 observations have been discarded } 

sum :=sum+ Xn
0 

+ v; 

if (v mod m0 = 0) then { calculate the batch mean Xj(m0); the jth data item In 

ReferenceSequence } 

Xj(mo) = sum I mo; sum := O; j := j+1 
end if { the next batch mean has been determined} 

enddo { the next kbo batch means have been determined} 

for v := 1 to kbo do {consolldate skbo batch means X 1(m0 }, X2(mo), ... , from 

ReferenceSequence Into kbo batch means Y1(sm0 }, Y2(sm0 }, ... , in AnalyzedSequence, 

which will be tested for autocorrelation } 
s 

Yv(Smo) := L X(v-1)s+r(mo) Is 
r=1 

enddo 
TestCorrelation ; 
if ( not Uncorrelated ) then 

{ the batch size has not been found yet, re-initialize the data for the next autocorrelation 

tests} 

i:= i + kbo mo ; s:= s+1 
end if 
if ( n0 + i > nmax ) then 

{stop selecting the batch size; the test requires more than nmax observations} 

write (' the batch size of uncorrelated batch means can not be determined; 

increase nmax or /3 '); 
StopSimulation := true 

end if 
enddo { of search for the batch size of uncorrelated batch means } 

end DetermineBatchSize ; 
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procedure TestCorrelation ; 
{ test significance of autocorrelations between batch means for a given batch size } 

con st L = i O; { the default number of autocorrelation coefficients considered ; if autocorrelation 

coefficients monotonically decrease with the value of lag then L= 1, else L:=0. 1 kbo} 

~ = 0.1 ; { the default value of the overall significance level of L tests against autocorrelation} 

begin 
Correlation :=0; { the initial value for testing L correlation coefficients} 

for k := 1 to L do { test whether all L autocorrelation coefficients are statistically negligible 

each at the f3k significance level } 

calculate the jacknife estimator ~ (k,smo) of the autocorrelation 

coefficient' of lag k for the sequence Y1(smo }, Y2(smo }, : .. , Yk00(sm0 ) 

stored in the AnalyzedSequence; {apply Eq. (64) for m = sm0 } 

~k := ~/ L; 

&2 [ ~ (k,sm0 )]:= if (k=1) then (1 I kbo) 
k-1 

else ( [1 +2 L ~2 (u,sm0 )] I k00 ) 
U=1 

end if {the variance of the autocorrelation coefficient of lag k according to 

[BART46]} 

if ( I ~ (k,smo)I < z1-~k12 & [' (k,smo)] ) 

{ Z1-f3kl2 is the upper (1-f3kl2) critical point of the standard normal distribution} 

then ~ (k,sm0 ) :=0 

endif { the lag k autocorrelation is statistically negligible at the confidence level 1-f3k} 

Correlation := Correlation + I ~ (k,smo)I; 
enddo 

if ( (Correlation=O ) and AcceptableSize) then {accept the current batch size since the 

previous batch size has already given negligible correlations } 

m· := smo; 
Uncorrelated := true 
{ the batch size m * of uncorrelated batch means has been selected} 

elsif ( Correlation=O ) then { start collecting next observations for testing larger batch size} 

AcceptableSize := true 
{ autocorrelations for the current batch size are negligible but they were not negligible for the 

previous batch size , thus the next batch size should be considered} 

end if 
end TestCorrelation ; 

procedure Estimation ; 
{sequentially calculate estimates and test their precision until the required precision is reached} 

begin 

calculate the mean X(kbe,m) and the relative half width E of the confidence intervals 

at the confidence level (1 - a}, where# 

II = = 
E:=tkbe-1,1-a/2 cr[X(kbe,m)]/ X(kbe,m), 

from the whole sequence of kbe data items stored in ReferenceSequence; {apply 
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Eq. (16) - (18), for kb:= kbe, m := m* and Xj(m): = Xi( m*)} 

if ( (e>emax) and (kbe mod 30 = 0) ) then { the additional test of accuracy of estimators 
after consolidation of kbe batch means from ReferenceSequence into kbo=30 means of 

longer batches stored in AnalyzedSequence; see the recommendations in [SCME821} 

m := kbe/30; 
for j := 1 to 30 do 

m 

Yj(mm·) := L ><o-1)m+r(m*) Im ; 
r=1 

calculate the mean X(kbo, mm· ) and the relative half width e of the 

confidence interval at the confidence level (1 - a), where 

A = • = • 
e := tkbo-1,1-cx.12 a [ X(kbo, mm )] I X(kbo, mm ) , 
from the sequence of 30 data items stored in the AnalyzedSequence ; 

{apply Eq. (16) - (18) for kbo:= 30, m:= mm*, X;(m): = Yi( mm*); tk, 1-a/2 Is the upper 

(1-a/2) critical point of the t-distribution with k degrees of freedom } 

enddo 
end if 

if (e~Emax) { the required precision has been reached } then 
write('the required precision of results has been obtained after ', no + kbe m* 

'observations recorded'); 
StopSimulation := true 

elsif ( no + (kbe + 1) m* ~ nmax ) then 
{ kbe batch means of size m * have been used to estimate a parameter, but the required 

* precision has not been reached yet; collect the next batch of m observations and store their 

mean in the ReferenceSequence} 

sum:= O; 
for j := 1 to m· do 

get the observation Xkbam·+i; 

sum :=sum+ Xkbam·+i 
enddo 
kbe := kbe + 1; 

Xkbe(m* ) := sum Im· 
elsif ( no + (kbe + 1) m· > nmax ) then 

{ the required precision has not been reached ; too short the simulation run assumed} 

write('the required accuracy can not be reached; increase nmax or a or emax') 
StopSimulation := true ; 

end if 
end Estimation ; 

begin { main procedure } 

StopSimulation := false; { a condition of stopping the simulation has not been met yet} 

AcceptableSize := false; {a batch size for uncorrelated batch means has not been found yet } 

Uncorrelated := false;{the batch size for uncorrelated batch means has not been determined yet} 

e:= 1- Emax ; { the initial precision e >emax } 



i := 1 ; { having discarded n0 observations, collect the next observations starting from the 

observation (no + 1 )st } 

DetermineBatchSize; { if the batch size m* has been selected then 

ReferenceSequence contains skbo batch means of size m *;s and AnalyzedSequence 

contains kbo batch means of size m * } 

kbe := kbo ; { the size of ReferenceSequence at the beginning of estimation } 

for j := 1 to kbe do { prepare data for estimation; consolidate skbo batch means of size 

m0 = m *;s in ReferenceSequence into kbe =kbo batch means of size m *} 
s 

X1(m*) := L, ><u-1)s+r(mo) Is 
r=1 

enddo 
while ( Uncorrelated and (not StopSimulation) ) do 
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{ sequentially calculate and test the precision of the estimators until the required precision or 

the maximum length of simulation run is reached} 

Estimation ; 
enddo 

write(' the final relative precision:', 100 e%', the final 100(1- a)% confidence 

interval : ',X(kbe, m·) {1 ± e] ); 

end BatchMeansAnalysis 

In practice the last procedure employs a sequential search for the batch size of 
uncorrelated batch means, rather than the sequential stopping rule for the simulation 
run ( sequential testing the precision of estimates ), since usually many more batch 
means have to be tested during the first stage (testing against autocorrelation) than 
during the second stage ( testing the precision of the results ). The number of 
observations recorded, kb0 m*, when the mean and the width of confidence intervals 
are to be calculated for the first time, is much larger than is usually required for 
obtaining the required level of accuracy, c.f. [SCME83]. From this point. of view, the 
spectral method of analysis is more thrifty. Exhaustive comparative studies of both 
procedures have not been performed yet, but reported results ( see for example 
[PAWL88]) indicate that the spectral method is the more efficient method both in the 
sense of the coverage recorded in reference experiments and in the sense of the 
final simulation run lengths for obtaining the required accuracy of the results. 
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5. SUMMARY AND GENERAL COMMENTS 

We have discussed in detail methods for dealing with the main phenomena 
encountered in steady state simulation· of queueing processes: the inherent initial 
nonstationarity and the permanent autocorrelation of collected observations. We have 
emphasised the methods of sequential analysis, having in mind their possible 
implementation in user-friendly simulation packages, which would produce results 
automatically. In such a context, methods of analysis based on single simulation runs 
seem to be more attractive than the methods of independent replications. 

Our discussion was limited to simulation experiments performed to estimate a single 

measure of performance, the sample mean X(n) and its confidence interval (Eqs. (i) 

and (2)), but this methodology can be modified to estimate, for example, quantiles#. 
The estimation of quantiles using the method of independent replications is discussed 
in [WELC83, p.295], while an extension of the method of spectral analysis for this 
purpose is presented in [HEID84]. The same application of the regenerative method is 
discussed in [IGLE76] and [SEIL82]. 

The methodology of simultaneous analysis of more than one measure of performance 
in a single system is discussed for example in [LAWK82, p.308], [RAAT87] and 
[SCRU8i], but inherent theoretical problems with reaching a satisfactory level of 
precision for estimators strongly limits the number of parameters for which one can 
determine meaningful confidence intervals. Specific statistical problems are met in 
comparative simulation studies of alternative systems. These are surveyed in 
[LAWK82, Ch.9]; see also [BALMS?] and [FRIE86]. Note that in these applications the 
bias of estimators caused by an initial transient period is unimportant, so long as the 
estimators are equally biased. 

This report is restricted to the statistical analysis of simulation output data, but 
practitioners are aware that that is not the only problem that must be overcome in 
obtaining useful results. Before observations are collected, the process~s for which 
performance is to be investigated have to be properly modelled, and each model 
should be validated and verified to make the simulation experiments credible. 
Various aspects of the validation and verification of simulation models are discussed, 
for e.xample, in [BANK84], [BULG82], [LAWK82], and [SHNN8i]. 

Having presented methods of data collection and analysis which are used in 
stochastic steady state simulation, one can conclude that no definite conclusions can 
be made about their applicability. The need for more exhaustive comparative studies 
expressed by Schriber and Andrews in [SCRl8i] seems still to be a live issue. In the 
light of the increasing popularity of simulation experiments conducted on small 
computers, the problem of accurate estimation of the length of the initial transient 
period, as a way of shortening simulation runs, remains an important issue as well. 
The length of simulation runs is also a critical issue in the case of simulation studies of 
complex systems, which sometimes can be performed only if some techniques for 
speeding-up the experiments are applied. In this context an important role could be 
played by the variance reduction techniques, which, by reducing the variance, narrow 

# For a given random variable X the 100 pth quantile (or percentile) xp is defined to be the value x such 

that Prob[X<x]~P and Prob [X>x] > 1-P, 0<P<1. 
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confidence intervals and consequently reduce the number of steps needed by 
sequential procedures for reaching the required accuracy of results. But, as was. 
mentioned in Section 1, practical implementations of variance reduction techniques 
have been reported infrequently. Among the recently published ones are those in 
[FROS88], [IZYD84] and [WALR87]. 

Performance evaluation studies involving simulation experiments can be accellerated 
by the decomposition of analyzed systems into subsystems, which are modelled 
separately, applying both simulation and analytical models, mutually interacting if 
necessary. Various hybrid techniques have been surveyed in [SHNT83]; see also 
[FROST88] and [KUR088]. 

The time needed for simulation studies can also be significantly reduced in 
multiprocessor systems. In such an environment individual processors can be used 
for running independent replications of one simulation experiment, or, in a more 
sophisticated solution, logical processes occuring during one simulation run can be 
executed in parallel by different processors. The main problem encountered in the 
latter case is the synchronization among processes run on different processors. 
There exists a danger that the contribution of large synchronization overheads will 
slow the simulation experiment. Various aspects of distributed and parallel 
simulation are discussed in [MISR86]; see also [KUR088]. Specific analytical 
problems accompanying distributed simulation are discussed in [HEID85]. 
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APPENDIX. Spectral Analysis of Variance. 

As was mentioned in Section 2, Heidelberger and Welch ( [HEID81], [HEID81 a] ) 
proposed calculating the variance of the mean of an autocorrelated sequence of 

observations from formulae (35) and (42), by obtaining Px(m)(O) from the smoothed 

averaged periodogram, see Eqs. (38) c:.\ (41 ). The series of approximations they 
propose can be summarised as follows: 

Procedure Spectra/VarianceAnalysls 

{ Preconditions: , 

X1 (m), X2(m), ... , Xnv(m) : a stationary sequence of nv data points ( m ~ 1, nv ~100, the 

default value: nv = 100 ); 
nap : the number of points of the averaged periodogram used to fit it to a polynomial 
by applying the least squares procedure ( naps; nvl4, the default value nap= 25 ); 
d : the degree of the polynomial fitted to the logarithm of the averaged 
periodogram (the default value d = 2); 

Ccr : a normalizing constant, chosen to make Px(m)(O) approximately unbiased ( for 

the default values of nap and d: Ccr = 0.882; see [HEID81a, Table1])} 

Step 1: 

Calculate 2nap values of the periodogram of the sequence X1 (m), X2(m), ... , Xnv(m) : 

l\t 

II(jlnv) = 12, Xs(m) exp[-2ni(s-1)jlnv] 1
2 Inv , (A.1) 

S=1 

{c.f. Eqs. (38) and (39)} for j = ·1, 2, ... , 2nap, and i2 = -1; 

Step 2: 
Calculate nap values of the function {L(fj)}, j = 1, 2, ... , nap; where 

L(fj) = log { [ II( (2j-1 )Inv} + II( 2jlnv) ] I 2 } ; (A.2) 

Step 3: 
Apply the least squares extrapolation procedure { see for example f PRESB6, p.509}} for 
determining the coefficient a0 in the polynomial 

d 

g(f) = L, as f 
8 

, · (A.3) 

'8=0 
fitted to the function {L(fj) + 0.270}, j = 1, 2, ... , nap; 

{ the value Bo is an unbiased estimate of log Pxrm/0) } 

Step 4: 

Calculate &2[X(nv)] = Ccr e80 Inv; 



45 

determine K ; 

{ the degrees of freedom IC for the estimator J2[X(nv)l, for given nap and dare given in [HE/DB ta, 

Table 1J;fornv= 100, nap =25 and d=2: IC= 7} 

end Spectra/VarianceAnalysls 
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