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Steady State Thermodynamics 
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A phenomenological framework corresponding to equilibrium thermodynamics is con

structed for steady states. All the key concepts including entropy are operationally defined. 

If a system is strictly linear, the resultant Gibbs relation justifies the postulated form in 

the extended irreversible thermodynamics. The resultant Maxwell's relations and stability 

criteria give various le Chatelier-Braun type qualitative predictions. A phenomenological 

fluctuation theory around steady states is also formulated. 

§1. Introduction 

We will construct a phenomenological framework (steady state thermodynamics 

or SST) to organize macroscopic phenomena in steady states away from equilibrium. 

We wish to accomplish the goal as operationally as possible. Due to the nature of 

the problem, we must carefully analyze many 'dry' ingredients. Therefore, to make 

the paper easy to read, its structure is made more explicit than the usual papers 

with numerous subheadings. 

Equilibrium statistical mechanics has its ultimate justification in its compati

bility with equilibrium thermodynamics. l) After all, Gibbs 2) looked for a statistical 

system compatible with equilibrium thermodynamics. Phenomenology must give an 

important insight into the underlying statistical framework. Furthermore, without 

thermodynamics, practical relevance of statistical mechanics should have been much 

less than actually is: most partition functions cannot be computed especially for 

complicated systems relevant to, e.g., chemical plant designs. 3) 

Existing approaches 

There have been attempts to extend thermodynamic framework to nonequi

librium states. 4) - 7) Jou and coworkers are establishing the extended irreversible 

thermodynamics. 8) There are also systems proposed by Eu, 9) Keizer, 10) etc. These 

contributions attempt to write down the generalized Gibbs relation and to formulate 

a general phenomenological framework applicable to (time-dependent) systems away 

from equilibrium. Anyone interested in nonequilibrium statistical frameworks must 

pay due attention to Landauer's criticism. ll) 

What is the difference between our approach and the existing ones? 

We study, for simplicity, only time-independent steady states. It is question

able to have a reasonably small phenomenological state space for arbitrary time

dependent phenomena. Generalized or nonequilibrium entropy has never been oper

ationally defined unambiguously. More generally speaking, we feel that operational 

approaches have been rare in non-equilibrium statistical physics. For example, in 
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30 Y. Oono and M. Paniconi 

order to introduce entropy operationally in equilibrium thermodynamics, the con

cept of adiabaticity is necessary. However, we have never seen any corresponding 

argument in nonequilibrium phenomenologies. We wish to introduce all the concepts 

and quantities operationally in our approach. 

Is 'thermodynamic formalism' relevant? 

The thermodynamic formalism for dynamical systems 13
) has been used to estab

lish a phenomenological framework, 14
), 

15
) but it is essentially a fluctuation theory 

around a given state, because large deviation theory 16
) does not generally compare 

two different dynamical systems (e.g., dynamical systems with different control pa

rameters). In contrast, the main aim of equilibrium thermodynamics is not to study 

fluctuations but to compare two different states under different values of control 

parameters, e.g., temperature, pressure, etc. Hence, the name 'thermodynamic for

malism' in the theory of dynamical systems is misleading. 

Outline of the paper 

In§ 2, we quickly survey the reasons why we believe there is a phenomenological 

framework for steady states. In § 3, we discuss the general form of the theoretical 

framework, and claim that we have only to look for a natural extension of equilibrium 

thermodynamics. In§ 4, we set up the state space for our phenomenological descrip

tion of steady states. The most crucial concept in equilibrium thermodynamics is 

adiabaticity. We need a corresponding concept for open systems. Section 5 prepares 

for the introduction of s-adiabaticity (steady adiabaticity). After these preparations, 

in § 6, main postulates of steady state phenomenology are given which correspond 

to the principles of equilibrium thermodynamics. In § 7, operational feasibility is 

summarized. Section 8 discusses some consequences of the stability criterion such as 

the nonequilibrium version of Le Chatelier-Braun's principle. Section 9 is the phe

nomenological fluctuation theory around steady states. Section 10 is for concluding 

remarks. 

§2. Possibility of phenomenology 

There are several reasons to believe that there is a "thermodynamic" (or macro

scopic phenomenological) framework for steady states. 

General empirical facts 

We know there are systems that eventually settle down to time-independent 

nonequilibrium states under constant conditions. In this paper, we focus our atten

tion to such time-independent cases. It is empirically likely that the final state will 

never return spontaneously to the initial state. This is reminiscent of the second law 

in equilibrium thermodynamics. 6) 

Large deviation theoretical consideration 

According to large deviation theoretical considerations, 16
), 

14
), 

17
) the most prob

able steady state is characterized by a variational principle. It is natural to interpret 
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Steady State Thermodynamics 31 

this variational principle as the stability criterion for the state derived from the ana

logue of the second law as in the ordinary thermodynamics. 

How plausible is the existence of nonequilibrium entropy? 

In a certain sense, the true equilibrium limit is a singular limit. For example, 

even if a slightest steady driving is applied to an isolated system, the system will be 

eventually red hot. However, if we can carefully remove the steadily produced heat 

due to dissipation (that we will call the house-keeping dissipation), then the state 

should not be very different from equilibrium (or at least there are many quantities 

that change continuously; recall that this is the fundamental assumption of linear 

response theory which seems to have been successful). Hence, it is not so outrageous 

to expect the extension of entropy level sets into nonequilibrium steady state space. 

Microscopic considerations: Invariant measure in phase space 

Even in a steady state of a system driven by an external field, there must be 

an invariant measure on the phase space.*) The measure should be absolutely con

tinuous with respect to the phase volume. It is unlikely that we need extremely 

many parameters to characterize the measure, if the system is not very far away 

from equilibrium. Hence, there must be a coarse-grained characterization of steady 

states. This reasoning is logically out of place for a pure phenomenology point of 

view adopted in this paper, but if one expects a sort of statistical thermodynamic 

framework for steady states, it is a good reason to expect a phenomenological frame

work. 

Nature of dissipation 

Intuitively, the transfer of energy from a systematic degree of freedom (say, a 

macroscopic flow) to microscopic degrees of freedom should be irreversible even un

der nonequilibrium conditions. Hence, the essence of dissipation should be the same 

in equilibrium and in nonequilibrium. Of course, under appropriate nonequilibrium 

conditions, we may be able to organize a small fraction of microscopic motions into 

a macroscopic motion as dissipative structure illustrates. However, this must be at 

the expense of increasing microscopic disorder somewhere else. Thus it is likely that 

there is a nonequilibrium version of Kelvin's principle. 

Aim of phenomenology 

Although to obtain some information about the statistical ensemble describing 

nonequilibrium steady states is an important goal, the main aim of this study is 

to make a framework which can relate macroscopically observable facts and data. 

To pursue the consequences of stability /evolution criteria is also an important aim. 

The relation between the input and output power /heat rate is not directly studied 

in our framework, because we study only the state variables of the system. However, 

through the properties of the system the input to and output from the system would 

•) However, we must note that if there is a material flux going through the system, we do not 

have purely dynamical descriptions, so that this argument does not apply. 
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32 Y. Oono and M. Paniconi 

be related indirectly. 

Distributed systems 

Since nonequilibrium systems are very often spatially nonuniform distributed 

systems, the ultimate usage of our phenomenology is in the differential (spatially 

local) form just as in the case of the conventional nonequilibrium thermodynamics. 18) 

Therefore, we will have to assume the local steady hypothesis. However, this should 

be more realistic than the local equilibrium hypothesis. 

§3. Possible form of phenomenology 

We begin with a review (reorganization) of equilibrium thermodynamics, and 

then claim that all the physics theories can be cast in the thermodynamic form. 

Standing assumption: the fourth law 

Throughout this paper we assume the fourth law: 7) there are only extensive and 

intensive quantities in thermodynamics, to be applicable to our phenomenology as 

well. We should keep it in mind that without the fourth law it is difficult to justify 

the relevance of ensemble theory to real physics. 16
) Notice that there is no reason to 

deny a priori the fourth law even for non-Gibbsian ensembles. Fluctuations in such 

systems are expected to be highly nonlocal, 19
) and there seems to be a good analogy 

with dipolar equilibrium systems. 20
) That is, the fluctuation statistics depends on 

the domain shape on which we observe fluctuations of state variables. We expect, 

however, that in contrast to the equilibrium dipole systems, the averaged quantities 

(state variables) are not domain-shape dependent. 

A summary of equilibrium thermodynamics 

As an example of a very successful phenomenology, it is useful to summarize the 

principles of equilibrium thermodynamics with de-emphasizing temperature: 

ThO If isolated, a system eventually reaches a (macroscopic) state which can be 

specified uniquely by variables (called state variables) {E, Xi}, which span the state 

space. 

Thl There is a 1-form (called the heat form) w =dE-L: fidXi, where fi are func

tions of state variables, and w = 0 is realizable (this process is called a quasiequilib

rium adiabatic process). 

Thll In any small neighborhood*) there is a state which cannot be reached by a 

quasiequilibrium adiabatic process. 

The third law could be added as a statement about the integrating factor for 

the heat form. In this formalism, state and state variables {E, Xi} are primitive 

concepts as points and lines in Euclidean geometry. Equilibrium thermodynamics 

asserts that for a given system there are states for which we can choose 'state vari

ables' such that ThO-ll hold. 

•) We do not specify the topology of the state space formally. 
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Steady State Thermodynamics 33 

Entropy 

From Thll we assert that w has an integrating factor locally in the state 

space: 21 ), 2
2) There is an objection by Bernstein 23) that Caratheodory's argument 24) 

is not enough to establish the global existence of a smooth integrating factor (and 

smooth entropy level sets). He used the equivalence relation of thermal equilibrium 

stated in the standard version of the zeroth law to overcome the difficulty. If we do 

not assume this equivalence relation, we can proceed further as follows with the aid 

of the fourth law. Note that if w = >.da, then another integrating factor ).* may 

be related to the original one as ).* = >.j(dr.pjda), where r.p is a smooth function.*) 

Now, we rely on the fourth law: ). must be an intensive function and a must be 

extensive. This should remove the ambiguity of the integrating factor except for the 

choice of the units. To proceed further, in equilibrium, we need a thermometer, so 

that actually we must use the conventional zeroth law. In the case of steady states, 

its consistency with equilibrium thermodynamics removes the remaining ambiguity. 

Maximum principle for entropy 

Under adiabatic conditions, the maximum principle for entropy characterizes the 

state in the usual equilibrium thermodynamics. In order to assert this Thll above is 

not enough. We need a statement about non-quasiequilibrium processes (irreversible 

processes) such as Clausius' principle. 

Thermodynamic formalism 

The reader may criticize that restating thermodynamic principles in an abstract 

fashion will not take us anywhere. As is illustrated below, however, any theory of 

physics with a variational principle can be cast in this 'thermodynamic framework'. 

In particular, we have only to pay attention to a certain 1-form. A key observa

tion is: a forbidding principle implies a variational principle as explicitly recognized 

by Caratheodory. 24) We wish to call this framework (phenomenological) thermody

namic formalism. 

Thermodynamic formalism for classical mechanics 

Take classical mechanics of a single particle as an example. Its state is specified 

by its position q at a given time t. Hence, (t, q) spans the state space (traditionally 

called the world). The (phenomenological) thermodynamic formalism for classical 

mechanics reads as follows: 26
) 

CI There is a 1-form w = dt- (p/ H)dq, where pis the conjugate momentum, and 

H the Hamiltonian, and w = 0 is realizable. 

CII In any small neighborhood of a state in the state space, there is a state which 

cannot be reached by a vanishing Lagrangian process. 

The adiabatic process requires Hdt = pdq or H = 2T, where T is the kinetic 

energy. That is, T-V= 0, where Vis the potential energy. For any neighborhood 

of (t, q), obviously there is a state which cannot be reached by a trajectory with 

•) We only pay attention to smooth factors, and, as in the elementary thermodynamics, we 

assume all the quantities are differentiable for simplicity, ignoring difficulties due to phase transitions. 
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34 Y. Oono and M. Paniconi 

Lagrangian= 0. Hence, as everyone knows, w has an integrating factor: w = dSjH, 
where Sis the action.*) The Maxwell relations give Hamilton's canonical equations 
of motion. H = oo corresponds to the absolute zero, and Hamilton's principle cor
responds to the Gibbs principle in equilibrium thermodynamics. 

Since classical mechanics can be cast in the (phenomenological) thermodynamic 
formalism, obviously all fundamental theories of physics, e.g., quantum mechanics, 
electrodynamics, can be cast in this form. 

Comparison of classical mechanics and thermodynamics 
The zeroth law is not stated in the above formulation of classical mechanics, 

because we cannot get out of the world classically. In classical mechanics we do not 
consider a path outside the world (off-shell path) corresponding to the nonequilib
rium path in equilibrium thermodynamics. This is a distinction of classical mechanics 
from equilibrium thermodynamics, where irreversible processes are extra-state-space 
processes (off-shell processes). Because of this the variational principle for classical 
mechanics is an extremum principle, while that for thermodynamics is a maximum 
principle. This is also related to the fact that t is not bounded, but E is bounded 
from below. It is an intriguing possibility that the off-shell path in classical mechanics 
could be connected to quantum mechanics (recall that thermodynamic fluctuation 
theory is an off-shell theory). Also the Lorentz invariance of action S may suggest 
some sort of transformation invariance of thermodynamic entropy in the state space. 

What sort of phenomenology should we seek? 
Our aim is to find a phenomenological framework to describe steady states. We 

wish to have a stability or evolution criterion as in the equilibrium counterpart, so the 
phenomenology we seek should have a variational principle. The above consideration 
tells us that in order to obtain a desirable phenomenology we have only to look for 
a framework in quite a parallel form to the ordinary thermodynamics. We are not a 
priori asserting that there is such a phenomenology. However, we can assert that if 
we fail to find a consistent phenomenology in this way, we may conclude that there 
is no interesting phenomenology for steady states. Whether our phenomenology 
proposed below is consistent or not will ultimately be decided empirically. 

§4. State space 

As is stated above, the concept of state space and state variables are primitive 
concepts, so that whether they are well-defined or not must ultimately be checked by 
experiments. The choice of state variables is not a trivial question even in equilibrium 
thermodynamics. If we overlook a thermodynamic coordinate (i.e., a thermodynamic 
degree of freedom), then thermodynamics does not hold (e.g., Thll does not hold). 

e- and n-variables 

For simplicity, in this paper, we discuss mostly spatially uniform systems 

•) The choice of the integrating factor is not unique. To choose the one we adopted here, we 
need an additional requirement, e.g., the integrating factor is additive. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

3
0
.2

9
/1

8
4
2
3
9
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Steady State Thermodynamics 35 

(systems through which various flux are uniform even in steady states). Let us write 

its equilibrium state variables (henceforth we call them e-variables) as usual E and 

Xi, where E is the total energy of the system, and Xi are the usual equilibrium 

extensive quantities such as volume, magnetization, etc. These extensive variables 

are the total amount of microscopically well-defined quantities, so that even in a 

nonequilibrium steady state they are meaningful, and operationally well defined (ex

perimentally observable). 

If the system is not in equilibrium, it is obvious that e-variables are not enough 

to describe the state even macroscopically. At least we need a variable which dis

tinguishes a nonequilibrium state from the equilibrium state sharing the same e

variables. We call the extra nonequilibrium extensive variables Yi needed to specify 

the state n-variables. Henceforth, e- and n-extensive variables Xi and Yi are collec

tively denoted by zi. 

Simple steady state 

We call a steady state a simple nonequilibrium steady state, if it requires only 

a few (ideally only one) n-variables Yi to specify it macroscopically. 

For example, consider a thin fluid layer sandwiched between plates moving with 

different constant velocities. The fluid layer is sheared with a constant shear rate. 

Until the laminar flow becomes unstable, it is likely that we need only one n-variable. 

This could be the (negative)*) generating rate QH of heat due to dissipation or 

nonequilibrium displacement. This (- )QH is the dissipation needed to maintain the 

state (the house-keeping cost). 

Multiple steady states, etc. 

It is well known that nonequilibrium systems can have many multiple steady 

states under a given condition. However, this is not a problem peculiar to nonequi

librium states. We also have metastable states in equilibrium. We must admit that 

under nonequilibrium conditions the influence of microscopic noise may be reduced, 

so that we may suffer much more from having metastability than in equilibrium. 

Still, it is not a fundamentally new problem to steady states. Besides, we do not pay 

attention to systems locally very far away from equilibrium in this paper. 

Also we should not forget that nonequilibrium steady states are, generally speak

ing, not isotropic due to flux, even though the system is isotropic in equilibrium. 

§5. Slow processes and quasisteady processes 

Slow process 

Slowing down the changing rate of state variables indefinitely, we can make all 

the instantaneous states during a process as indistinguishable as possible from steady 

states in the state space (of steady states). 

Let us call a process which can be regarded lying in the state space (so that at 

each instant the state is indefinitely close to some steady state) a slow process. 

•) Sign convention: + implies that heat is flowing into the system and - the opposite. 
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36 Y. Oono and M. Paniconi 

The slowness required in the slow process is the slowness of the modification (or 
the change due to perturbation) of possibly rapid processes. Therefore, dissipation 
due to the process produces heat that may have to be discarded sufficiently promptly 
to its environment in order to maintain its steady state. 

Distinction between equilibrium and nonequilibrium processes 

In equilibrium thermodynamics, a process whose path is in the state space is 
called a quasiequilibrium process. Operationally, the process is realized by suffi
ciently slowing down the changing rate of state variables. Suppose we change a 
system more or less uniformly in time during the time span of Llt. Because the dis
sipation rate (production rate of entropy) is proportional to the square of the rate of 
change (Llt) - 1

, the total entropy production is proportional to (Llt)-2 x L\t = (Llt)- 1. 

That is, slowing down can indefinitely decrease the total entropy production. This is 
the reason why slow processes become quasiequilibrium, so that any process which 
is in the state space can be used to compute the entropy change. 

However, if a system is in a nonequilibrium steady state driven by an external 
driving force, the change in energy dissipation rate (consequently, the change in en
tropy production rate, if entropy is meaningful) is proportional to (Llt)- 1

, because 
it is proportional to the changing rate times the driving force which is away from 
zero already. (Note that here we consider only the changing portion of dissipation, 
ignoring the already existing house-keeping dissipation for the initial steady state.) 
This implies that slowing down cannot indefinitely decrease the total energy dissi
pation caused by the change. This is a marked distinction between driven steady 
states and equilibrium states. 

Quasisteady process 

As is well known, the total heat absorption depends on the path in the state 
space even if we fix both ends of the path. In nonequilibrium the preceding consid
eration tells us that the absorbed heat during the process is not even determined 
by the path in the state space in contrast to equilibrium cases; the heat depends 
further on how we proceed along a given path (on how we realize a given slow pro
cess path, or on the realization protocol for a given path). Therefore, if we interpret 
the quasiequilibrium process in the equilibrium state space as the least dissipative 
process, then a slow process in the steady state space is not always a reasonable 
nonequilibrium analogue of the quasiequilibrium process. 

Let us call a slow process along a given path in the state space with the smallest 
dissipation a quasisteady process along the path. Thus for each path in the state 
space we have a quasisteady process. Experimentally, we can monitor the generated 
heat during the specified slow process path in the state space. Therefore, in prin
ciple, we can realize such a process. However, we must properly take care of the 
house-keeping heat as follows. 

Need of 'renormalizing' total heat production 
Although an 'official' definition of a quasisteady process is in terms of minimum 
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Steady State Thermodynamics 37 

heat generation, since we are in an nonequilibrium state, even to fix the system at 

a given point in the state space (i.e., to maintain a steady state), we dissipate en

ergy as heat (the house-keeping heat). Hence, if a process is done infinitely slowly, 

then the total generated heat during the process becomes infinitely large. We must 

somehow subtract the contribution of the house-keeping heat, if we wish to realize 

the minimization process. We wish to introduce the concept of excess heat after 

'renormalizing the infinity'. 

Excess heat 

We can certainly measure the input power P due to driving and the actual heat 

importing rate QA (sign convention: + implies that heat is flowing into the system 

and - the opposite) of the system at each instant along a path corresponding to a 

slow process which lies in the state space. The house keeping heat rate Q H is (-) the 

heat generation rate of the instant state lying along this path. The (-) excess heat 

generation rate is defined as 

This gives the needed 'renormalization' of the generated heat. For a process of 

duration t, 

L1E =lot (P + QA)dt (5·2) 

is the total net energy absorbed by the system during the whole process. This is 

obviously measurable. QH is of course measurable, so that we may construct 

(5·3) 

LJE and L1E' are both finite even in the t -+ oo limit. Now, we can make the 

difference of these two to obtain 

(5·4) 

We take the slow limit t -+ oo to obtain the excess heat Qex for the given path (and 

its protocol). To be quasisteady, we must search for the minimum of this quantity 

for the given path over various protocols. This is in principle feasible, but a practical 

method may be proposed as follows. 

Practical realization of quasisteady process 

Suppose the state B can be reached from A by increasing the driving which 

causes an increase of systematic power supply. In this case, it is very likely that the 

slow limit of systematic power supply increase gives a quasisteady process from A to 

B (while controlling the state variables by modifying thee-variables gently and also 

controlling the heat discarding rate). 

When deceleration is required, the situation is much more complicated. Al

though, in principle, a quasisteady process should be reversible (can be retraced), to 

realize it in practice is generally hard. Consider a flow which becomes chaotic upon 
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38 Y. Oono and M. Paniconi 

driving. Even if the flow is chaotic the motion is macroscopic, so that the flow kinetic 
energy can be completely taken out from the fluid system as work, in principle. Of 
course, this is impossible in practice. However, it is still true that the chaotic motion 
is not a microscopic motion so that 'thermodynamic entropy' of the system should 
not be affected by the motion (unless it affects the microscopic order). 

It is an intriguing possibility of taking this impossibility at its face value to con
struct a phenomenology at the mesoscopic level, perhaps phenomenology of turbu
lence. However, here, we concentrate on the situation where macro-micro distinction 
is more or less clear. Hence, even if the retracing of quasisteady process is impossible 
in practice, we do not pay serious attention to it. 

Meaning of excess heat 

The house-keeping heat rate QH does not account for the total energy difference 
L1E between different steady states. Hence, qex measures the net energy imported to 
the hidden degrees of freedom in Callen's terminology. 25

) L1E- qex is the remaining 
systematic part called (excess) work that is described by the change of Zi variables, 
that is, the portion of energy stored in the system in the systematic form. 

Adiabatic quasisteady process 

Let us call a process described by a path in the state space (i.e., slow process) 
with Qex = 0 (recall that upper case Q always denotes import rate) along the path 
s-adiabatic process (or simply adiabatic process if there is no ambiguity). If 'the 
minimum Qex' = 0, the process is called an adiabatic quasisteady process. 

§6. Postulates for steady state phenomenology 

Existence of quasiadiabatic steady pmcess 

That there is an adiabatic quasisteady process is, strictly speaking, still a pos
tulate. However, since we can imagine processes with positive and negative excess 
heats, it is plausible by continuity that there must be an s-adiabatic process. 

Postulates for phenomenology 

It is highly plausible that in any neighborhood of a steady state in the state 
space there is a steady state which cannot be reached by a quasisteady s-adiabatic 
process. 

SO If left unperturbed (in a fixed environment), a system reaches a (macroscopic) 
state which can be uniquely specified by extensive variables ( =observables) { E, Zi}, 
which span the state space. 

SI There is a 1-form (called the excess heat form) w = dE-L, hidZi for which a 
process w = 0 is realizable. Here hi are functions of E and Zi. (This process is called 
a quasisteady s-adiabatic process.) 

SII In any neighborhood of a state in the state space, there is a state which cannot 
be reached by a quasisteady s-adiabatic process. 

As usual, and as stated before, we assume E and Zi are extensive quantities. 
E is the total energy of the system in this exposition. Our general discussion on 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

3
0
.2

9
/1

8
4
2
3
9
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Steady State Thermodynamics 39 

phenomenological thermodynamic formalism in § 3 cannot immediately tell us what 

state variables we should choose. Therefore, the above choice of E is an extra 

hypothesis. Other choices might be more adequate if the system is very far away 

from equilibrium. However, for conventional materials scientific problems our choice 

seems admissible according to the conclusions we can draw from this choice as seen 

below. 

We know SO is not always true. Our framework is designed only for systems 

reaching time-independent steady states eventually. 

We write 

(6·1) 

where E is entropy. We should use S instead, because it is a natural extension of 

the ordinary entropy and is identical to the latter in the equilibrium limit, but here 

in order to stress the difference of equilibrium and nonequilibrium, we use different 

symbols. The postulate SII alone cannot uniquely specify (}. However, as discussed 

already, if we assume the continuity of (}, then the only ambiguity is the choice of the 

unit (i.e., numerical factor). This is fixed by the requirement that in the equilibrium 

limit E must be identical to the equilibrium entropy. Therefore, precisely speaking, 

we should explicitly declare that we assume all the postulates of equilibrium ther

modynamics for equilibrium systems. 

Stronger form of second law 

The generalized version of the second law here SII is in a weak form, which 

asserts the foliation of the state space into isentropic hypersurfaces. We wish to have 

a maximum principle or the principles specifying the natural direction of change as 

the usual second law. We must mention non-quasisteady processes. At least we can 

do this for slow processes with the aid of a generalized Thomson's principle: 

SliT A process converting work into excess heat is irreversible. 

Here 'work' means a systematic way to transfer energy (not to hidden degrees of 

freedom in Callen's words 25
)) to the system. 'Reversibility' is modulo house-keeping 

heat, which is produced anyway. 

§7. Operational feasibility 

Adiabatic continuation of entropy level set 

Starting from an equilibrium state whose entropy is known, we can go to a nearby 

steady state which can be reached by a quasisteady process which is s-adiabatic. In 

this way, we can extend constant entropy level sets into steady state space. 

Gibbs relation 

We have already discussed E in the preceding entry. Since we can construct 

the level sets, we can measure E. E is the total energy of the system, so it should 

be measurable in principle with the aid of equilibrium thermodynamics. We can 

measure all the Zi variables. Hence, the derivatives of E with respect to Zi and E 

are accessible operationally. Consequently, we may conclude that all the quantities 
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40 Y. Oono and M. Paniconi 

in the generalized Gibbs relation (6·1) are operationally well-defined (i.e., experi

mentally measurable). 

General formula for strictly linear systems without memory 

Let Y be a flux (vector) (n-variables) which obeys the following linear dynamics 

dY 
L-- = -RY +h 

dt ' 
(7·1) 

where L and R are matrices, and h denotes conjugate variables. The power intro

duced to the system is given by P = h'Y (' implies transposition), and the house 

keeping heat rate is given by Q H = - Y' RY. Assume that there is no hidden coor

dinates which absorb energy. Then, the actual heat discarding rate and IQHI must 

be the same. Hence, the total energy increase of the system L1E can be written as 

where Tis the relaxation time matrix T = R- 1 L. Here, the meaning of the R matrix 

is clear from the steady relation h == RY. It is the inverse response matrix. The 

contribution of these n-variables Y to the Gibbs relation reads 

dE == ... + Y' RTdY, (7·3) 

where · · · denotes the usual equilibrium terms. This is the generalization of the 

formula postulated by Jou et al. 8) for their extended irreversible thermodynamics. 

Needless to say such a simple formula works only when all the responses are strictly 

state-independent.*) 

Critique of previous approaches to nonequilibrium entropy 

Nonequilibrium generalizations of entropy or related concepts have been consid

ered by many people. A notable example due to Jou et al. 8) reads 

Sneq = Seq - j adt, (7·4) 

where a is the entropy production rate during the quenching process of the irre

versible processes in an adiabatic bomb. Seq is the entropy of the final equilibrium 

state. The formula is intuitively appealing, and indeed contains a grain of truth, 

but the actual formula for E of a state even close to equilibrium is not this simple. 

The main difficulty is that relaxation process is not quasisteady, so that it cannot 

generally be used to compute the entropy change.**) Thus, it is quite unlikely that a 

simple bomb experiment can actually give the difference between E and the entropy 

•) We can extend this simple result to the case with memory effects. In this case Y' RTr5Y is 

replaced by J dtY' R * 8Y, where * is the time convolution. 

**) If strictly linear, the formula is correct. That is, if there is no effect of the change of Z 

variables on the transport coefficients. This is unlikely, because the system 'temperature' increases 

upon quenching. 
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Steady State Thermodynamics 41 

of the nearby equilibrium state. Consequently, (7·4) cannot generally be true. How

ever, Jou et al. instinctively know this problem, and they never apply this blindly 

when they compute nonequilibrium entropy deviation from its nearby equilibrium 

statevalues. According to their general result, Seq - E ex T J 2
, where Seq is the fic

titious entropy when all the nonequilibrium effects are turned off without any effect 

on static variables, and T is the microscopic relaxation time of the flux J (not the 

relaxation time of the macroscopic flow). 

§8. Evolution and stability criteria 

Evolution and stability criteria 

According to the generalized Thomson principle SliT, we realize that a spon

taneous change under s-adiabatic condition is 

(5E > 0. (8·1) 

More generally, the evolution criterion is 

(8·2) 

so that the stability criterion is 

(8·3) 

Here intensive variables are assumed to be kept constant (externally given). 

Notice that the variational principles related to entropy production 4 ) are not the 

variational principles for the distribution function of the state, but about the large 

deviation from it. Hence, for example, the principle of minimum entropy production 

is not directly related to the Gibbs relation. That is, it cannot determine the steady 

measure. 

Consequence of convexity 

The convexity of energy as a function of extensive variables (E and Zi) implies 

that the following matrix is a nonnegative definite matrix: 

Matr. [ ( Z~:) ...l , (8·4) 

where · · · denote Zk other than Zj. 

Entropic and energetic steady states 

We can classify nonequilibrium steady states of simple systems into entropic 

nonequilibrium states and energetic nonequilibrium states according to the sign of 

(8E/8Y) 9 , where Y is the power dissipation. We say a steady state isentropic, if 

(8·5) 
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42 Y. Oono and M. Paniconi 

and energetic, if the inequality is reversed. If a state is entropic, the entropy decreases 

when the system is driven away from equilibrium under constant () ( r...~ temperature 

if not far away from equilibrium). 

For example, we obtain for an entropic state 

(8·6) 

Hence, for entropic nonequilibrium states the time scale of microscopic relaxation 

increases as the microscopic order of the system decreases, if the dissipation is main

tained. 

Le Chatelier-Braun principle 

From the stability condition (the convexity of the total energy) with the aid 

of the standard argument used in equilibrium thermodynamics, we conclude the 

following Le Chatelier-Braun principle: 27
) 

(8·7) 

and 

(8·8) 

where' implies the conjugate pair other than (h, Z). For example, we obtain 

(LlY)E ~ (LlY)o. (8·9) 

§9. Phenomenological theory of steady fluctuation 

Fluctuations around steady states have been studied in terms of Langevin equa

tions and master equations. In equilibrium, these models are set up to satisfy the 

equilibrium condition. For example, the noise is chosen to satisfy the fluctuation

dissipation theorem. This is legitimate because we know the equilibrium phenomenol

ogy and statistics. Under nonequilibrium conditions, especially when the local equi

librium condition is violated, we do not have any reliable basis to check the validity 

of stochastic models. Hence, to use stochastic models to construct a phenomenolog

ical framework of nonequilibrium states, or, more generally, to study fundamental 

aspects of nonequilibrium statistical mechancis, is a questionable endeavor. 

General hypothesis 

Here, we mimic the thermodynamic theory of equilibrium fluctuations. It as

sumes an extra postulate, which reads, following Callen 25
) as: 

The probability density p of finding extensive parameters Xi and Yi to be at its 

instantaneous values Xi and fi is given by the generalized Boltzmann-Einstein rela-

tion: 
1 . ~ ~ 

p rx exp kB (E- (Ji/())Xi - (gi/())Y;;). (9·1) 
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Steady State Thermodynamics 43 

This is a postulate. This is for fluctuations around ensemble-averaged quantities, 

and is distinct from that for fluctuations 28) around time-averaged quantities that 

may be more convenient for explicitly time-dependent states. 

General expression for linear systems 

For strictly constant coefficient linear systems, we know the general expression 

of the Gibbs relation 

dE = OdE+ the usual equilibrium terms+ Y' RTdY. (9·2) 

Hence, the fluctuation probability reads 

( 
bY' RTJY + the usual equilibrium terms) 

pIX exp -
20 

. (9·3) 

As in equilibrium no first order terms show up due to the stability of the steady 

state. Therefore, if we may ignore the correlation between the n and e fluctuations 

(the simplest case), 

(9·4) 

where + implies the symmetric part. *1 If we may assume the ordinary temperature 

is meaningful, we may set e = T (in energy unit). 

§10. Concluding remarks 

We have proposed an operationally feasible phenomenological framework, steady 

state thermodynamics (SST), for nonequilibrium steady states tantamount to equi

librium thermodynamics. SST is based on the principles just like those for equi

librium thermodynamics (justification has also been given of having this form if a 

phenomenological framework exists at all), and reduces to the latter in the equilib

rium limit. In particular, operationally, we can measure (nonequilibrium) entropy 

away from equilibrium. The resultant formalism can give the Gibbs relation postu

lated by Jou et al. for strictly linear systems, although we have to point out that 

their proposal for measuring nonequilibrium entropy is not operationally complete. 

A phenomenological fluctuation theory is formulated as well. The current frame

work can predict qualitative behaviors, for example, whether the relaxation time of 

a system increases or not when its microscopic disorder increases under constant 

dissipation. 
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•) If there is a memory effect, this becomes a Green-Kubo relation. 
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