
Article

Steady-state solutions for modified Stokes’ second
problem of Maxwell fluids with power-law dependence of
viscosity on the pressure

Constantin Fetecau1,∗ and Dumitru Vieru2

1 Section of Mathematics, Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania.
2 Department of Theoretical Mechanics, Technical University of Iasi, 67 Bd. Dimitrie Mangeron.
* Correspondence: c_fetecau@yahoo.com

Academic Editor: Wei Gao
Received: 13 December 2021; Accepted: 28 January 2022; Published: 3 March 2022.

Abstract: Analytical expressions for the steady-state solutions of modified Stokes’ second problem of a class
of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure are determined
when the gravity effects are considered. Fluid motion is generated by a flat plate that oscillates in its plane. We
discuss similar solutions for the simple Couette flow of the same fluids. Obtained results can be used by the
experimentalists who want to know the required time to reach the steady or permanent state. Furthermore,
we discuss the accuracy of results by graphical comparisons between the solutions corresponding to the
motion due to cosine oscillations of the plate and simple Couette flow. Similar solutions for incompressible
Newtonian fluids with power-law dependence of viscosity on the pressure performing the same motions and
some known solutions from the literature are obtained as limiting cases of the present results. The influence
of pertinent parameters on fluid motion is graphically underlined and discussed.
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1. Introduction

T The motion of fluid over an infinite plate oscillating in its plane is termed as Stokes’ second problem by
Schlichting [1]. It is termed as the modified Stokes’ second problem by Rajagopal et al., [2] if the fluid

is bounded by two parallel walls. Both motions are important from the theoretical and practical point of view
because they appear in many applied problems, such as flows in vibrating media. If the fluid has been at rest
up to the initial moment, its motion becomes steady in time and a very important problem for experimentalists
is to know the time after which the steady or permanent state is obtained. To determine this time, at least the
steady-state (permanent or long-time) solutions have to be known.

The fact that the fluid viscosity could depend on the pressure was early enough suggested by Stokes [3]
and the experimental investigations (see for instance Bridgman [4], Cutler et al., [5], Johnson and Tewaarwerk
[6], Bair and Winer [7] and Prusa et al., [8] have certified this supposition. For instance, in elastohydrodynamic
lubrication problems, the effects of pressure on viscosity cannot be neglected. Concerning the importance
of the pressure- dependent viscosity in steady motions of incompressible fluids, we recommend the paper
of Huilgol, and You [9]. On the other hand, Kannan and Rajagopal [10] remarked that gravity has a
notable influence in different motions with engineering applications. Its effects are more pronounced if
the pressure alters along the direction in which the gravity acts. First exact solutions for steady motions
of incompressible Newtonian fluids with pressure-dependent viscosity in which the influence of gravity is
taken into consideration are those of Rajagopal [11,12]. Interesting steady and starting solutions for the
modified Stokes’ problems of Newtonian fluids with pressure-dependent viscosity have also been established
by Prusa [13], respectively Rajagopal et al., [12] when the gravity effects are taken into consideration.
Recently, permanent solutions corresponding to motions of incompressible Newtonian fluids with power-law
dependence of viscosity on the pressure have been determined by Fetecau, and Agop [14], Fetecau and Vieru
[15], and Fetecau and Rauf [16]. Some of them have already been extended to incompressible Maxwell fluids
(IMF) of the same type [17–19].
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The goal of this work is to provide closed-form expressions for the steady-state solutions corresponding
to the modified Stokes’ second problem and the simple Couette flow for a class of IMF with power-law
dependence of viscosity on the pressure. Analytical expressions are established for the dimensionless velocity
fields and the corresponding nontrivial shear and normal stresses. For a check of their correctness, it
was graphically proved that the diagrams of the solutions corresponding to the motion induced by cosine
oscillations of the plate are almost identical to those of the simple Couette flow if the oscillations’ frequency
is small enough. In addition, similar solutions for ordinary IMF and incompressible Newtonian fluids (IMF)
with power-law dependence of viscosity on the pressure performing the same motions are obtained as limiting
cases of general results. The influence of the main parameters on the fluid motion is graphically underlined
and discussed.

2. Formulation of the problem

Let us consider an IMF with pressure-dependent viscosity at rest between two infinite horizontal parallel
plates at the distance d one of the other as it is illustrated in Figure 1. Its constitutive equations, as they have
been presented by Karra et al., [20], are given by the following relations

T = −pI + S, S + λ

(
dS
dt

− LS − SLT
)
= η(p)(L + LT). (1)

Here T is the stress tensor, S the extra-stress tensor, I the unit tensor, L is the gradient of the velocity
vector v and λ is the relaxation time of the fluid. The viscosity function η(·) to be here used has the following
power-law form

η(p) = µ [1 + α(p − p0)]
4/3 , (2)

where α is the pressure-viscosity coefficient and µ is the fluid viscosity at the reference pressure p0. We shall
refer to the Lagrange multiplier p as pressure although, for such fluids, it is not the mean normal stress [20].

Figure 1. Geometry of the flow.

If λ → 0 in the equality (1)2, the new constitutive equations (1) define incompressible Newtonian fluids
(INF) with pressure-dependent viscosity. If α = 0 in Eq. (2) η(p) = µ and the adequate constitutive equations
(1) correspond to ordinary IMF. The fact that η(p) → ∞ for p → ∞ is in accordance with a property that have
been experimentally confirmed.

At the moment t = 0+ the lower plate begins to oscillate in its plane according to

v = U cos(ωt)ex or v = U sin(ωt)ex , (3)

where ex is the unit vector along the x-axis of a suitable Cartesian coordinate system x, y, and z whose y-axis
is perpendicular to the plates while U and ω are the amplitude, respectively the frequency of the oscillations.
Due to the shear the fluid begins to move and, as well as Karra et al., [20], we are looking for a velocity field
and pressure of the form

v = v(y, t) = u(y, t)ex, p = p(y). (4)

Assuming that the extra-stress tensor S, as well as the fluid velocity v is also a function of y and t only and
using the fact that the fluid was at rest up to the moment t = 0, it is not difficult to show that the components
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Sxz, Syy, Syz and Szz of the extra-stress tensor S are zero while the non-trivial shear and normal stresses
τ(y, t) = Sxy(y, t), respectively σ(y, t) = Sxx(y, t) have to satisfy the following linear differential equations

λ
∂τ(y, t)

∂t
+ τ(y, t) = η(p)

∂u(y, t)
∂y

, λ
∂σ(y, t)

∂t
+ σ(y, t) = 2λτ(y, t)

∂u(y, t)
∂y

. (5)

In the absence of a pressure gradient in the flow direction, the balance of momentum reduces to the next
two relevant partial or ordinary differential equations

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

,
dp(y)

dy
= −ρg, (6)

while the incompressibility condition is identically satisfied. Into above relations ρ is the density of the fluid
and g is the gravitational acceleration. Integrating the second equation with respect to y between the limits 0
and d, it results that

p(y) = ρg(d − y) + p0 where p0 = p(d). (7)

Now, eliminating the shear stress τ(y, t) between the equalities (5)1 and (6)1 and bearing in mind the
expressions of η(p) and p from the equalities (2), respectively (7) one obtains for the dimensional velocity field
u(y, t) the following initial and boundary value problem

µ [1 + αρg(d − y)]4/3 ∂2u(y, t)
∂y2 − 4

3
µαρg [1 + αρg(d − y)]1/3 ∂u(y, t)

∂y
= ρ

(
1 + λ

∂

∂t

)
∂u(y, t)

∂t
; 0 < y < d, t > 0,

(8)

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ d, (9)

u(y, 0) = U cos(ωt) or u(y, 0) = U sin(ωt), u(d, t) = 0; t > 0. (10)

As soon as the fluid velocity u(y, t) is known, the corresponding shear and normal stresses τ(y, t) and
σ(y, t) can be determined from the next linear differential equations

λ
∂τ(y, t)

∂t
+ τ(y, t) = µ[1 + αρg(d − y)]4/3 ∂u(y, t)

∂y
; 0 < y < d, t > 0, (11)

λ
∂σ(y, t)

∂t
+ σ(y, t) = 2λτ(y, t)

∂u(y, t)
∂y

; 0 < y < d, t > 0. (12)

Introducing the following non-dimensional variables, functions and parameters

y∗ =
y
d

, t∗ =
U
d

t, u∗ =
u
U

, τ∗ =
1

ρU2 τ, σ∗ =
1

ρU2 σ, ω∗ =
d
U

ω, α∗ = αρgd, (13)

in the governing equations (8)-(12) and dropping out the star notation, one obtains the next dimensionless
initial and boundary value problem

[1 + α(1 − y)]4/3 ∂2u(y,t)
∂y2 − 4

3 α [1 + α(1 − y)]1/3 ∂u(y,t)
∂y = Re

(
1 + We ∂

∂t

)
∂u(y,t)

∂t ; 0 < y < 1, t > 0, (14)

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ 1, (15)

u(0, t) = cos(ωt) or u(0, t) = sin(ωt), u(1, t) = 0; t > 0, (16)

for the velocity field u(y, t) and the linear differential equations with initial conditions

Re
(

1 + We
∂

∂t

)
τ(y, t) = [1 + α(1 − y)]4/3 ∂u(y, t)

∂y
, τ(y, 0) = 0; 0 < y < 1, t > 0, (17)

(
1 + We

∂

∂t

)
σ(y, t) = 2Weτ(y, t)

∂u(y, t)
∂y

, σ(y, 0) = 0; 0 < y < 1, t > 0, (18)

for the shear and normal stresses. Into above relations Re = Ud/ν and We = λU/d are Reynolds, respectively
Weissenberg dimensionless numbers and ν = µ/ρ is the kinematic viscosity of the fluid.
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3. Solution of the problem

In order to evade possible confusions, we denote by uc(y, t), τc(y, t), σc(y, t) and us(y, t), τs(y, t), σs(y, t)
the dimensionless starting solutions corresponding to the two motions induced by cosine, respectively sine
oscillations of the lower plate. These solutions can be represented as sums of their permanent and transient
components, namely

uc(y, t) = ucp(y, t) + uct(y, t), τc(y, t) = τcp(y, t) + τct(y, t),
σc(y, t) = σcp(y, t) + σct(y, t); 0 < y < 1, t > 0,

(19)

us(y, t) = usp(y, t) + ust(y, t), τs(y, t) = τsp(y, t) + τst(y, t),
σs(y, t) = σsp(y, t) + σst(y, t); 0 < y < 1, t > 0.

(20)

Up to the moment t = tcp or t = tsp which is the time to reach the permanent state, the fluid behavior is
described by the starting solutions. After this time, when the absolute values of the transient components are
small enough and can be neglected, the fluid moves according to the permanent solutions ucp(y, t), τcp(y, t),
σcp(y, t), respectively usp(y, t), τsp(y, t), σsp(y, t) which are independent of the initial conditions but satisfy the
boundary conditions and governing equations. In order to determine this time, which in practice is important
for experimentalists, it is sufficient to know analytical expressions for the permanent solutions. To find these
solutions in the same time for both motions, we define the non-dimensional complex velocity, shear stress and
normal stress by the next relations

up(y, t) = ucp(y, t) + iusp(y, t), τp(y, t) = τcp(y, t) + iτsp(y, t), σp(y, t) = σcp(y, t) + iσsp(y, t), (21)

where i is the imaginary unit.
The complex velocity up(y, t) has to satisfy the following boundary value problem

[1 + α(1 − y)]4/3 ∂2up(y,t)
∂y2 − 4

3 α [1 + α(1 − y)]1/3 ∂up(y,t)
∂y = Re

(
1 + We ∂

∂t

)
∂up(y,t)

∂t ; 0 < y < 1, t ∈ R, (22)

up(0, t) = eiωt, up(1, t) = 0; t ∈ R, (23)

while the complex stresses τp(y, t) and σp(y, t) have to be solutions of the ordinary linear differential equations

Re
(

1 + We
∂

∂t

)
τp(y, t) = [1 + α(1 − y)]4/3 ∂up(y, t)

∂y
; 0 < y < 1, t ∈ R, (24)(

1 + We
∂

∂t

)
σp(y, t) = 2Weτp(y, t)

∂up(y, t)
∂y

; 0 < y < 1, t ∈ R. (25)

Bearing in mind the form of the boundary conditions (23) and the linearity of the governing equations
(22) and (24), we are looking for solutions of the form

up(y, t) = V(y)eiωt, τp(y, t) = T(y)eiωt, σp(y, t) = S(y)e2iωt, (26)

where V(y), T(y) and S(y) are complex functions.

3.1. Calculation of the complex velocity up(y, t)

By substituting up(y, t) from Eq. (26)1 in (22) and (23), one obtains for the function V(y) the following
ordinary differential equation with boundary conditions

[1 + α(1 − y)]4/3 d2V(y)
dy2 − 4

3 α [1 + α(1 − y)]1/3 dV(y,t)
dy + γ2V(y) = 0; 0 < y < 1, V(0) = 1, V(1) = 0, (27)

where γ =
√
−iωRe(1 + iωWe ). Now, making the next changes of the independent spatial variable y and the

unknown function V(y)
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y =
1 + α − z3

α
, V(y) =

1√
z

W(z), (28)

one obtains for the function W(z) the following suitable ordinary differential equation

d2W(z)
dz2 +

1
z

dW(z)
dz

−
(

1
4z2 − 9

α2 γ2
)

W(z) = 0, (29)

with the next boundary conditions

W(1) = 0, W
(

3
√

1 + α
)
= 6

√
1 + α. (30)

Making a new change of independent variable, namely z = αr/(3γ), one attains to an Euler-Bessel
equation whose well known general solution allow us to determine

W(z) = 6
√

1 + α

[
Y1/2(a)J1/2(az)− J1/2(a)Y1/2(az)

Y1/2(a)J1/2(b)− J1/2(a)Y1/2(b)

]
, (31)

where a = 3γ/α, b = a 3
√

1 + α while J1/2(·) and Y1/2(·) are Bessel standard functions of the order 1/2. By
substituting W(z) in (28)2 and the obtained result in (26)1, it results that

up(y, t) =
6
√

1 + α
6
√

1 + α(1 − y)

[
Y1/2(a)J1/2(a 3

√
1 + α(1 − y))− J1/2(a)Y1/2(a 3

√
1 + α(1 − y) )

Y1/2(a)J1/2(b)− J1/2(a)Y1/2(b)

]
eiωt. (32)

Consequently, the permanent velocities ucp(y, t) and usp(y, t) are given by the relations

ucp(y, t) =
6
√

1 + α
6
√

1 + α(1 − y)
Re

{
Y1/2(a)J1/2(a 3

√
1 + α(1 − y))− J1/2(a)Y1/2(a 3

√
1 + α(1 − y) )

Y1/2(a)J1/2(b)− J1/2(a)Y1/2(b)
eiωt

}
, (33)

usp(y, t) =
6
√

1 + α
6
√

1 + α(1 − y)
Im

{
Y1/2(a)J1/2(a 3

√
1 + α(1 − y))− J1/2(a)Y1/2(a 3

√
1 + α(1 − y) )

Y1/2(a)J1/2(b)− J1/2(a)Y1/2(b)
eiωt

}
, (34)

where Re and Im denotes the real, respectively the imaginary part of that which follows. Of course, the
boundary conditions (16) are clearly satisfied.

3.2. Calculation of the complex stresses τp(y, t) and σp(y, t)

By derivation of the equality (32) with respect to y one obtains

∂up(y, t)
∂y

=
γ 6
√

1 + α
6
√
[1 + α(1 − y)]5

Y1/2(a)J3/2(a 3
√

1 + α(1 − y))− J1/2(a)Y3/2(a 3
√

1 + α(1 − y) )
Y1/2(a)J1/2(b)− J1/2(a)Y1/2(b)

eiωt. (35)

Substituting the expression of ∂up(y, t)/∂y in Eq. (24) and bearing in mind the relation (26)2, it results for
the complex shear stress τp(y, t) the expression

τp(y, t) =
6√1+α

√
1+α(1−y)

Re
Y1/2(a)J3/2(a

3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

√
−iωRe√

1+iωWe
eiωt. (36)

Consequently, the permanent shear stresses τcp(y, t) and τsp(y, t) have the forms

τcp(y, t) =
6√1+α

√
1+α(1−y)

Re Re
{

Y1/2(a)J3/2(a
3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

√
−iωRe√

1+iωWe
eiωt

}
, (37)

τsp(y, t) =
6√1+α

√
1+α(1−y)

Re Im
{

Y1/2(a)J3/2(a
3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

√
−iωRe√

1+iωWe
eiωt

}
. (38)
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Direct computations show that the complex normal stress σp(y, t) has the form

σp(y, t) = −2ωWe
3√1+α

3
√

1+α(1−y)

[
Y1/2(a)J3/2(a

3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

]2
ie2iωt

1+2iωWe (39)

and the permanent solutions σcp(y, t) and σsp(y, t) can be immediately written as being

σcp(y, t) = −2ωWe
3√1+α

3
√

1+α(1−y)
Re

{[
Y1/2(a)J3/2(a

3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

]2
ie2iωt

1+2iωWe

}
, (40)

σsp(y, t) = −2ωWe
3√1+α

3
√

1+α(1−y)
Im

{[
Y1/2(a)J3/2(a

3
√

1+α(1−y))−J1/2(a)Y3/2(a
3
√

1+α(1−y) )
Y1/2(a)J1/2(b)−J1/2(a)Y1/2(b)

]2
i.e2iωt

1+2iωWe

}
. (41)

Finally, it is worth pointing out the fact that the similar dimensionless solutions

uNcp(y, t) =
6√1+α

6
√

1+α(1−y)
Re

{
Y1/2(c)J1/2(c

3
√

1+α(1−y))−J1/2(c)Y1/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

eiωt
}

, (42)

uNsp(y, t) =
6√1+α

6
√

1+α(1−y)
Im

{
Y1/2(c)J1/2(c

3
√

1+α(1−y))−J1/2(c)Y1/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

eiωt
}

, (43)

τNcp(y, t) =
6√1+α

√
1+α(1−y)

Re Re
{

Y1/2(c)J3/2(c
3
√

1+α(1−y))−J1/2(c)Y3/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

√
−iωRe eiωt

}
, (44)

τNsp(y, t) =
6√1+α

√
1+α(1−y)

Re Im
{

Y1/2(c)J3/2(c
3
√

1+α(1−y))−J1/2(c)Y3/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

√
−iωRe eiωt

}
, (45)

σNcp(y, t) = −2ωWe
3√1+α

3
√

1+α(1−y)
Re

{[
Y1/2(c)J3/2(c

3
√

1+α(1−y))−J1/2(c)Y3/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

]2
ie2iωt

}
, (46)

σNsp(y, t) = −2ωWe
3√1+α

3
√

1+α(1−y)
Im

{[
Y1/2(c)J3/2(c

3
√

1+α(1−y))−J1/2(c)Y3/2(c
3
√

1+α(1−y) )
Y1/2(c)J1/2(d)−J1/2(c)Y1/2(d)

]2
ie2iωt

}
, (47)

corresponding to INF with power-law dependence of viscosity on the pressure performing the same motions
are immediately obtained taking We = 0 in Eqs. (33), (34), (37), (38) (40) and (41). Into above relations
c = 3

√
−iωRe /α and d = c 3

√
1 + α.

4. Results’ validation

In order to validate the correctness of results which have been here obtained, we shall compare their
limits for α → 0 or ω → 0 with known results from the literature, respectively with the similar solutions
corresponding to the simple Couette flow of the same fluids.

4.1. Case α → 0; Modified Stokes’ second problem for ordinary IMF

Using convenient asymptotic approximations of the Bessel functions, namely

Jν(z) ≈
√

2
πz

cos
[

z − (2ν + 1)π
4

]
, Yν(z) ≈

√
2

πz
sin

[
z − (2ν + 1)π

4

]
for |z| >> 1, (48)

it is not difficult to show that for small enough values of the pressure-viscosity coefficient α permanent
solutions ucp(y, t) and usp(y, t) can be approximated by the following relations
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ucp(y, t) ≈
3
√

1 + α
3
√

1 + α(1 − y)
Re

{
sin{a[1 − 3

√
1 + α(1 − y)]}

sin[a(1 − 3
√

1 + α)]
eiωt

}
, (49)

usp(y, t) ≈
3
√

1 + α
3
√

1 + α(1 − y)
Im

{
sin{a[1 − 3

√
1 + α(1 − y)]}

sin[a(1 − 3
√

1 + α)]
eiωt

}
. (50)

Now, substituting the Maclaurin series expansions of [1 + α(1 − y)]1/3 and (1 + α)1/3 in the previous
relations and taking their limits for α → 0, one recovers the permanent solutions corresponding to ordinary
IMF performing the same motions, namely

uOcp(y, t) = lim
α→0

ucp(y, t)= Re
{

sin[γ(1−y)]
sin γ eiωt

}
,

uOsp(y, t) = lim
α→0

usp(y, t) = Im
{

sin[γ(1−y)]
sin γ eiωt

}
.

(51)

Indeed, using the known relations sin(iz) = isinh(z) and
√
−i = −i

√
i, it results that

uOcp(y, t)= Re
{

sinh[δ(1 − y)]
sinh δ

eiωt
}

, uOsp(y, t) = Im
{

sinh[δ(1 − y)]
sinh δ

eiωt
}

, (52)

where δ =
√

iωRe(1 + iωWe). As expected, the expression of uOsp(y, t) from Eq. (52)2 is identical to that
obtained by Fetecau et al., [21, Eq. (36) with K = 0].

Similar computations show that the stresses τcp(y, t), τsp(y, t), σcp(y, t) and σsp(y, t) can be approximated
by the following relations:

τcp(y, t) ≈ − 3
√

1 + α 3
√

1 + α(1 − y)
Re

Re

{
cos[γ(1 − y)]

sin γ

√
−iωRe√

1 + iωWe
eiωt

}
, (53)

τsp(y, t) ≈ − 3
√

1 + α 3
√

1 + α(1 − y)
Re

Im

{
cos[γ(1 − y)]

sin γ

√
−iωRe√

1 + iωWe
eiωt

}
. (54)

σcp(y, t) ≈ 2ωWe
√

1 + α√
1 + α(1 − y)

Re
{

cos2[γ(1 − y)]
sin2γ

ie2iωt

1 + 2iωWe

}
, (55)

σsp(y, t) ≈ 2ωWe
√

1 + α√
1 + α(1 − y)

Im
{

cos2[γ(1 − y)]
sin2γ

ie2iωt

1 + 2iωWe

}
. (56)

Using again the previous identities and the fact that cos(iz) = cosh(z) in the equalities (53), (54), (55) and
(56) and taking their limits for α → 0, it results that

τOcp(y, t) = lim
α→0

τcp(y, t) = − 1
Re

Re

{
cosh[δ(1 − y)]

sinh δ

√
iωRe√

1 + iωWe
eiωt

}
, (57)

τOsp(y, t) = lim
α→0

τsp(y, t) = − 1
Re

Im

{
cosh[δ(1 − y)]

sinh δ

√
iωRe√

1 + iωWe
eiωt

}
, (58)

σOcp(y, t) = lim
α→0

σcp(y, t) = 2ωWeRe
{

cos h2[δ(1 − y)]
sin h2δ

ie2iωt

1 + 2iωWe

}
, (59)

σOsp(y, t) = lim
α→0

σsp(y, t) = 2ωWeIm
{

cos h2[δ(1 − y)]
sin h2δ

ie2iωt

1 + 2iωWe

}
. (60)

As it was to be expected, the expression of τOsp(y, t) from Eq. (58) is identical to that obtained by Fetecau
et al., [21, Eq. (42) with K = 0] by a different technique.

4.2. Case ω → 0; Simple Couette flow of IMF with power-law dependence of viscosity on the pressure

The dimensionless permanent solutions corresponding to the simple Couette flow of IMF with power-law
dependence of the form (2) of velocity on the pressure, namely
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uCp(y) =
3√1+α

1− 3√1+α

[
1

3
√

1+α(1−y)
− 1

]
, τCp = α 3√1+α

3Re(1− 3√1+α)
,

σCp(y) = 2We
9Re

α2 3
√

(1+α)2

(1− 3√1+α)2
1

3
√

[1+α(1−y)]4
; 0 < y < 1, t > 0,

(61)

can be easily determined successively solving the corresponding governing equations. As expected, Figures
2-4 show that the diagrams of ucp(y, t), τcp(y, t) and σcp(y, t) are almost identical to those of uCp(y), τCp,
respectively σCp(y) if the frequency ω of the oscillations as well as the product ωt is small enough. A surprising
result is the fact that the permanent shear stress τCp corresponding to the simple Couette flow of such fluids
is constant on the whole flow domain although the fluid velocity uCp(y) and the corresponding normal stress
σCp(y) are functions of the spatial variable y. However, this shear stress as well as the fluid velocity and the
normal stress depend on the pressure-viscosity coefficient.

Figure 2. Comparison between the permanent the velocities ucp(y, t) and uCp(y) for Re = 100, We = 0.3, α =

0.4, ω = 0.001 and t = 10

Figure 3. Comparison between the shear stressesτcp(y, t) and τCp for Re = 100, We = 0.3, α = 0.4, ω = 0.001
and t = 10

Figure 4. Comparison between the normal stresses σcp(y, t) and σCp(y) for Re = 100, We = 0.3, α = 0.4, ω =

0.001 and t = 10

4.3. Case α → 0 and ω → 0 Simple Couette flow of ordinary IMF

Finally, making ω → 0 in Eqs. (52)1, (57) and (59) or α → 0 in Eqs. (61) one obtains the steady solutions
corresponding to the simple Couette flow of ordinary IMF, namely

uOCp(y) = lim
ω→0

uOcp(y, t) = lim
α→0

uCp(y) = 1 − y = uONCp(y), (62)
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τOCp = lim
ω→0

τOcp(y, t) = lim
α→0

τCp = − 1
Re

= τONCp, (63)

σOCp(y) = lim
ω→0

σOcp(y, t) = lim
α→0

σCp(y) = 2
We
Re

. (64)

The first two steady solutions uOCp(y) and τOCp are identical to the similar solutions uONCp(y),
respectively τONCp corresponding to the simple Couette flow of ordinary INF and the expression of the velocity
field given by Eq. (62) has been previously obtained by Erdogan [22]. In exchange, as it results from Eq. (64),
the steady normal stress corresponding to the same motion of ordinary incompressible Newtonian fluids is
zero.

5. Some numerical results and conclusions

The main purpose of this note is to offer a simple alternative for those who want to find the necessary time
to reach the permanent state (steady state) corresponding to the modified Stokes’ second problem of some
IMF with power-law dependence of viscosity on the pressure. To do that, exact expressions are established
for the dimensionless permanent solutions corresponding to the velocity field and the non-trivial shear and
normal stresses. The required time to touch the permanent state can be graphically determined by comparing
these solutions with the corresponding starting solutions (numerical solutions). It is the time after which
the diagrams of starting solutions superpose over those of the permanent solutions and the fluid behavior is
characterized by the steady-state solutions only.

For completion, as well as for a check of the correctness of results that have been here obtained; exact
expressions are also determined for the similar solutions correspond to the simple Couette flow of the same
fluids. Figures 2-4, as it was to be expected, clearly show that for a small enough value of the oscillations’
frequency ω the diagrams of solutions ucp(y, t), τcp(y, t) and σcp(y, t) are almost identical to those of the simple
Couette flow uCp(y), τCp and σCp(y), respectively. The dimensionless steady state solutions corresponding to
the ordinary IMF performing the same motions, as well as those of the INF with power-law dependence of
viscosity on the pressure is obtained as limiting cases of the initial solutions.

In order to bring to light the influence of Weissenberg number We and of the pressure-viscosity coefficient
α on the fluid motion Figures 5 and 6 and Table 1 have been included here. In these figures the time variations
of the mid plane velocities ucp(0.5, t) and usp(0.5, t) are presented at distinct values of the two parameters.
Oscillatory specific features of the two motions and the phase difference between them are clearly visualized.
It also results that the order of magnitude of the oscillations’ amplitude for common values of the parameters
is the same for both movements and the smaller values of pressure-viscosity coefficient α or We the smaller the
oscillations’ amplitude. Consequently, the fluid decelerates for decreasing values of the two parameters, and
the lowest velocity corresponds to the ordinary IMF, respectively the INF with pressure-dependent viscosity.
As regards the Weissenberg number We, as it was proved by Poole [23], it represents the ratio of elastic to
viscous forces. Therefore, at the same elastic properties of the fluid, a decline of We means an increase of
viscous forces, which implies a decrease of the fluid velocity. In Table 1, for completion, numerical values of
the dimensionless steady velocity uCp(y) corresponding to the simple Couette flow of IMF with power-law
dependence of viscosity on the pressure are provided at three values of the pressure-viscosity coefficient α and
different values of the spatial variable y. The fluid velocity, as before, grows for increasing values of α.

Figure 5. Profiles of velocities ucp(0.5, t) for Re = 100, ω = π/12, α = 0.6 and α = 0.9 and two values of
Weissenberg number We.
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Figure 6. Profiles of velocities usp(y, t) for Re = 100, ω = π/12, α = 0.6 and α = 0.9 and two values of
Weissenberg number We.

Table 1

y Velocity uCp(y)
α = 0.2 α = 0.5 α = 0.9

0 1 1 1
0.1 0.910 0.921 0.932
0.2 0.819 0.839 0.859
0.3 0.725 0.753 0.780
0.4 0.629 0.662 0.696
0.5 0.530 0.567 0.605
0.6 0.430 0.466 0.506
0.7 0.326 0.360 0.398
0.8 0.220 0.247 0.279
0.9 0.112 0.128 0.147
1 0 0 0

The main results that have been obtained by means of the present study are:

• Exact expressions have been established for the steady-state solutions of the modified Stokes’ second
problem of IMF with power-law dependence of viscosity on the pressure.

• Oscillatory behavior of the two motions and the influence of Weissenberg number and the
pressure-viscosity coefficient on fluid velocity was graphically underlined and discussed.

• Similar solutions corresponding to the same problem of ordinary IMF and of INF with power-law
dependence of viscosity on the pressure have been obtained as limiting cases of the present results using
suitable asymptotic approximations of Bessel functions.

• Steady solutions for the simple Couette flow of IMF with power-law dependence of viscosity on the
pressure have been also determined and the convergence of ucp(y, t), τcp(y, t) and σcp(y, t) to these
solutions was graphically proved when ω →0.

• The shear stress τCp corresponding to this motion is constant on the entire flow domain although the
velocity uCp(y) and normal stress σCp(y) are functions of the spatial variable y.
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