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Abstract: The aim of this study is to determine the exact steady state solution of magnetohydrodynamic (MHD)
and rotating flow of generalized Burgers fluid induced by a constant accelerated plate. This is accomplished
by using the Fourier sine transform. This result is then presented in equivalent forms in terms of exponential,
sine and cosine functions. Similar solutions for Burgers’, Oldroyd-B, Maxwell, Second grade and Navier- Stokes
fluids can be shown to appear as the liuniting cases of the present exact solution. The graphical results illustrate
the velocity profiles which have been determined for the flow due to the constant accelerated of an infinite flat

plate.
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INTRODUCTION

The studies of non-Newtonian fluids have received
considerable attention because of numerous applications
i industry, geophysics and engineering. Some studies
are notably important in industries related to paper, food
stuff, personal care product, textile coating and
suspension solutions. A large class of real fluids do not
exhibit the linear relationship between stress and rate of
strain. Due to the non-linear dependence, the analysis of
the behaviour of fluid motion of non Newtoman fluids
tends to be much more complicated and subtle in
comparison with that of Newtonian fluids. When the
motion of a fluid 1s set up, the velocity field contams
transients obtained by the initial conditions. These
transients gradually disappear in time and the starting
solution tends to the steady-state solution, which 1s
independent of the initial conditions. Several researchers
have discussed the flows of generalized Burgers® fluid in
different configurations (Fetecau et al., 2009, Vieru et al.,
2008; Shah, 2010, Hayat ef al., 2006, Shah and (1, 2010,
Khan et al., 2010, Xue et al,, 2008, Khan and Hayat,
2008). There are available few attempts in which the flows
of non-Newtonian fluids have been investigated in
different separate cases. Such attempts are made by
Fetecau et al. (2006), Khan et al. (2008, 2009), Hayat (2006)
and Hayat et al. (2008a,b).

The aimn of the curent study is to establish
exact steady state solutions for the velocity field
corresponding to flow induced by a constantly
accelerating plate in generalized Burger fluid. The fluid is

magnetohydrodynamic (MHD) in the presence of an
applied magnetic field and occupying a half porous space,
which is bounded by a rigid and non-conducting plate.
Constitutive equations of a generalized Burgers fluid are
used. Modified Darcy’s law has been utilized The
steady-state solution to the resulting problem is attained
by Fourier sine Transform, which contains as limiting
cases the similar solutions for Burgers’ fluid, Oldroyd-B,
Maxwell, Second grade and Navier-Stokes fluids. The
graphs are plotted in order to illustrate the variations of
embedded flow parameters.

FORMULATION OF THE PROBLEM

We choose a Cartesian coordinate system by
considering an infimte plate at z = 0. An incompressible
fluid which occupies the porous space is conducting
electrically by exerting an applied magnetic field B-
parallel to the z-axis. The electric field 1s not taken mto
consideration, the magnetic Reynolds number is small and
the induced magnetic field 15 not accounted. Both plate
and fluid possess solid body rotation with a uniform
angular £ about the z-axis.

The governing flow equation is given by Hayat et al.

(2008a,b).
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In which F = utiv, u and v are the velocity
components in x and y directions, respectively, p is the
fluid density, u is the dynamic viscosity, o is the finite
electrical conductivity of the fluid and ¢, k are the
porosity and permeability of the porous medium,
respectively, A, and A, are correspondingly the relaxation
and retardation times and A,, A, are the material constants
having the dimensions as the square of time.

The initial and boundary conditions for a constant
accelerated plate are:

u=v=0at t=0,z=0, (2)
u(0,t)= At, v(©,t)=0 for t»0, (3)
u, a—u,u,@eo as Z oo, t»0 (4)

0z fird

where A has dimension of L .
TZ

SOLUTION OF THE PROBLEM

Introducing the following dimensionless quantities:
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where v is kinematic viscocity.
The problem statement (1) reduces to:

{B+o{c+aﬂazc} +{1+ﬁc+QFG{c+1}G
gt || at? B]at B

2 2 (6)
—{1+Q3+Ra—2}a?
at at" | d&

GO,D=1, t>0 (7)

G(ﬁ,r),a%é’ﬁc)HOas&—)oo;T>0 (8)

Upon using Fourier sine transform, Eq. 6-8 yield:

.G, (n,7) + [ B+ e+ R’ [91G, (1) + {H BC+Q(%+ nz)}

0.G,(n.7)+ {Hémz}Gs(n,r):\Pn[QM], n,7=0
i

Solving the ordinary differential Eq. 9 and inverting
the result by means of the Fourier sine transform, we
can write the velocity field G (€, t) as a sum of the
steady- state and transient solutions, 1.e.

GED =G0+ G (ST

The steady-state solution, which 1s valid for large
values of tumne, has the form:

G(E T = ¢ ¥ [0sin((E) + Mcos((E)] (10

where
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2V =4+ U 4 (15)

2E? =fb* + U? - b?

The above expressions for a MHD Burgers’ fluid (A,)
1n a porous space take the form:

G(ET) = [@, sin((E,) + M, cos(ZE,)] (16)
where
{Q[(l—oc)c—B]+*:((l—oc)c+%—B—bzl—(lﬁ—ﬁc—a)}

4= U, (@ +1)
(17)
M, = — (18)

(@ +1)
U12: Q{(l*(!)C‘F%*B]*(I‘FBC‘F%*(I} (19)

Q' +1
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2B, = fb, + U7 - b
The result (Eq. 10) for a MHD Oldroyd-B fluid
(4, = A, =0)n a porous space takes the form:
(22)

The Eq. 22 for a MHD Maxwell flid (4, = A, = 4, =0)
in a porous space is now of the form:

{1+Bc)&
3

The result (Eq. 10) for a MHD second grade fluid
(A, = A, = A, =0) in a porous space takes the form:

Qe =|1- A (23)

G{E,7) = e ¥ [A, sin{{L) + atcos(EL) ] 249
with
1
a= 2
Q' +1
25
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The above expressions Eq. 24-25 for MHD viscous
fluid (A, = 4, = A, = A, = 0) in a porous space now become:

G(E, ) = e [teos(EL,) - sin(EL,)] (28)
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where
AT =ys+1+s (29)
2L = 1 (30)

RESULTS AND DISCUSSION

Here, we present the graphical illustrations of the
velocity profiles which have been determined for the flow
due to the constant accelerated of an mfinite flat plate.
The emerging parameters here are the rotating parameter
w, magnetic field parameter M and parameter of the
porous medium B, the material constants parameters are
E and R. Inorder to illustrate the role of these parameters
on the real and imaginary parts of the wvelocity G, the
Fig. 1- 6 ha ve been displayed. In these Fig. 1-6 panels (a)
depict the variations of [-Re[G(E, T)]] for generalized
Burgers’ fluid and panels (b) mdicate the variations of
[Im [G(E, D]I.

Figure la shows that the real part of the velocity
profile decreases for various values of rotation w, with
respect to the increase in £. As w increases, the velocity
profile decreases. Figure 1b indicates that the magnitude
of imaginary part of the velocity profile increases initially
and later decreases for various values of rotation w, with
respect to the increase in £. As w increases, the velocity
profile also increases. Similar result is obtained
(Hayat et al., 2008a,b).

Figure 2a 1s prepared to see the effects of magnetic
on the real part of velocity profile. Keepmg R, E, B, Q, P,
w, T fixed and varying M, it is noted that the real part of
velocity profile decreases by increasing the magnetic
parameter M. Figure 2b also 1s prepared to see the effects
of magnetic on the imaginary part of the velocity profile.
Keeping R, E, B, Q, P, w, T fixed and varying M, it is noted
that the imaginary part decrease initially and later
increases. Similar result 1s obtained (Hayat ef al., 2008a).

Figure 3a mdicates that the variation of porosity
parameter Keeping R, B, M, Q, P, w, T fixed Ttis found that
by increase in the porosity parameter is lead to increase
the real part of the velocity profile.

Figure 3b Keeping R, E, M, Q, P, w, T fixed and
varying M, it 1s noted that the imaginary part mcreases
iitially and later decrease.

Figure 4a show the effects of material parameter E of
G. Burgers’ fluid on the real part of velocity profile when
R, B, M, Q, P, w, T are fixed. Tt interesting to note that by
increase in the material constant parameter E is lead to
increase the real part of velocity profile.
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Fig. 1: {(a, b) The variation of velocity profile G (& T for various values of rotation w when (R =13, E=1.5,
B=1,Q=1,P=2M=2t=pi/2)
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Fig. 2: {a, b) The variation of velocity profile G (& t©) for various values of (MHD)} M when (R=13,E=1.5,
B=1,Q=1,P=2 w=1,t=pi/2)

1.8 T T T s 0.30 T T T T T T
b B=.2
16 ® |\ e
0.25 I
14 7N e B-g
/ N
0.20F J,~ \ 4
12 TERNAN
I N
_ 10 0.15F i ... NN 1
= — s
o 08 =
& E J
0.6
04 4
0.2
0.0
02 . X R R R R R . X R X .
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Zata Zata

Fig. 3: {a, b) The variation of velocity profile G (&, 1) for various values of porosity parameter B when(R=1.3,
E=15M=2,Q=1,P=2 w=1,1=pi/2)
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Fig. 5: (a, b) The variation of velocity profile G (& 1) for various values parameter R when (E=1.5B=1,M =2,

Q=1,P=2,w=1, =pi/2)
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Figure 4b it is shown that when are fixed and by
increasing the material constant parameter R, B, M, Q, P,
w, T 18 lead to imaginary part increases mmtially and later
decrease.

Figure 5a show the effects of material parameter R of
G. Burgers’ fluid on the real part of velocity profile
keeping R, E, M, Q, P, w, T fixed. It 15 found that by
increase m the parameter Ris lead to decrease the real part
of the velocity profile.

Figure 5b is prepared to see the influence of material
parameter R of G. Burgers’ fluid on the imaginary part of
veloaty profile keeping R, E, M, Q, P, w, T fixed. It found
that by increase in the material constant parameter R is
lead decrease the imaginary part of the velocity.

Figure 6 1s prepared to show the vanation of velocity
profile for various fluids m comparisen of G. Burgers’
fluid. Tt is observe that real part of Oldroyd-B is quite
same of G. Burgers” fluid.

CONCLUSIONS

The steady-state solution corresponding to the
motion of generalized Burgers™ fluid due to the constant
acceleration of an mfinite flat plate 1s established by
means of the Fourier sine transforms. The solution for
generalized Burgers’ fluid and similar solutions (i.e., the
limiting cases) for Burgers®, Oldroyd - B, Maxwell, Second
grade and Navier-Stokes fluds. Fetecau (2006) presented
here in a simple form in terms of the elementary
exponential and trigonometric functions. These satisfy all
the above govermning equations and all the above imposed

boundary conditions.
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