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Steady-state spin synchronization through the collective motion of trapped ions
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Ultranarrow-linewidth atoms coupled to a lossy optical cavity mode synchronize, i.e., develop correlations,

and exhibit steady-state superradiance when continuously repumped. This type of system displays rich collective

physics and promises metrological applications. These features inspire us to investigate if analogous spin

synchronization is possible in a different platform that is one of the most robust and controllable experimental

testbeds currently available: ion-trap systems. We design a system with a primary and secondary species of ions

that share a common set of normal modes of vibration. In analogy to the lossy optical mode, we propose to

use a lossy normal mode, obtained by sympathetic cooling with the secondary species of ions, to mediate spin

synchronization in the primary species of ions. Our numerical study shows that spin-spin correlations develop,

leading to a macroscopic collective spin in steady state. We propose an experimental method based on Ramsey

interferometry to detect signatures of this spin synchronization; we predict that correlations prolong the visibility

of Ramsey fringes, and that population statistics at the end of the Ramsey sequence can be used to directly infer

spin-spin correlations.
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I. INTRODUCTION

Steady-state synchronization of atomic dipoles forms the

foundation for ultrastable optical lasers utilizing narrow-

linewidth atoms coupled to a lossy cavity mode. Such lasers

have recently been proposed [1,2] and experimentally explored

with a Raman system [3], and in a true narrow-linewidth

transition in strontium [4]. The cavity mode acts as a channel

for synchronization of the atomic dipoles (spins) resulting

in a macroscopic collective spin in steady-state composed

of correlated atoms [2]. Synchronization here refers to the

development of a preferred relative phase (correlations)

between every pair of spins. The output light is a result of

collective spontaneous emission of this macroscopic spin, as

in the case of Dicke superradiance [5], with the difference

that the superradiance is in steady state with repumping of the

atoms balancing the cavity loss.

Steady-state superradiant lasers provide a platform for

studying quantum synchronization and have applications as

ultrastable optical frequency sources. The linewidth of the

output light is determined by the decay rate of the narrow-

linewidth transition [1], exploiting the all-to-all pairwise phase

locking of a large number of spins to drastically reduce

the linewidth. The exciting features of cavity steady-state

superradiance, such as the narrow-linewidth light and the spin

synchronization, motivate us to ask whether a superradiance

model can be used to synchronize quantum ensembles in other

platforms, and if such systems could exhibit interesting physics

and have possible applications.

Ion-trap systems are excellent candidates for studies of

spin synchronization, as they have become a robust platform

for experiments related to quantum computing, simulation,

and metrology [6–8]. Ion traps have long trapping times,

routinely trapping ions for several hours. The incoherent

repumping, crucial to maintain steady-state superradiance,

*athreya.shankar@colorado.edu

introduces recoil heating which can kick neutral atoms out of

the shallow traps used in optical cavities. Complicated schemes

must be used to mimic a steady-state number of atoms in

this situation. However, this problem is negligible in ion traps

which have much deeper trapping potentials. Further, ions in a

trap are distinguishable because of the large spacings (∼μm)

between them, enabling access to individual spins for direct

measurement of spin-spin correlations.

One approach to synchronizing ions is to place ion traps

in optical cavities, allowing the ions to interact with the

cavity mode. However, the low density of trapped ions makes

it difficult to couple more than O(103) ions to the cavity,

prohibiting the large collective cooperativities possible with

neutral atoms, where 105 to 106 atoms are routinely used.

A second approach is to couple ions through the normal

modes of vibration of the trap, arising out of the Coulomb

interactions between the ions. Like optical cavity modes, these

normal modes are a natural coupling channel for interactions

between distant particles. A normal mode of vibration and

an optical cavity mode are both bosonic modes that can be

described in the language of quantum harmonic oscillators

[9]. Laser beams can be used to couple the electronic and

motional degrees of freedom in different ways [10,11]. Ion

traps also enable us to engineer a dedicated dissipative channel

with tunable properties: A subset of ions can be used to

sympathetically cool the entire crystal [12–14], removing

phonons from the normal modes analogous to lossy mirrors

removing photons from the cavity mode. The phonon loss

rate and equilibrium phonon number (temperature) can be

controlled by adjusting the power and detuning of the cooling

laser.

In this paper, we follow this second approach, to design

and analyze a scheme for generating spin synchronization in

an ion trap, by coupling a collection of continuously repumped

ions with a heavily damped normal mode of vibration. This

scheme offers several features that are different from that

found in most ion-trap systems. Most protocols in ion traps

use Hamiltonian interactions. However, the present approach
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promises to synchronize a mesoscopic (20–500) number of

ions using dissipation as a crucial ingredient. Our proposal

is enabled by recent demonstrations of control over hundreds

of ions in Penning traps [15], as well as improvements in

radio frequency (RF) traps [16,17] that make it possible to

control tens of ions in these traps. The key ingredients have

also been implemented with a small number of ions in RF traps

for preparing entangled states, demonstrating the feasibility of

our scheme [18].

Our primary motivation in this paper is to understand the

conditions under which spin synchronization and superradi-

ance occur in ion traps with the above approach, and to propose

a path for experimentally identifying spin synchronization

generated through superradiant physics. We anticipate that

ion-trap systems will enable features of spin synchronization

and superradiance to be studied that are difficult to pursue

with neutral atom platforms. In addition, spin synchronization

from steady-state superradiance can enhance metrology with

trapped ions. Theoretical studies have shown that when

continuously repumped spins interact with a heavily damped

cavity mode during the interrogation time of a Ramsey

pulse sequence, the resulting Ramsey fringes can decay at

a rate much slower than the decay and dephasing rates for

unsynchronized atoms [19]. Implementing such a protocol

using a damped normal mode in an ion trap could mitigate

inhomogeneous broadening effects, and improve the capability

of trapped ions for sensing, for example, of time-varying

magnetic fields.

This paper is organized as follows. In Sec. II, we consider a

model of two species of ions loaded in an ion trap that can be

used to explore spin synchronization mediated by a damped

normal mode. In Sec. III, we consider a specific example of

an ion trap system where this scheme could be implemented.

We numerically investigate this model system, comparing the

results with the corresponding atom-cavity model. We look

for signatures of synchronization brought about by steady-

state superradiance such as the pairwise correlations between

ions. We also propose an experimental scheme to observe

features of the spin synchronization based on a Ramsey pulse

sequence. We show that synchronization results in Ramsey

fringes that decay with a slower rate than that expected from

incoherent repumping, and the variance in the population

readout at the end of the Ramsey sequence directly measures

the steady-state spin-spin correlations. We then briefly touch

on how this model can be a potential candidate for improving

metrology with ion-trap systems. We conclude by summa-

rizing our results in Sec. IV, and indicating possible future

directions.

II. MODEL

There are three crucial ingredients to generate steady-state

superradiance in a cavity (see Fig. 1): (a) a heavily damped

cavity mode, (b) a Jaynes-Cummings interaction between

two-level atoms and the nearly-resonant cavity mode, and

(c) incoherent repumping of the two-level atoms to maintain

steady state.

In Fig. 1, we schematically show the mapping of the

problem of cavity steady-state superradiance onto an ion-trap

system. We consider two species of ions, τ (secondary) and σ

(primary), loaded in an ion trap [20]. The two species could

be, for example, two different elements, or isotopes of the

same element. The system has a total of N = Nτ + Nσ ions,

and therefore the transverse (z-axis) motion of any ion can be

described using the N transverse normal modes of the system.

The τ ions are used to sympathetically cool the normal modes

of vibration of the system of ions. The σ ions provide the

effective spins that synchronize through the interaction with a

damped normal mode.

FIG. 1. Mapping cavity steady-state superradiance onto an ion-trap system. In the left panel, we show the model for cavity steady-state

superradiance, where the cavity mode serves as a mediator for collective decay of the spins formed by the σ atoms. In the right panel, we show

the ion trap system where a normal mode of vibration serves as a mediator for collective decay of the spins formed by the σ ions. The figure

illustrates the model with a two-dimensional crystal. More generally our model can also be applied to 1D crystals of ions.
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FIG. 2. Level diagram of a τ ion. The τ ions are driven using a

cooling laser that is red detuned from the dipole allowed |e〉 ↔ |g〉
transition. This results in cooling of the normal modes of vibration of

the ion-trap system.

In Sec. II A, we demonstrate that Doppler cooling of the

two-level τ ions leads to an effective damping of the normal

modes. The effective dynamics for each mode can be described

as an interaction of a single-mode harmonic oscillator with

a reservoir at a finite temperature. Then, in Sec. II B, we

derive the interaction of the three-level σ ions with a pair

of off-resonant Raman beams, taking into account the effects

of dissipative processes. When the difference frequency of

the Raman beams is suitably tuned, this interaction models

a Jaynes-Cummings-type interaction between an effective

spin-1/2 system and a particular normal mode. Finally, in

Sec. II C, we consider the interaction between the spin-1/2

systems formed by the σ ions and the strongly damped

normal modes. We obtain an effective dynamics for these

spin-1/2 systems, that consists only of spin-spin interactions.

We then compare our ion trap model with the model for cavity

steady-state superradiance [21], and highlight the similarities

in the dynamics, as well as the differences.

A. Doppler cooling of τ ions

The τ ions are two-level systems that are placed at the node

of a standing-wave cooling laser [22]. A traveling-wave laser

may be used for cooling provided the achieved steady-state

temperature, characterized by the mean occupation number of

the normal modes, is not very high. The level diagram of a

τ ion is shown in Fig. 2. The |e〉 ↔ |g〉 transition is dipole

allowed, and can be used to Doppler cool the normal modes

of the system. The level |e〉 decays to |g〉 at a rate Ŵτ . The

cooling laser has a Rabi frequency of �τ and a wave vector
�ksw = kswẑ. We use the notation τ±,τ z to denote the Pauli spin

matrices associated with the τ ions.

The master equation for the interaction of the Nτ τ ions and

N normal modes with the cooling laser is

ρ̇τ,ph =−i[Hτ,ph,ρτ,ph] + Ŵτ

2

∑

m

∫ 1

−1

duW (u)

×D[τ−
m e(−ikτ zmu)]ρτ,ph. (1)

Here, ρτ,ph is the density matrix describing the τ spins

and the normal modes (the subscript “ph” is shorthand

for “phonons”). Throughout this paper, we have set h̄ = 1,

unless we explicitly specify otherwise. The notation D[O]

is used to represent the standard Lindblad dissipator, i.e.,

D[O]ρ = 2OρO† − O†Oρ − ρO†O. The second term on the

right-hand side of Eq. (1) accounts for the dissipation due to

spontaneous emission, and its effects on the transverse motion

of the ions. The wave vector �kτ of the spontaneously emitted

photon makes an angle θ = cos−1u with the z axis, where

the distribution of the angles is given by the normalized, even

function W (u). The transverse position of the ion m is denoted

by zm.

In a frame rotating at the cooling laser frequency, the

Hamiltonian Hτ,ph in Eq. (1) is

Hτ,ph = −1

2
�τ

∑

m

τ z
m +

∑

n

ωnb
†
nbn

+ �τ

2

∑

m

sin(kswzm)(τ−
m + τ+

m ), (2)

where �τ = ωsw − (ωe − ωg) is the detuning of the cooling

laser. The frequency of the normal mode n is given by ωn, and

its annihilation and creation operators are bn and b
†
n.

For small detunings, ksw ≈ kτ ≡ k. The dimensionless

quantity kzm for the ion m can be expressed in terms of the

normal modes of the system as

kzm =
∑

n

ητ
nMmn(bn + b†n), (3)

and captures the spread in the position of the ion relative to

the wavelength of the light it interacts with. The quantity ητ
n =

k
√

h̄
2mτ ωn

is the Lamb-Dicke parameter [23] for the normal

mode n. The equilibrium positions of the σ and τ ions are

due to a balance between the trap potential and the Coulomb

interactions between the ions. Displacement of an ion from

equilibrium results in simple harmonic motion. The matrix

M diagonalizes the potential energy matrix (written in mass-

weighted coordinates) of this simple harmonic motion. The

frequencies ωn of the normal modes are obtained from the

eigenvalues of this potential energy matrix [24].

In the Lamb-Dicke regime (〈(kzm)2〉1/2 ≪ 1) [23], we can

expand the right-hand side of the master equation in powers

of {ητ
n}. When the decay rate Ŵτ is large compared with the

couplings {�τη
τ
n} between the system of normal modes and

the reservoir of τ ions, second-order perurbation theory and a

Markov approximation can be used to arrive at an effective

master equation for the damping of the system of normal

modes (see Appendix A). The cooling introduces couplings

between the normal modes, resulting in a new dressed set

of normal modes that are decoupled from each other. For

simplicity, here we neglect couplings between different modes,

and approximate the bare modes to be decoupled from each

other.1 Then, the effective master equation that describes the

damping of normal modes is given by

μ̇ph = −i

[

∑

n

ω′
nb

†
nbn,μph

]

+
∑

n

D−
n D[bn]μph +

∑

n

D+
n D[b†n]μph, (4)

1See Eq. (A11) and the subsequent remarks in Appendix A.
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FIG. 3. Level diagram of a σ ion. The three level configuration

{|1〉,|2〉,|3〉} is used to drive stimulated Raman transitions in a far

detuned regime, giving rise to an effective two-level system in

the {|1〉,|3〉} manifold. The detuning δ can be adjusted to drive

red sideband transitions coupling the electronic dynamics with an

external normal mode of vibration. Incoherent pumping through an

excited state |a〉 replenishes energy lost via Doppler cooling (not

shown here) of the normal mode.

where

ω′
n = ωn + R−

n (�τ + ωn) + R+
n (�τ − ωn), and

D±
n = R±

n

Ŵτ

2
with

R±
n =

∑

m

(

1
2
�τη

τ
nMmn

)2

Ŵ2
τ

4
+ (�τ ∓ ωn)2

. (5)

Here μph is the density matrix describing the normal modes.

To draw an analogy with cavity QED models, it is useful to

define a cooling rate per mode κn = 2(D−
n − D+

n ) and a mean

occupation number per mode n̄n = D+
n /(D−

n − D+
n ). Then

Eq. (4) can be written as

μ̇ph = −i

[

∑

n

ω′
nb

†
nbn,μph

]

+
∑

n

κn(n̄n + 1)

2
D[bn]μph

+
∑

n

κnn̄n

2
D[b†n]μph. (6)

Equation (6) describes the decay of N individual harmonic

oscillators with frequencies {ωn}, each, respectively, in contact

with a reservoir in a thermal state with mean occupation

number n̄n, at rates κn [25].

B. Interaction of σ ions with Raman beams

The level diagram of a σ ion is shown in Fig. 3. The

|1〉 ↔ |2〉 and |3〉 ↔ |2〉 transitions are dipole allowed, but

the |1〉 ↔ |3〉 transition is dipole forbidden. A pair of Raman

beams is used to drive the |1〉 ↔ |2〉 and |3〉 ↔ |2〉 transitions.

Their wave vectors, frequencies, and Rabi coupling strengths

are, respectively, �kR,1,ωR,1,g1 and �kR,2,ωR,2,g2. The Rabi

coupling strengths have a position dependency arising from

the traveling-wave Raman beams, i.e.,

g1 = g1,0e
i�kR,1·�x, and g2 = g2,0e

i�kR,2·�x . (7)

The difference wave vector �kσ = �kR,1 − �kR,2 is along the

(transverse) z axis. The level |2〉 decays to levels |1〉 and

|3〉 at rates Ŵ1 and Ŵ2, respectively. The Raman beams

operate in a regime where they are far detuned from the

transitions they drive: �1 = ωR,1 − (ω2 − ω1),�2 = ωR,2 −
(ω2 − ω3) ≫ |g1|,|g2|,Ŵ1,Ŵ2.

The master equation for a σ ion interacting with Raman

beams is given by

ρ̇σ = −i[Hσ ,ρσ ] + Ŵ1

2
D[σ12]ρσ + Ŵ2

2
D[σ32]ρσ , (8)

where ρσ is the density matrix for a single σ ion.

The Hamiltonian appearing in Eq. (8) is

Hσ = �1σ11 + �2σ33 +
(

g1

2
σ21 + g2

2
σ23 + H.c.

)

, (9)

where we use the notation σij = |i〉〈j |,i,j = 1,2,3 to repre-

sent operators acting on the electronic levels of the σ ion.

Driving this three-level system in a far detuned regime

results in Rabi oscillations between levels |1〉 and |3〉. While

this is a well-known result [23], it is important for our study

to consider the dissipative processes that arise because of the

scattering from |2〉. We use a recently developed Schrieffer-

Wolff formalism for dissipative systems [26], which is a

projection operator method, to rigorously obtain the effective

dynamics of the two-level system formed by the {|1〉, |3〉}
manifold.

The use of this formalism in the present case is detailed

in Appendix B. We then get a description of the effective

dynamics in the {|1〉, |3〉} manifold. We denote operators in

this space using Pauli spin matrices: σ z = σ33 − σ11,σ
+ =

σ31,σ
− = σ13. For a collection of σ ions, the master equation

describing the dynamics in the {|1〉, |3〉} manifold of these

ions is then

μ̇ = −i[H eff,μ] + Ŵ31

2

∑

l

D[σ−
l ]μ

+ Ŵ13

2

∑

l

D[σ+
l ]μ + Ŵd

8

∑

l

D
[

σ z
l

]

μ, (10)

where

H eff = −1

2
δR

∑

l

σ z
l +

∑

l

(

�R,l(zl)

2
σ+

l + H.c.

)

. (11)

Here, μ is the density matrix for the effective spin-1/2

systems formed by the {|1〉,|3〉} manifolds of the σ ions.

In writing Eq. (10), we have omitted certain “cross-terms”

[27] which eventually contribute at order Ŵ2
1,2/�

2(≪1) lesser

than the interactions of interest. To avoid digressing, we

outline the reasoning behind this omission in Appendix B.

We have introduced several new symbols in Eq. (10), which

are explained in Table I.

At this point, we consider a collection of Nσ σ ions and

Nτ τ ions loaded in an ion trap. The collection of ions has

N = Nσ + Nτ normal modes in total. The σ ions with index

l,l ∈ {1, . . . ,Nσ } have an effective Rabi frequency �R,l(zl) =
�0

Reikσ zl . Once again, the dimensionless quantity kσ zl for ion

l can be expressed in terms of the normal modes of the system

as

kσ zl =
∑

n

ησ
nMln(bn + b†n), (12)
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TABLE I. Symbols used in writing the effective master equation

for the σ ions [Eq. (10)].

Symbol Description Expression

δR Effective detuning (�1 + |g1|2
4�1

) − (�2 + |g2|2
4�2

)

�R Effective Rabi frequency
g1g∗

2

4
( 1

�1
+ 1

�2
)

� Average detuning �1+�2

2

Ŵ31 Effective spontaneous emission Ŵ1
|g2|2
4�2

Ŵ13 Effective incoherent repumping Ŵ2
|g1|2
4�2

Ŵd Effective dephasing Ŵ1
|g1|2
4�2 + Ŵ2

|g2|2
4�2

where the quantity ησ
n = kσ

√

h̄
2mσ ωn

is the Lamb-Dicke param-

eter for the normal mode n.

In the Lamb-Dicke regime (〈(kσ zl)
2〉1/2 ≪ 1), the effective

Rabi frequency �R,l can be expanded up to first order as

�R,l(zl) ≈ �0
R + i�0

R

∑

n

ησ
nMln(bn + b†n). (13)

The Raman lasers are now tuned to the red sideband [23] by

adjusting the effective detuning δR . If |�0
R| ≪ |δR| ∼ ωn, the

contributions from the carrier and blue sideband interactions

can be neglected, as the coherences associated with these

processes are O(�0
R/δR) and O(�0

Rησ
n /δR), respectively. The

effective Hamiltonian in Eq. (10) is approximately

H eff ≈ −1

2
δR

∑

l

σ z
l +

∑

n

ωnb
†
nbn

+
∑

l

∑

n

(Flnσ
+
l bn + H.c.), (14)

where Fln = i�0
Rησ

nMln/2 is the effective coupling strength

for a Jaynes-Cummings-type interaction between ion l and

normal mode n. We have included the self-energy terms for the

normal modes, since the master equation (10) now describes

the combined system of σ ions and the normal modes. Note that

Fln is smaller than the effective Rabi frequency �0
R by a factor

ησ
nMln. This is the reason why the (usually) small dissipative

processes arising from the stimulated Raman process could be

important in our study.

C. Effective spin-spin model for σ ions

In Sec. II B, we obtained the effective dynamics for the

interaction of the σ ions with the Raman lasers. The σ

ions, henceforth treated as effective spin-1/2 systems, interact

with the normal modes through a Jaynes-Cummings-type

interaction. Earlier, in Sec. II A, the Doppler cooling of the

τ ions was used to derive an effective damping for the normal

modes. In this section, we proceed by describing the interaction

of the σ ions with these damped set of normal modes.

The master equation for the interaction of the σ ions with

the damped set of normal modes is given by

ρ̇σ,ph = −i[Hσ,ph,ρσ,ph] +
∑

n

κn(n̄n + 1)

2
D[bn]ρσ,ph

+
∑

n

κnn̄n

2
D[b†n]ρσ,ph, (15)

where

Hσ,ph = −1

2

∑

l

δRσ z
l +

∑

n

ω′
nb

†
nbn

+
∑

l

∑

n

(Flnσ
+
l bn + H.c.). (16)

Here, ρσ,ph is the density matrix describing the σ spins and

the normal modes.

It is convenient to first transform to an interaction pic-

ture with H0 = −δR( 1
2

∑

l σ
z
l + ∑

n b
†
nbn). The Hamiltonian

appearing in Eq. (15) in this interaction picture is

HI =
∑

n

δ̃nb
†
nbn +

∑

l

∑

n

(Flnσ
+
l bn + H.c.), (17)

where δ̃n = ω′
n + δR is the effective detuning of the normal

mode n. We assume that the Raman laser beams are tuned

very close to the highest frequency mode, which we take to be

the center-of-mass (COM) mode, so that δR ≈ −ωCOM. As a

result, |δ̃n| is very small for the COM mode and increases with

decreasing mode frequency.

The Liouvillian in Eq. (15) can be split into a term LR

acting on the reservoir of normal modes and a term LSR that

couples the system of σ spins with this reservoir:

ρ̇σ,ph = LRρσ,ph + LSRρσ,ph, where

LRρσ,ph = −i

[

∑

n

δ̃nb
†
nbn,ρσ,ph

]

+
∑

n

κn(n̄n + 1)

2
D[bn]ρσ,ph

+
∑

n

κnn̄n

2
D[b†n]ρσ,ph,

LSRρσ,ph = −i

[

∑

l

∑

n

(Flnσ
+
l bn + H.c.),ρσ,ph

]

. (18)

The spin-spin interactions are mediated predominantly by

the nearly resonant COM mode. If the damping rate κCOM of

the COM mode is large compared to the collectively enhanced

spontaneous emission rate NσŴCOM(1 + n̄COM), with ŴCOM =
F2

COM/κCOM, we can obtain an effective master equation for

the spin dynamics using second-order perturbation theory and

a Markov approximation. The details of this procedure, and

an explanation for the validity condition mentioned above are

presented in Appendix C. The off-resonant modes are detuned

by δ̃n > κCOM, ensuring the Markov approximation can be

used for the off-resonant modes as well while studying the

system on time scales t ≫ κCOM.

The damping of the normal modes leads to dissipation of

energy from the system. To maintain steady state, energy is

replenished by continuous incoherent repumping of the σ spins

at a rate w. This can be achieved by driving the |1〉 state to

an excited state |a〉, which then rapidly decays to |3〉. The

effective master equation for the density matrix μσ of the σ

spins, interacting with a damped set of normal modes and
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being incoherently repumped is given by

μ̇σ = −i
[

H eff
σ ,μσ

]

+
∑

l,m

Ŵ−
lm(2σ−

m μσ σ+
l − σ+

l σ−
m μσ − μσσ+

l σ−
m )

+
∑

l,m

Ŵ+
lm(2σ+

l μσ σ−
m − σ−

m σ+
l μσ − μσσ−

m σ+
l )

+ Ŵ31

2

∑

l

D[σ−
l ]μσ +

(

w + Ŵ13

2

)

∑

l

D[σ+
l ]μσ

+ Ŵd

8

∑

l

D
[

σ z
l

]

μσ , (19)

where

H eff
σ = 1

2

∑

l

Blσ
z
l +

∑

l,m

l �= m

Jlmσ+
l σ−

m . (20)

The expressions for the coefficients introduced in Eq. (19)

are as follows [20]:

Bl = −
∑

n

|Fln|2
κ2

n

4
+ δ̃2

n

δ̃n(1 + 2n̄n),

Jlm = −
∑

n

FlnF
∗
mn

κ2
n

4
+ δ̃2

n

δ̃n,

Ŵ−
lm =

∑

n

FlnF
∗
mn

κ2
n

4
+ δ̃2

n

κn

2
(1 + n̄n),

Ŵ+
lm =

∑

n

FlnF
∗
mn

κ2
n

4
+ δ̃2

n

κn

2
n̄n. (21)

It is useful to gain some physical insight into the

terms present in the master equation (19). The terms
∑

l,m Ŵ−
l,m(2σ−

m μσσ+
l − · · · ) and

∑

l,m Ŵ+
l,m(2σ+

l μσσ−
m − · · · )

describe collective emission and collective absorption of

the spins, respectively. The emission is stronger than the

absorption when the modes are continuously cooled; this is

reflected in the expressions for Ŵ−
l,m,Ŵ+

l,m in Eq. (21). The

terms of the form D[σ−
l ]μσ , D[σ+

l ]μσ , and D[σ z
l ]μσ describe

spontaneous emission, incoherent repumping, and dephasing,

respectively. The Hamiltonian terms arise because of couplings

mediated by the off-resonant normal modes; note that the ex-

pressions for Bl and Jl,m vanish when the detunings of all the

modes are zero. The Hamiltonian terms comprise an effective

magnetic field Bl for each spin, as well as pairwise spin-spin

interactions which swap the excitation between the spins.

Equation (19) reveals that the ion trap model has the key

ingredients required to capture steady-state superradiance:

collective emission and incoherent repumping. In addition, the

ion trap model also replicates the spontaneous emission and de-

phasing processes that may arise with neutral atoms in a cavity.

There are two important differences between the steady-

state superradiance models in an ion trap and in a cavity. First,

the ion trap model also has a collective absorption process,

which is present because of the nonzero temperature set by the

Doppler cooling. Further, there are Hamiltonian interactions

that are mediated by the off-resonant normal modes. This

feature is absent in the cavity model where it is usually a

good approximation to consider just a single optical mode. In

spite of this, the qualitative features of the dynamics in the

ion trap model are the same as in the cavity model, as we

demonstrate in the next section.

III. A MODEL SYSTEM

A. Trap, ions, and laser configurations

We first set the stage by considering a concrete example

of an ion trap system. We consider two species of ions,
24Mg+ and 25Mg+, loaded in a Penning trap. The Penning trap

allows for controlling large numbers of ions, and also gives

a well-separated center-of-mass (COM) mode [28] (tens of

kilohertz higher than subsequent mode) that makes it possible

to mediate superradiant interactions predominantly through a

single bosonic mode, as in the cavity case.

Penning traps employ static electric fields and a strong

uniform magnetic field �B = Bẑ to confine ions [15]. The

static electric fields are generated by applying potentials to

electrodes with a common symmetry axis that is aligned with

the magnetic field (ẑ) axis. The electric fields provide harmonic

confinement along the z axis characterized by a transverse

frequency ωCOM [this is the frequency of the center-of-mass

(COM) mode, which is also the highest frequency mode].

The combination of the electric and magnetic fields leads to
�E × �B drift of the ions around the z axis. This rotation pro-

vides the necessary radial confinement. Additional segmented

electrodes can be used to apply a rotating potential (“rotating

wall”), and the rotation of the ions can be phase locked to

this “rotating wall” potential, lending stability to the system.

For sufficiently weak radial confinement, the ions form a 2D

planar crystal with a triangular lattice, as indicated in Fig. 1.

For our model parameters, we set the transverse frequency

ωCOM/2π = 2 MHz, and the lattice spacing between adjacent

ions to be a = 10 μm. This is possible with a trap magnetic

field of B ≈ 5 T.

The centrifugal force brought about by the rotation, causing

the heavier ions to move outwards, enables separating the two

species for different functions of the system. The 24Mg+ ions,

to be used for Doppler cooling (τ ions), are located in the

center, while the 25Mg+ ions, to be used as effective spin-1/2

systems (σ ions), form hexagonal rings around the inner core

of cooling ions. The actual equilibrium configuration of ions

is not a perfect triangular lattice, as the boundary becomes

progressively circular with increasing crystal size, and the

interion spacing increases slightly for the outer ions. Neverthe-

less, we use an idealized configuration (see Table II) wherein

the ions form a regular triangular lattice. We have verified that

the trap parameters can be tuned to provide an equilibrium

configuration whose normal mode spectrum is consistent with

the spectrum of our ideal lattice for modes close to, and

including, the COM mode. Since the spin-spin interactions are

primarily mediated by the COM mode, and the dominant off-

resonant contributions are from the modes close to the COM

mode, our ideal lattice is a good approximation for this study.

In the high magnetic field regime of the Penning trap, the

nuclear spin I essentially decouples from the electronic spin

J , and {J,mJ } are good quantum numbers to describe the state
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TABLE II. Summary of important parameters for a numerical simulation, for a system consisting of Nσ = 124 and Nτ = 93 ions (giving

a total of N = 217 ions). The table also shows the ion positions used for numerical simulation.

1. Trap

Input parameters

a. System size (Nσ ,N ) (124,217)

b. Lattice spacing 10 μm

c. COM mode frequency 2 MHz

d. Ion positions (orange, σ ; blue, τ )

Derived parameters

a. Other normal modes Diagonalize potential energy matrix for above geometry

2. τ ions

Input parameters

a. Upper level decay rate Ŵτ 41.4 (2π × MHz)

b. Transition wavelength 280.3 (nm)

c. Cooling laser detuning �τ −Ŵτ/2

d. Cooling laser Rabi freq. �τ 10 (2π × MHz)

Derived parameters

a. Cooling rate κCOM 5.1(2π × kHz)

b. Mean occupation n̄COM 4.7

3. σ ions

Input parameters

a. Raman beams g1 = g2 44.7 (2π × MHz)

b. Average detuning � 230 (2π × GHz)

c. Difference detuning δR −ω′
COM

d. Lamb-Dicke parameter ηCOM (sets difference wave vector |kσ |) 0.1

e. Scattering from |2〉: Ŵ1, Ŵ2 27.27,13.63 (2π × MHz)

f. Repump w variable; 0.05–1.0 Nσ Ŵc

Derived parameters

a. Coupling constants Bl , Jlm, Ŵ±
lm Calculate from Eq. (21)

b. Net collective emission rate Ŵc 0.84 (2π × Hz)

c. Spontaneous Raman Ŵ13, Ŵ31, Ŵd 0.12,0.24,0.36 (2π × Hz)

of the ions. The level structure of these ions, as well as the laser

configurations to be used are shown in Fig. 4.

1. 24Mg+ (τ ions)

A standing-wave cooling laser (σ− polarization) is used

to drive the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ = −3/2)

transition (|g〉 ↔ |e〉) which has a separation of ∼280.3 nm.

The upper level decays at a rate Ŵτ/2π ≈ 41.4 MHz back

to the lower level, thereby providing a cycling transition for

Doppler cooling. The cooling laser has a detuning �τ =
−Ŵτ/2 to obtain fast cooling rates. Using a Rabi frequency

of �τ/2π = 10 MHz gives a cooling rate of κCOM/2π ∼ 5–6

kHz and a mean occupation n̄COM ≈ 4.7 for the COM mode.

2. 25Mg+ (σ ions)

Two Raman beams (Rabi frequencies |g1|/2π =
|g2|/2π ≈ 44.7 MHz), with π and σ+ polarizations, re-

spectively, couple the 3s 2S1/2(mJ = +1/2) (|3〉) and the

3s 2S1/2(mJ = −1/2) (|1〉) levels to the 3s 2P1/2(mJ =
+1/2) (|2〉) level in a far detuned regime (� ≈ 230 GHz).

Their difference detunings are chosen such that δR ≈ −ω′
COM,

where ω′
COM is the frequency of the COM mode, slightly

shifted in the presence of the Doppler cooling. The Raman

beams are oriented such that the Lamb-Dicke parameter for

the COM mode is ησ
COM ≈ 0.1. A repump laser (σ+ po-

larization) drives the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ =
+1/2) transition (|1〉 ↔ |a〉), and the upper level rapidly

decays to |1〉 and |3〉 with a relative branching ratio χ of

0.5. Here, χ is the ratio of the decay rate back to the level |1〉
and the decay rate to the level |3〉. To illustrate the important

physics, the branching back to the initial state will be ignored

initially; however, we will discuss its effects subsequently.

We note here that the Raman beams resonantly tuned to

interact with the 25Mg+ ions will not resonantly interact with

the 24Mg+ ions; the 25Mg+ ions have a nonzero nuclear spin
�I leading to a hyperfine perturbation AmImJ that changes

the level spacing of the effective two-level system by a few

gigahertz [29].

B. Results from numerical simulation

In a cavity system, steady-state superradiance can be

observed experimentally by measuring the intensity (photons)

and phase properties of the output light from the cavity [3].

The corresponding observables in an ion trap are the intensity

(phonons) and oscillation phase of the COM mode. While

in principle measurable [31,32], factors like the background
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FIG. 4. Level structure of 24Mg+ and 25Mg+ ions in high field

[29,30]. The hyperfine shifts between the two species are not

shown here. The laser configurations to be used are also indicated.

The repump laser drives the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ =
+1/2) transition in 25Mg+, and the upper state rapidly decays to

3s 2S1/2(mJ = −1/2) and 3s 2S1/2(mJ = +1/2) with branching ratios

of 1/3 and 2/3, respectively.

phonons from Doppler cooling have to be carefully considered

before embarking on such measurements. Standard techniques

in ion traps offer convenient ways to directly study the spin de-

grees of freedom. Steady-state superradiance is characterized

by the development of nonzero steady-state spin-spin correla-

tions, leading to the formation of a giant collective spin which

behaves very differently compared to uncorrelated spins. It is

this aspect of superradiance that we study numerically and

propose techniques for probing via experiments.

We define an ensemble-averaged (EA) rate Ŵc =
(2/N2

σ )
∑

l,m(Ŵ−
lm − Ŵ+

lm), which plays an analogous role to

the net single-atom emission rate into the cavity mode in

the superradiant laser [2]. The strength of the Raman beams

have been chosen such that the nearly resonant COM mode

is strongly damped compared to the collectively enhanced

spontaneous emission rate, i.e., κCOM ≫ Nσ Ŵc(1 + n̄COM).

Steady-state superradiance is expected in a regime where the

repump strength w � NσŴc [2]. We are interested in the col-

lective behavior of a large number of ions; however, the exact

solution is near impossible to compute since the density matrix

lives in a 4Nσ dimensional Hilbert space, limiting computation

of exact solutions of the master equation to Nσ � 10. We use

an approximate technique using c-number Langevin equations

to analyze this problem. This involves writing the quantum

Langevin equations for the spin operators σ±
l ,σ z

l using the

master equation (19), obtaining the noise correlations using the

Einstein relations [33], and finally making a correspondence

between quantum operators and classical c numbers in order

to obtain c-number Langevin equations. This is elaborated

in Appendix D. Table II gives the important parameters for

FIG. 5. Steady-state (a) inversion and (b) spin-spin correlation as

a function of repump strength for three different system sizes (SS)

(Nσ , N ). The corresponding values for a minimal cavity model with

Nσ = 40 atoms are also plotted. As the system size increases, the

inversion and correlation in the ion trap case become similar to the

cavity case.

numerical simulation of a system comprising Nσ = 124 and

Nτ = 93 ions.

1. Steady-state inversion and spin-spin correlation

In this section, we summarize numerical results for the

steady-state inversion and spin-spin correlations for different

system sizes. We then compare these results with the case of

steady-state superradiance in a cavity.

The system size (SS) can be specified using the notation

(Nσ , N ), where N = Nσ + Nτ . An increase in Nσ is accompa-

nied by an increase in Nτ , because for the same laser intensity,

more coolant ions are required to provide fast cooling rates

when a larger number of ions are present. We will use the

notation 〈· · · 〉E to denote expectation values that are averaged

over the entire ensemble of spins. Figure 5 shows the steady-

state EA inversion and spin-spin correlation (〈σ+
i σ−

j 〉E)2 for

2In steady state, 〈σ±
i 〉 = 0 for all spins i. Therefore, the correlation

〈σ+
i σ−

j 〉 − 〈σ+
i 〉〈σ−

j 〉 for every pair i,j of spins is simply 〈σ+
i σ−

j 〉.
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three different system sizes: (i) (10, 19), (ii) (48, 91), and

(iii) (124, 217). In a minimal cavity model that accounts for

only collective emission and incoherent repumping [21], the

steady-state values do not change significantly for Nσ � 30

atoms. The inversion and correlation in the cavity case for

Nσ = 40 atoms are shown for comparison. As the system

size increases, both the inversion and correlation for the

ion-trap system become similar to the cavity case [21]: for

large Nσ , the inversion grows monotonically with w, and is

approximately 1/2 at w = 0.5Nσ Ŵc (collective Bloch vector

is halfway between equator and North Pole). The correlation

increases with w, reaches a maximum around w = 0.5Nσ Ŵc,

and then decreases with further increase in w. The development

of steady-state pairwise spin-spin correlations implies the

phase locking of spins (synchronization), which is a signature

of steady-state superradiance. It is reasonable to expect that

the ion trap system gives results similar to the zero temperature

minimal cavity model as the system size increases; the

corrections to the inversion and correlation, due primarily to a

nonzero temperature set by n̄COM, scale as n̄COM/Nσ . This can

be seen by estimating the steady-state values by writing the

equations of motion for these expectation values and closing

the set of equations by performing a cumulant approximation

as was done in Refs. [2,19].

2. Experimental access: Ramsey fringes

In order to observe this spin synchronization experimen-

tally, a Ramsey pulse sequence [or separated-oscillatory field

experiment; see Fig. 6(a)] [34] could be used. For short

precession intervals, we show that spin synchronization causes

the Ramsey fringes to decay at a rate slower than that expected

from the incoherent repumping applied to the spins. For long

precession intervals, after the fringes have decayed away,

we show that spin synchronization can be detected through

measurements of the population variance.

In a traditional Ramsey sequence, the spins initially in

the ground state (South Pole of Bloch sphere), are brought

to a uniform superposition of ground and excited states

(equator) by applying a π/2 pulse about the x axis. In the

frame of the initial laser, the spins then precess around the

z axis at a rate set by the detuning of the laser, for an

interrogation period T . Finally, a second π/2 pulse rotates

the spin about the x axis and the population is read out using

resonance fluorescence. The result is a sinusoidal variation

(“fringe”) of the population, with the amplitude damped by

incoherent processes such as spontaneous emission, incoherent

repumping, and/or dephasing.

Here, after the initial π/2 pulse, we intend to allow the

σ spins to interact with the damped set of normal modes

during the interrogation period, while continuously repumping

the spins incoherently at a rate w [19]. This is achieved by

continuous Doppler cooling of the τ ions, and applying Raman

and repump beams to the σ spins, during the interrogation

period. Finally, the second π/2 pulse is applied and the

population is read out. In the presence of only the repump,

the amplitude of the fringe decays at a rate w/2. However,

the damped COM mode mediates phase locking of the spins,

that leads to a collective spin that is robust against individual

ion incoherent processes. After a fast initial transient during

FIG. 6. (a) Ramsey pulse sequence to probe the spin synchro-

nization. During the interrogation time, the σ ions interact with a

heavily damped normal mode while being continuously repumped.

(b) Decay of the Ramsey fringe envelope for uncorrelated ions and a

system of correlated ions with SS (124, 217) and w = Nσ Ŵc/2. Once

the σ spins have phase locked, the Ramsey fringe decays at a slower

rate than when the spins are uncorrelated. (Inset) Fringe decay as a

function of time for three different system sizes for w = Nσ Ŵc/2.

which the spins phase lock, the fringe decays at a slower rate,

a rate that is set by the phase diffusion of this collective spin.

The pairwise spin-spin interactions [O(N2) interactions] lead

to phase locking of the spins, while the self-interactions of

the spins [O(N ) interactions] are phase-destroying processes

that result in phase diffusion. Figure 6(b) compares the fringe

decays for uncorrelated ions and correlated ions. The inset

shows the normalized Ramsey fringe amplitude for three

different system sizes.

Figure 7(a) shows the decay rate of the Ramsey fringe

envelope as a function of repump strength for SS (124, 217).

The collective spin clearly decays at a slower rate compared

to the case when only repumping is present, indicating phase

locking of the spins.

In contrast to simple repumping schemes (Fig. 3), the

excited state |a〉 does not rapidly decay to |3〉 alone in

realistic repumping schemes. A fraction of the population in

|a〉 also decays back to the initial state |1〉, with a relative

branching ratio χ that gives the ratio of population transfer to

|1〉 and |3〉. The effect of this is to introduce an additional

dephasing Ŵw = χw, where w is the repumping strength.

This can be accounted for by setting Ŵd → Ŵd + Ŵw in the

master equation (19). The decay rate for various relative

branching ratios is shown in Fig. 7(b) for SS (124, 217) and

w = 0.5Nσ Ŵc. The dephasing due to branching scales with the

rate of synchronization, which is set by the repump strength w.
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FIG. 7. (a) Decay rate of the Ramsey fringe envelope (dots) as

a function of repump strength for SS (124, 217). The solid line

shows the decay rate if only repumping is present. (b) Decay rate of

the Ramsey fringe envelope (dots) as a function of the relative

branching ratio for SS (124, 217) and w = Nσ Ŵc/2. The solid line

shows the decay rate if only repumping (with branching) is present.

The repumping scheme proposed in this paper (see Fig. 4) with the
25Mg+ ions has a relative branching ratio of 0.5, and is indicated by

a green triangle.

Despite this, the phase locking of the spins still ensures that

the fringe amplitude decays slower compared to the situation

when only repumping (with branching) is present.

In the cavity model, the plot of decay rate vs repump

strength for reasonably large system sizes (Nσ � 40) is

approximately the same, when the repump strength is in units

of Nσ Ŵc. However, the constant Ŵc is independent of Nσ in

the cavity case. In the ion-trap system, the spin-spin coupling

is predominantly mediated by the single nearly resonant COM

mode, although a total of N modes are available. Hence, the

coupling of each spin to the COM mode scales as 1/
√

N , and

hence Ŵc [see Eq. (21)] decreases as N increases. As a result,

when the decay rate is measured in absolute units, say, hertz,

for example, the decay rate decreases as N increases. This is

demonstrated in Fig. 8 for SS (i) (48, 91), (ii) (94, 169), and

(iii) (124, 217).

FIG. 8. Decay rate of the Ramsey fringe envelope (dots) as a

function of repump strength for three different system sizes. The

fringes persist for longer with increasing N .

The variance of the population measurement at the end of

the Ramsey sequence gives information about the spin-spin

correlations present in the system. Using J x,J y,J z to denote

the components of the collective spin, we note that the variance

of the total inversion (�J z)2 after the second π/2 pulse in

the Ramsey sequence is just (�J y)2 before that pulse. Before

the second π/2 pulse, the variance (�J y)2 can be expressed

as

(�J y)2 = Nσ

4
+ Nσ (Nσ − 1)

2
(〈σ+

i σ−
j 〉E − Re〈σ+

i σ+
j 〉E)

−N2
σ (Im〈σ+

i 〉E)2. (22)

The quantities Re〈σ+
i σ+

j 〉E and Im〈σ+
i 〉E are zero once the

fringe envelope has decayed to zero. Thus, the steady-state

variance (�J z)2 ((�J y)2 before the second π/2 pulse) scales

as N2
σ 〈σ+

i σ−
j 〉E (Nσ ≫ 1) giving a measure of the nonzero

steady-state spin-spin correlations. Experimentally, this corre-

sponds to a situation where the Ramsey fringe amplitude has

decayed to zero but the variance of the population inversion

readout is significantly larger (N2
σ scaling) than what we would

expect for uncorrelated spins, as shown in Fig. 9. This means

that, although the collective spin is diffusing around leading to

complete decay of the Ramsey fringe amplitude, the relative

directions of each pair of spins remains fixed, as signaled by

the nonzero steady-state spin-spin correlations. Further, the N2
σ

scaling shows the all-to-all nature of the spin-spin interactions.

The variance could be a measurable quantity even when the

repumping has a nonzero relative branching ratio: The inset of

Fig. 9 shows the steady-state variance as a function of relative

branching ratio for SS (124, 217) and w = NσŴc/2.

3. Potential advantage of sub-Doppler cooling

Our current design uses Doppler cooling to provide a

heavily damped COM mode that can mediate spin-spin

interactions. In a minimal model, we can ignore the coupling

of the spins to all the modes other than the resonant COM

mode. Further ignoring spontaneous emission and dephasing,
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FIG. 9. Steady-state variance of inversion as a function of repump

strength w for SS (124, 217) at the end of the Ramsey pulse sequence,

normalized to the projection noise for uncorrelated ions (Nσ /4).

(Inset) Normalized steady-state variance of inversion as a function

of relative branching ratio χ for SS (124, 217) and w = Nσ Ŵc/2. The

repumping scheme proposed in this paper (see Fig. 4) with the 25Mg+

ions has a relative branching ratio of 0.5, and is indicated by a green

triangle.

this minimal model is described by the master equation,

μ̇σ = Ŵc

2
(n̄COM + 1)D[J−]μσ

+ Ŵc

2
n̄COMD[J+]μσ + w

2

∑

l

D[σ+
l ]μσ , (23)

where J± = ∑

l σ
±
l are ladder operators for the collective

spin. It is instructive to study the change in the decay rate as

n̄COM is changed. We note that this model is invariant under

the permutation of spins. We compute exact decay rates of the

Ramsey fringes for different values of n̄COM using a numerical

method that exploits the SU(4) symmetry of spin systems

that obey permutation symmetry [35]. We summarize these

results in Fig. 10(a) for SS (124, 217) and w = NσŴc/2. The

decay rate can be as low as Ŵc if the COM mode is cooled

to n̄COM ≈ 0. With Doppler cooling, our model system has

n̄COM ≈ 4.7, and this gives us a decay rate around 10Ŵc, an

order of magnitude higher than what is achievable. Clearly,

sub-Doppler cooling techniques [36–39] could be used to

observe longer lasting fringes.

Spin synchronization mediated by a sub-Doppler cooled

normal mode, and with a repumping scheme that has a

negligible relative branching ratio, can improve metrology

with ion traps. With uncorrelated ions that have 1/T1 (pop-

ulation decay) and 1/T2 (dephasing) rates, the Ramsey fringe

envelope decays at a rate Ŵs = (T −1
1 + T −1

2 )/2. However, with

synchronized ions, the Ramsey fringe envelope decays slower

than in the case of uncorrelated ions in the regime where

Ŵc ≪ Ŵs ≪ w [19]. The synchronization effect causes the

collective spin to be robust against individual ion decoherence

processes. This is illustrated in Fig. 10(b) for the minimal

model considered in Eq. (23) with n̄COM = 0, and with

additional spontaneous emission (Ŵsp = 1/T1) and dephasing

(Ŵd = 1/T2) processes for the individual ions.

FIG. 10. (a) Decay rate of the Ramsey fringe envelope as a

function of the mean occupation n̄COM of the center-of-mass (COM)

mode for Nσ = 124 ions. The rates shown here are calculated using

the SU(4) method for a minimal model of a single mode (COM)

interacting with the σ ions [Eq. (23)]. The Doppler cooling scheme

proposed is shown by a green triangle. (b) Decay rate of the Ramsey

fringe envelope as a function of repump strength w for Nσ = 124

ions. The minimal model of Eq. (23) is used with n̄COM = 0, but with

additional spontaneous emission and dephasing processes for the

individual ions (Ŵsp = Ŵd = 5Ŵc). The decay rate for uncorrelated

ions is shown by the horizontal line (λ = 5Ŵc). Synchronization can

prolong visibility of Ramsey fringes.

IV. CONCLUSION

We have presented and numerically analyzed a model of

steady-state spin synchronization in an ion trap, where the

synchronization is mediated by a heavily damped normal mode

of vibration. This is achieved by mapping the dynamics of

cavity steady-state superradiance onto an ion-trap system by

exploiting the overarching similarity of an optical cavity mode

and a normal mode of vibration.

We have considered a model system of two species of

ions in a Penning trap, although the present scheme can

also be implemented with 1D or 2D RF traps that can trap

a mesoscopic number (�20) of ions. As the system size

increases, the steady-state spin-spin correlations in the ion
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trap are similar to that in the cavity case, since the effects of a

nonzero temperature due to the Doppler cooling are negated.

We have proposed an experimental scheme using a Ramsey

pulse sequence that can be used to observe features of the

steady-state collective spin that develops as a result of the

synchronization. The Ramsey fringes persist longer when

the spins are synchronized, with a lower decay rate than we

expect from the incoherent repumping. Further, the variance

of the population readout at the end of the Ramsey sequence

scales as N2
σ 〈σ+

i σ−
j 〉E , providing a straightforward means for

documenting spin-spin correlation and the all-to-all nature of

the coupling. These signatures of spin synchronization persist

even when the repumping is imperfect and has a nonzero

branching ratio back to the initial state. We also show that

the Ramsey fringes decay slower with increasing ion number

N since the rate Ŵc decreases with increasing N . In the cavity

case, this would be equivalent to a single-atom cooperativity

parameter in the superradiant laser that scales inversely with

the number of atoms.

We observe that a Ramsey fringe decay rate of around

10Ŵc, achieved with Doppler cooling (n̄COM ≈ 4.7), can be

as low as ∼ Ŵc if the ions are cooled to their zero-point

motion (n̄COM ≈ 0). An ensemble of spins synchronized via

this scheme can give fringes that decay slower than what the

decay and dephasing processes dictate for uncorrelated spins.

This also relies on using a repump scheme that has a negligible

branching ratio back to the initial state.

With this mapping, we can apply the unique tools that ion

traps offer to study spin synchronization from steady-state

superradiance. The ability to address single ions or specific

subsets of ions in a trap can greatly advance studies of synchro-

nization of two ensembles of ions that share the same damped

normal mode [40]. Ion traps could be used to explore quantum

phase transitions between synchronized and unsynchronized

phases, studying the build-up of correlations at the individual

spin level. Recently, a cooling scheme for atoms in cavities

that takes advantage of the collective interactions via a damped

cavity mode has been proposed [41]. It will be interesting to

see if there are analogies to this “supercooling” in ion trap

systems. From a broader perspective, studying steady-state

spin synchronization among tens or hundreds of ions is a

step towards exploiting the potential of ion traps to explore

driven-dissipative quantum many-body systems.
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APPENDIX A: DAMPING OF THE NORMAL MODES

For brevity, we will use the notation ρ ≡ ρτ,ph and μ ≡ μph

in this section.

In the Lamb-Dicke regime (〈(kzm)2〉1/2 ≪ 1), we can

expand the right-hand side of the master equation (1) in powers

of {ητ
n}. Up to second order in {ητ

n} we get

ρ̇ = (LS + LR + LSR)ρ, (A1)

where

LSρ = −i

[

∑

n

ωnb
†
nbn,ρ

]

,

LRρ = −i

[

−1

2
�τ

∑

m

τ z
m,ρ

]

+ Ŵ

2

∑

m

D[τ−
m ]ρ, and

LSRρ = L(1)
SRρ + L(2)

SRρ, (A2)

with

L(1)
SRρ = −i

[

�τ

2

∑

m

(kzm)(τ−
m + τ+

m ),ρ

]

, and

L(2)
SRρ = Ŵτ

2
〈u2〉

∑

m

τ−
m [2(kzm)ρ(kzm)

− (kzm)2ρ − ρ(kzm)2]τ+
m . (A3)

Here S denotes the system of normal modes, and R denotes

the reservoir of τ ions.

We first transform to an interaction picture with L0 = LS +
LR [42]. We then have

˙̃ρ = L̃SRρ̃ =
(

L̃(1)
SR + L̃(2)

SR

)

ρ̃, (A4)

where ρ̃ = e−(LS+LR )tρ and L̃SR = e−(LS+LR )tLSRe(LS+LR )t .

Integrating Eq. (A4) and substituting the formal solution of

ρ̃(t) back into Eq. (A4) gives (up to second order in {ητ
n}),

˙̃ρ = L̃(1)
SRρ̃(0) + L̃(2)

SRρ̃(0) +
∫ t

0

dt ′L̃(1)
SR(t)L̃(1)

SR(t ′)ρ̃(t ′).

(A5)

When the couplings {�τη
τ
n} ≪ Ŵτ , the τ ions serve as a

reservoir of ions in a steady state dictated by the reservoir

Liouvillian LR . In this case, the steady-state R0 is the ground

state of the τ ions, i.e., R0 = |g〉〈g|⊗Nτ . Starting from an initial

uncorrelated state ρ̃(0) = μ̃(0)R0, we then use a decorrelation

approximation to write ρ̃(t) ≈ μ̃(t)R0 for subsequent times,

and trace out the spin degrees of freedom of the τ ions:

˙̃μ = TrR
[

L̃(1)
SR(t)μ̃(0)R0

]

+ TrR
[

L̃(2)
SR(t)μ̃(0)R0

]

+
∫ t

0

dt ′TrR
[

L̃(1)
SR(t)L̃(1)

SR(t ′)μ̃(t ′)R0

]

. (A6)

The first term vanishes because 〈τ±
m 〉 = 0 in the ground

state, and the second term vanishes because 〈τ+
m τ−

m 〉 is zero in

the ground state.

The structure of L(1)
SR [Eq. (A2)] suggests that we need

to find the time evolution of the superoperators τ̃±
m ⊗ I and

I ⊗ (τ̃∓
m )T .

This notation for a superoperator is to be understood

as follows. Let A,B be two operators acting on a Hilbert

space spanned by |e〉,|g〉. Then the action of a superoperator
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L = A ⊗ (B)T on a vector in the corresponding Liouville

space, for, e.g., |λ〉〉 = |e〉〈g| is L|λ〉〉 = A|e〉〈g|B.

From L̃I = e−(LS+LR )tLI e
(LS+LR )t , we have

˙̃LI = [L̃I ,LR]. (A7)

This immediately gives the following complete set of

equations:

d

dt
τ̃−
m ⊗ I = −

(

Ŵτ

2
− i�τ

)

τ̃−
m ⊗ I,

d

dt
τ̃+
m ⊗ I =

(

Ŵτ

2
− i�τ

)

τ̃+
m ⊗ I + Ŵτ τ̃

z
m ⊗ (τ̃+

m )T ,

d

dt
τ̃ z
m ⊗ I = −2Ŵτ τ̃

−
m ⊗ (τ̃+

m )T . (A8)

The time evolution of the superoperators is then given by

τ̃−
m ⊗ I (t) = τ−

m ⊗ Ie−( Ŵτ
2

−i�τ )t ,

τ̃+
m ⊗ I (t) = τ+

m ⊗ Ie( Ŵτ
2

−i�τ )t + τ z
m ⊗ (τ+

m )T

×
(

e( Ŵτ
2

−i�τ )t − e−( Ŵτ
2

+i�τ )t
)

. (A9)

Hermitian conjugation of the above two equations gives the

time evolution of the other two superoperators.

The master equation can then be written as

˙̃μ = −
∑

m

∑

n

∑

k

(

�τ

2
ητ

nMmn

)(

�τ

2
ητ

kMmk

)

×
∫ t

0

dt ′

×
[

{b̃n(t) + b̃†n(t)}{b̃k(t ′) + b̃
†
k(t ′)}μ̃(t ′)e−( Ŵτ

2
−i�τ )(t−t ′)

−{b̃n(t) + b̃†n(t)}μ̃(t ′){b̃k(t ′) + b̃
†
k(t ′)}e−( Ŵτ

2
+i�τ )(t−t ′)

−{b̃k(t ′) + b̃
†
k(t ′)}μ̃(t ′){b̃n(t) + b̃†n(t)}e−( Ŵτ

2
−i�τ )(t−t ′)

+ μ̃(t ′){b̃k(t ′) + b̃
†
k(t ′)}{b̃n(t) + b̃†n(t)}e−( Ŵτ

2
+i�τ )(t−t ′)].

(A10)

The time evolution of the mode annihilation and creation

operators is given by b̃n(t) = bne
−iωnt and b̃

†
n(t) = b

†
ne

iωnt .

If μ̃(t ′) doesn’t change significantly on the time scale Ŵ−1
τ

for the decay of correlations in the reservoir of τ spins, we

can perform a Markov approximation and set μ̃(t ′) ≈ μ̃(t)

in Eq. (A10). This is reasonable since the damping rates of

the normal modes are of the order of
(�τ η

τ
n)2

Ŵτ
, and for laser

intensities such that �τη
τ
n ≪ Ŵτ , this implies

(�τ η
τ
n)2

Ŵτ
≪ Ŵτ .

Further, we can extend the upper limit of the integration to

∞ since for significant evolution of μ(t), we are interested in

t ≫ Ŵ−1
τ .

After performing the integration over χ = t − t ′ in

Eq. (A10), we encounter terms rotating with frequencies

ωn + ωk and ωn − ωk . The former terms are rapidly oscil-

lating, and can be dropped.

Performing the reverse transformation μ = eLS t μ̃ gives us

the master equation for the damping of the normal modes,

which accounts for the coupling between the modes as well:

d

dt
μ = −i

[

∑

n

ω′
nb

†
nbn,μ

]

+
∑

n

D−
n,n(2bnμb†n − b†nbnμ − μb†nbn)

+
∑

n

D+
n,n(2b†nμbn − bnb

†
nμ − μbnb

†
n)

− i
∑

n�=k

C−
k,n(bnμb

†
k − bkμb†n + b†nbkμ − μb

†
kbn)

− i
∑

n�=k

C+
k,n(b†nμbk − b

†
kμbn + bnb

†
kμ − μbkb

†
n)

×
∑

n�=k

D−
k,n(bnμb

†
k + bkμb†n − b†nbkμ − μb

†
kbn)

×
∑

n�=k

D+
k,n(b†nμbk + b

†
kμbn − bnb

†
kμ − μbkb

†
n).

(A11)

Here the coefficients are given by

ω′
n = ωn + R−

n,n(�τ + ωn) + R+
n,n(�τ − ωn),

C±
k,n = R±

k,n(�τ ∓ ωk),

D±
k,n = R±

k,n

Ŵτ

2
, where

R±
k,n =

∑

m

(

1
2
�τη

τ
nMmn

)(

1
2
�τη

τ
kMmk

)

Ŵ2
τ

4
+ (�τ ∓ ωn)2

. (A12)

The Doppler cooling introduces couplings between the

different modes, with the coupling strengths between two

modes decreasing as their frequency separation increases. The

result of such mode cross-coupling is to introduce an admixture

of other modes into the mode of interest, which in the exam-

ple we consider is the highest frequency center-of-mass

(COM) mode. The symmetric coupling of the COM mode

to the ions then deteriorates, but the essential physics still

remains the same. The situation is analogous to introducing

a random component in the positions of atoms relative to the

cavity standing wave in the superradiant laser. For simplicity,

we assume these mode cross-couplings to be small and neglect

them, use D±
n ≡ D±

n,n,R
±
n ≡ R±

n,n to simplify the notation,

and arrive at the master equation describing the damping of

individual normal modes [Eq. (4)].

APPENDIX B: SCHRIEFFER-WOLFF FORMALISM

FOR THE THREE-LEVEL σ IONS

The idea is to work in operator space, i.e., in the vector

space S spanned by the vectors |1〉〈1|,|1〉〈2|, . . . ,|3〉〈3|. The

Liouvillian describing the dynamics can be written as the sum

of a zeroth-order Liouvillian L0 and a perturbation V . Based

on the eigenvalues {λi} of L0, the space S can be partitioned

into a slow subspace, spanned by eigenvectors with eigenvalue

0, and a complementary fast subspace spanned by eigenvectors

with nonzero eigenvalue [26]. If the left and right eigenvectors

associated with an eigenvalue λi are 〈〈li | and |ri〉〉, respectively,

the projectors P and Q onto the slow and fast subspaces are

P =
∑

i:{λi }=0

|ri〉〉〈〈li |,

Q = 1 − P =
∑

i:{λi }�=0

|ri〉〉〈〈li |. (B1)
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TABLE III. Basis vectors in operator space S. The chosen zeroth-

order Liouvillian L0 is diagonal in the below basis. The eigenvalues

of L0 are given in the third column.

Notation Basis Eigenvalue

|A1〉〉 |1〉〈1| 0

|A2〉〉 |1〉〈2| −i�1

|A3〉〉 |1〉〈3| 0

|A4〉〉 |2〉〈1| i�1

|A5〉〉 |2〉〈2| 0

|A6〉〉 |2〉〈3| i�2

|A7〉〉 |3〉〈1| 0

|A8〉〉 |3〉〈2| −i�2

|A9〉〉 |3〉〈3| 0

Any superoperator A : S → S can now be represented as

A =
(

AP A−

A+ AQ

)

=
(

PAP PAQ

QAP QAQ

)

. (B2)

The perturbation V in general couples the slow and

fast subspaces. The Schrieffer-Wolff formalism provides a

systematic, order-by-order procedure to find the effective

Liouvillian Leff in the slow subspace that arises from this

coupling. Explicitly, at the first three orders of perturbation

theory,

Leff
1 = VP ,

Leff
2 = −V−L−1

0 V+,

Leff
3 = V−L−1

0 VQL−1
0 V+ − 1

2

{

VP ,V−L−2
0 V+}

+, (B3)

where {A,B}+ = AB + BA.

Table III gives the notation we adopt for the basis vectors

in S. We split the superoperator appearing in Eq. (8) into

a zeroth-order Liouvillian L0 and a perturbation V . L0 is

already diagonal in the chosen basis. The third column of

Table III gives the eigenvalues associated with L0 for each

of the bases. Then, the subspace spanned by the eigenvectors

with eigenvalue 0, i.e., {|A1〉〉,|A3〉〉,|A5〉〉,|A7〉〉,|A9〉〉} is the

slow subspace.

We also write the perturbation V explicitly as a matrix

acting on S. A better insight is obtained if we write vec-

tors and matrices in the following order of basis vectors:

|A1〉〉,|A3〉〉, . . . ,|A9〉〉,|A2〉〉, . . . ,|A8〉〉. In this representa-

tion, V is given by

V =
(

VP V−

V+ VQ

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 Ŵ1 0 0 i
g1

2
−i

g∗
1

2
0 0

0 −i(�1 − �2) 0 0 0 i
g2

2
0 −i

g∗
1

2
0

0 0 −(Ŵ1 + Ŵ2) 0 0 −i
g1

2
i

g∗
1

2
i

g∗
2

2
−i

g2

2

0 0 0 i(�1 − �2) 0 0 −i
g∗

2

2
0 i

g1

2

0 0 Ŵ2 0 0 0 0 −i
g∗

2

2
i

g2

2

i
g∗

1

2
i

g∗
2

2
−i

g∗
1

2
0 0 −Ŵ1+Ŵ2

2
0 0 0

−i
g1

2
0 i

g1

2
−i

g2

2
0 0 −Ŵ1+Ŵ2

2
0 0

0 −i
g1

2
i

g2

2
0 −i

g2

2
0 0 −Ŵ1+Ŵ2

2
0

0 0 −i
g∗

2

2
i

g∗
1

2
i

g∗
2

2
0 0 0 −Ŵ1+Ŵ2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B4)

The matrix has been partitioned to show the various blocks that make up the perturbation. Using Eq. (B3), we calculate

Leff = Leff
1 + Leff

2 + Leff
3 , which is the effective Liouvillian in the slow subspace. In terms of the symbols defined in Table I, the

effective Liouvillian Leff, correct up to O(
|g1,2|2
�2 ) is given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−Ŵ13 i �R

2
+ Ŵ1,×−Ŵ3,×

2
Ŵ1 − 2Ŵ11 − Ŵ31 −i

�∗
R

2
+ Ŵ∗

1,×−Ŵ∗
3,×

2
Ŵ31

i
�∗

R

2
− Ŵ∗

1,×+Ŵ∗
3,×

2
−iδR − Ŵ13+Ŵ31+Ŵ11+Ŵ33

2
−Ŵ∗

1,×+Ŵ∗
3,×

2
0 −i

�∗
R

2
− Ŵ∗

1,×+Ŵ∗
3,×

2

0 0
−(Ŵ1 + Ŵ2)+2Ŵ11 + Ŵ13

+Ŵ31 + 2Ŵ33

0 0

−i �R

2
− Ŵ1,×+Ŵ3,×

2
0 −Ŵ1,×+Ŵ3,×

2
iδR − Ŵ13+Ŵ31+Ŵ11+Ŵ33

2
i �R

2
− Ŵ1,×+Ŵ3,×

2

Ŵ13 −i �R

2
− Ŵ1,×−Ŵ3,×

2
Ŵ2 − Ŵ13 − 2Ŵ33 i

�∗
R

2
− Ŵ∗

1,×−Ŵ∗
3,×

2
−Ŵ31

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(B5)

Here, the quantities Ŵ1,× = Ŵ1
g1g

∗
2

4�2 and Ŵ3,× = Ŵ2
g1g

∗
2

4�2 . The

master equation for the σ ion in the slow space is then

μ̇ = Leffμ, and this is given in Eq. (10) for a collection of

σ ions.

There are two points of note here. First, if the

system starts within the {|1〉,|3〉} manifold spanned by

|A1〉〉,|A3〉〉,|A7〉〉, and |A9〉〉, then it stays within that man-

ifold. Then we do not need to consider the |A5〉〉 state.
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Secondly, the terms proportional to Ŵ1,× and Ŵ3,× give rise to

certain cross-terms. A typical cross-term in the master equation

appears as

Ŵ1,×
2

(−σ+μ − σ zμσ+). (B6)

We intend to couple the effective two-level system formed

by the σ ions to their external motion by tuning the Raman

lasers to the red vibrational sideband. In that case, the only

significant contributions to ion l from a term such as (B6) will

be of the approximate form,

1

2

Ŵ1

�

∑

n

Flnσ
+
l bnμ. (B7)

The spin-motion coupling strength in this term is a factor

of Ŵ
�

smaller than the coherent spin-motion coupling present

in the Hamiltonian terms. Subsequently, when we treat the

spin-motion coupling perturbatively in comparison with

the damping of the normal modes, the contribution from these

cross-terms will be Ŵ2

�2 smaller than the contribution from the

Hamiltonian terms. Hence we neglect these cross-terms while

writing down Eq. (10).

APPENDIX C: EFFECTIVE SPIN-SPIN MODEL:

INTERACTION OF σ SPINS WITH DAMPED

NORMAL MODES

We will use the notation μ ≡ μσ in this section. Starting

with Eq. (18), we first transform to an interaction picture with

L0 = LR . Following the steps outlined in the beginning of

Appendix A, we arrive at the following integro-differential

equation for the reduced density matrix μ(t) describing the σ

spins only:

μ̇(t) = TrR[L̃SR(t)μ(0)R0]

+
∫ t

0

dt ′TrR[L̃SR(t)L̃SR(t ′)μ(t ′)R0]. (C1)

Here, we have used a decorrelation approximation to write

ρ̃(t) ≈ μ(t)R0, where R0 is the steady-state density matrix for

the normal modes under the action of LR . Once again, we start

from an initial uncorrelated state: ρ(0) = μ(0)R0. Note that the

density matrix μ(t) and the σ -spin operators do not have over-

head tilde (∼) in this appendix sinceLS = 0 in the present case.

Under the action of LR , the steady-state density matrices of

each of the normal modes are thermal states. The first term on

the right-hand side of Eq. (C1) vanishes, since the expectation

values 〈bn〉,〈b†n〉 are zero in a thermal state. In order to evaluate

the second term, we need to find the time evolution of the super-

operators b̃n ⊗ I,b̃
†
n ⊗ I,I ⊗ (b̃n)T ,and I ⊗ (b̃

†
n)T . Following

the lines of the procedure we adopted in finding the time evolu-

tion of the superoperators τ̃−
m ⊗ I , etc., in Appendix A, we get

d

dt
b̃n ⊗ I (t) = −

(κn

2
(1 + 2n̄n) + iδ̃n

)

b̃n ⊗ I

+ κnn̄nI ⊗ (b̃n)T ,

d

dt
I ⊗ (b̃n)T =

(κn

2
(1 + 2n̄n) − iδ̃n

)

I ⊗ (b̃n)T

− κn(1 + n̄n)b̃n ⊗ I. (C2)

Solving the above pair of coupled differential equations, we

get

b̃n ⊗ I (t) = n̄n[I ⊗ (bn)T − bn ⊗ I ]e( κn
2

−iδ̃n)t

+ [(1 + n̄n)bn ⊗ I − n̄nI ⊗ (bn)T ]e−( κn
2

+iδ̃n)t ,

I ⊗ (b̃n)T (t) = (1 + n̄n)[I ⊗ (bn)T − bn ⊗ I ]e( κn
2

−iδ̃n)t

+ [(1 + n̄n)bn ⊗ I − n̄nI ⊗ (bn)T ]e−( κn
2

+iδ̃n)t .

(C3)

Hermitian conjugation of the above two equations gives

the time evolution of I ⊗ (b̃
†
n)T and b̃

†
n ⊗ I . Using the fact

that 〈b†nbn〉 = n̄n, we can now perform the trace over the

reservoir of normal modes in Eq. (C1) to arrive at an expression

involving intergrals over the σ -spin operators, μ(t ′) and

complex exponentials. As an example, we consider one of

the terms that occur in this expression:

−
∑

l,m,n

FlnF
∗
mn(1 + n̄n)

∫ t

0

dt ′σ+
l σ−

m μ(t ′)e−( κn
2

+iδ̃n)(t−t ′).

(C4)

We perform a Markov approximation by setting μ(t ′) ≈
μ(t). For significant evolution of μ(t), we are interested in

evolution over times that are large compared to the time

scales of the reservoir correlations. Only the upper limit of

integration in terms like (C4) contribute in this coarse-graining

procedure.

We then evaluate the simple time integrals over complex

exponentials and group the coherent and dissipative parts

separately. We then account for the incoherent Raman pro-

cesses and the incoherent repumping, and arrive at the effective

spin-spin model described by the master equation (19), which

is the starting point for our numerical analysis.

A note on the validity of approximations. To stop at second

order in perturbation theory, the time scale for the system-

reservoir interaction must be long compared to the reservoir

correlation time [43]. Further, the Markov approximation

requires that the time scale for significant evolution of the

system TS is long compared to the reservoir correlation time. In

a minimal model where the spin-spin interactions are mediated

only by the COM mode and the other modes are neglected,

the perturbation strength and fastest time scale for the σ

spins are determined by the collectively enhanced spontaneous

emission rate, given by NσŴCOM(1 + n̄COM), where ŴCOM =
F2

COM/κCOM. Since the correlation time for the COM mode

is set by κCOM, we require κCOM ≫ NσŴCOM(1 + n̄COM) �
TS for second-order perturbation theory and the Markov

approximation to be valid.

APPENDIX D: NUMERICAL SIMULATION USING

C-NUMBER LANGEVIN EQUATIONS

We start by writing the quantum Langevin equations (QLE)

for the spin operators σ x
i , σ

y

i , and σ z
i for a spin i from the master
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equation (19):

d

dt
σ x

i = Dx
i + F x

i

= −
{

Ŵ−
ii + Ŵ+

ii + Ŵ31

2
+ Ŵ13 + w

2
+ Ŵd

2

}

σ x
i − Biσ

y

i

+
∑

j �=i

(Ŵ−
ji − Ŵ+

ji)σ
z
i σ x

j +
∑

j �=i

Jjiσ
z
i σ

y

j + F x
i ,

d

dt
σ

y

i = D
y

i + F
y

i

= −
{

Ŵ−
ii + Ŵ+

ii + Ŵ31

2
+ Ŵ13 + w

2
+ Ŵd

2

}

σ
y

i + Biσ
x
i

+
∑

j �=i

(Ŵ−
ji − Ŵ+

ji)σ
z
i σ

y

j −
∑

j �=i

Jjiσ
z
i σ x

j + F
y

i ,

d

dt
σ z

i = Dz
i + F z

i

= −{2(Ŵ−
ii + Ŵ+

ii ) + Ŵ31 + Ŵ13 + w}σ z
i

+{Ŵ13 + w − [2(Ŵ−
ii − Ŵ+

ii ) + Ŵ31]}
−

∑

j �=i

(Ŵ−
ji − Ŵ+

ji)
(

σ x
i σ x

j + σ
y

i σ
y

j

)

−
∑

j �=i

Jji

(

σ x
i σ

y

j − σ
y

i σ x
j

)

+ F z
i . (D1)

Here, F x
i , F

y

i , and F z
i are operators that account for the

noise because of coupling to an external environment. These

noise operators are correlated according to

〈Fμ

i (t)F ν
j (t ′)〉 = 2〈Dμν

ij 〉δ(t − t ′), (D2)

where μ,ν = x,y,z and i,j are the spin indices. The gen-

eralized Einstein relation [33] can be used to determine the

correlation matrix elements 2〈Dμν

ij 〉:

2〈Dμν

ij 〉 = −〈σ i
μDj

ν 〉 − 〈Di
μσ j

ν 〉 + d

dt
〈σ i

μσ j
μ〉. (D3)

Next, we perform a quantum-classical correspondence by

associating a c number with each of the spin operators, i.e.,

σ x
i ↔ sx

i , σ
y

i ↔ s
y

i , and σ z
i ↔ sz

i . The equations of motion

for these c numbers are obtained from the QLEs (D1) by

replacing the quantum operators with their corresponding c

numbers. The quantum noise operators F
μ

i are replaced by

c-number noise terms F
μ

i .

We use symmetric correspondence to match the correlations

of the c-number noise terms F
μ

i with the correlations of the

quantum noise operators F
μ

i , i.e.,

〈Fμ

i (t)F ν
j (t ′)〉 = 2D

μν

ij δ(t − t ′) with

2D
μν

ij = 〈Dμν

ij 〉 + 〈Dνμ

ji 〉. (D4)

The elements of the correlation matrix 2D
μν

ij are summa-

rized in Eq. (D5).

2Dxx
ii = 2D

yy

ii = 2(Ŵ−
ii + Ŵ+

ii ) + Ŵ31 + (Ŵ13 + w) + Ŵd ,

2D
xy

ii = 0,

2Dzz
ii = 2[w + Ŵ13 + Ŵ31 + 2(Ŵ−

ii + Ŵ+
ii )]

+ 2[Ŵ31 + 2(Ŵ−
ii − Ŵ+

ii ) − (w + Ŵ13)]〈σ z
i 〉,

2Dxz
ii = [Ŵ31 + 2(Ŵ−

ii − Ŵ+
ii ) − (w + Ŵ13)]〈σ x

i 〉,
2D

yz

ii = [Ŵ31 + 2(Ŵ−
ii − Ŵ+

ii ) − (w + Ŵ13)]〈σ y

i 〉,
2Dxx

ij = 2D
yy

ij = 2(Ŵ−
ij + Ŵ+

ij )〈σ z
i σ z

j 〉,
2D

xy

ij = 0,

2Dzz
ij = 2(Ŵ−

ij + Ŵ+
ij )(〈σ x

i σ x
j 〉 + 〈σ y

i σ
y

j 〉),
2Dxz

ij = −2(Ŵ−
ij + Ŵ+

ij )〈σ z
i σ x

j 〉,
2D

yz

ij = −2(Ŵ−
ij + Ŵ+

ij )〈σ z
i σ

y

j 〉. (D5)

By construction, the diffusion matrix is symmetric, and

this property can be used to obtain the other elements. We

simulate the 3Nσ c-number Langevin equations subject to the

noise correlation matrix 2D with elements given by Eq. (D5).

Using vector notation, these stochastic differential equations

(SDEs) can be written as

d

dt
�s(t) = �f {�s(t)} + B(t)d �W, (D6)

where the {dWj } are independent Gaussian random variables

with zero mean and variance dt . The function �f accounts for

the drift part of the SDEs, while the matrix B(t) is given by

B =
√

2D = V
√

�V −1, where

2D = V �V −1
(D7)

is the transformation that diagonalizes 2D to the diagonal

matrix �. We use an explicit second-order weak scheme [44]

to numerically integrate these SDEs.
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