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Study of mixing is important in understanding transport of submicron sized particles in the acinar

region of the lung. In this article, we investigate transport in view of advective mixing utilizing

Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The

phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of

kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism

provides the common route to folding of material lines and surfaces in any region of the acinar flow,

and has no bearing on whether the geometry is expanding or if flow separates within the cavity or

not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds

number �Re�. For a given Re, dispersion is found to increase with degree of alveolation, indicating

that geometry effects are important. These effects of Re and geometry can also be explained by the

streaming mechanism. Based on flow conditions and resultant convective mixing measures, we

conclude that significant convective mixing in the duct and within an alveolus could originate only

in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large

Keulegan–Carpenter �KC� number. © 2011 American Institute of Physics. �doi:10.1063/1.3567066�

I. INTRODUCTION

Several studies have attempted to identify mechanisms

of mixing in low-Re flows. Some of the earlier works in this

regard are Refs. 1–7 and among others. The application areas

include transport of material in processing industries, mixers,

microfluidic applications, and physiological flows. In addi-

tion to these applications, the study of mixing is important in

understanding the transport of particles in the conducting and

respiratory regions of the lung. Understanding of transport to

and within the acinar region has practical applications in im-

proving delivery strategies of pharmaceutical aerosols or

other drugs, targeting deposition to specific locations and

henceforth reducing systemic absorption, and also for im-

proving estimates for retention of inhaled pollutants. Without

the assistance of turbulent mixing, how the low-Re acinar

flow achieves effective mixing is the topic of interest in this

paper.

Lung morphology and relevant terminologies are intro-

duced here. Alveoli are air pockets that occupy a part of, or

completely cover the walls of respiratory airways; on aver-

age beyond the 15th generation of the human airway tree. An

“acinus” consists of the entire region of alveoli and alveo-

lated ducts that are distal to the terminal bronchus. The al-

veoli can be visualized as an isolated or group of open cavi-

ties ventilated by the acinar airway. The typical Re ranges

approximately from 2 in the transitional region to 0.01 in the

terminal sacs. For further reading on acinar morphology and

morphometry, the reader is referred to Refs. 8 and 9.

During normal breathing, when the inspired volume is

larger than the anatomical deadspace, the inspired gas

“mixes” with the residual gas in the lung. In this process,

particles are transferred to the residual gas across the

inspired-residual interface front, which in case of aerosols is

referred to as aerosol mixing. Peclet number �Pe=U0D /K,

where U0 is the mean fluid velocity, D is the duct diameter,

and K is the diffusion coefficient� relates the magnitude of

convective to diffusive transport. For gas mixing in the aci-

nus, Pe�0.1–1, while for aerosol particles �say, �1 �m

diameter�, Pe=3000–20 000. Consequently, convection and

diffusion manifest differently in these two mixing

processes.
10

Particles with diameter 0.5–1 �m have very low depo-

sition efficiencies in the acinus and behave like nondiffusing

massless fluid particles.
11

Particles in this size range play a

very important role in various physiological processes.
12

Heyder et al. performed mixing estimates with aerosol bolus

consisting of �1 �m particles.
13

The dispersion of the in-

haled bolus increased with increasing penetration volume.

The net transport of particles from the �particle-laden� in-

spired air to the residual air was shown to occur as a result of

irreversible processes whose origins were unknown. This

motivated investigations of possible transport mechanisms
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and their origin. The accomplishment of mixing, particularly

in viscous flows deep in the lung are nontrivial. Advective

mixing was proposed as one such mechanism.

The early proponents of various acinar mixing mecha-

nisms within alveoli include Refs. 14–18. Tsuda et al. and

Henry et al. observed mixing in particle motion associated

with recirculation in an acinar model.
14,18

Tsuda et al. per-

formed experimental flow visualization in a rat lung using

blue and white colored dyes for inspired and resident

fluids.
15

Lateral images of acinar airways revealed delineated

interface patterns between the two dyes. After four breathing

cycles, an indistinguishable blue-white uniformity appeared

indicating a high degree of mixing. Recently, Henry et al.

demonstrated that alveolation is sufficient to produce con-

vective mixing in a rigid-wall oscillatory flow model with Re

pertaining to proximal generations of the acinus.
19

This ob-

servation completely shifts the onus from mixing originating

due to time-dependent wall motion and saddle point as

thought earlier. It also shifts the focus toward geometrical

features apart from revealing that even fundamental mixing

mechanisms are not completely understood. Sarangapani and

Wexler commented that the contribution from mixing toward

a dramatic increase in the interface area requires numerous

cycles and hence cannot completely explain the observed

dispersion in a single cycle.
20

Other works include those of

Lee and Lee, who used 30 identical toroidal alveolar cells

and modeled inspiration and expiration in isolated phases.
21

The differences in dispersion between alveolated and nonal-

veolated tubes in the presence and absence of wall motion

were compared. From previous experimental and numerical

studies, although various possible causes have been sug-

gested, consistent and concrete evidence to origins of con-

vective mixing in the acinus is still missing. Darquenne and

Prisk compared dispersion of aerosol bolus between simula-

tion and experiments.
22

For particles of critical sizes 0.5 and

1 �m in diameter, order-of-magnitude discrepancy was ob-

served in a zero-gravity environment. Flow-induced mixing

was suggested as one possible cause. Later, Darquenne and

Prisk designed a flow reversal �FR� mechanism to study the

mixing in acinar flow.
23

Boli of particles were inhaled in

microgravity at two different penetration volumes. It was

then followed by a breathhold during which several flow

reversals were imposed. They found that “either the phenom-

enon of stretch and fold did not occur within the number of

FR… or that it had already occurred during the one breathing

cycle included in the basic maneuver.”

Dispersion and mixing of aerosol boluses may be suffi-

ciently modeled by simple advection. The difference in fluid

particle location between the beginning and end of one os-

cillatory flow cycle may be recognized as a drift in a La-

grangian sense. This drift, large or small, is gained by a

particle purely due to flow topology, inertial and geometry

effects. Through-out this work, streaming and the associated

drift will be underlined as the fundamental mechanism. In

acinar flows, the flow conditions cause a large drift and

hence large increases in dye interface area from one cycle to

the next, which is commonly referred to as advective mixing.

Even though pure advection is considered, the term “kine-

matic irreversibility”
18

is more commonly used in this con-

text, which in essence is the Lagrangian drift at the end of

one cycle.

The objective of this work is to investigate the origin of

advective mixing and quantify mixing in physiologically mo-

tivated models of the acinus using three Lagrangian tech-

niques: tracer advection, stretching analysis, and axial dis-

persion. Unlike previous acinar mixing studies whose

attention was restricted to a specific region, this paper con-

siders mixing in three regions: the duct, the alveolar mouth,

and the alveolus. Of the three techniques, tracer advection

and stretching analysis provide a measure of the mixing rate

within the alveolus. The topological critical points, such as a

stagnation saddle point in the flow, are also identified for

assessing their roles in mixing from the viewpoint of chaotic

mixing.
14,15

The study of acinar mixing is not complete with-

out understanding axial transport in the alveolated duct.

Axial dispersion and effective diffusivity are estimated in the

alveolated airways. The remainder of the paper is organized

as follows. Section II describes the model and equations for

the different analysis techniques. Section III presents the re-

sults. For clarity, we first use a simple two-dimensional �2D�
alveolated channel to illustrate some important, but not well

understood, dispersion and mixing mechanisms in a low-Re

multiple-open-cavity model before considering a three-

dimensional �3D� geometry. Section IV summarizes conclu-

sions and discusses physiological implications.

II. METHODS

A. Lagrangian methods

Geometrical structures that are representative of differ-

ent regions of the acinus, namely respiratory bronchioles and

alveolar ducts are shown in Fig. 1. Henceforth, we use “Case

I” �Fig. 1�a�� to denote respiratory bronchioles which have

occasional alveoli. “Case II” �Fig. 1�b�� is a model for alveo-

lar duct lined completely with 18 alveoli representing the

lung units in generations 18–22. The alveolar duct is well

defined in Case I. On the other hand, the walls of the duct in

Case II are not clearly defined and are formed from the space

between surrounding alveoli. The proximal wall of the alveo-

lus is conventionally the one closest to the alveolus mouth

during inspiration. Similarly the proximal generation is the

generation of airways, which has already been ventilated

along the path of the air. Analogously, a distal wall and a

distal generation are defined. To simulate the alveolar flow, a

sinusoidal flow rate is specified at the ductal entrance “E” in

Figs. 1�a� and 1�b�. The walls of alveoli and duct expand and

contract uniformly with a prescribed volumetric expansion of

25%. The Reynolds number �Re=U0D /�� is measured at

peak inspiration, where U0 is the average peak inspiratory

speed at the ductal entrance, D is the effective diameter of

the duct, and � is the kinematic viscosity of air. The incom-

pressible Navier–Stokes equations are solved in an Arbitrary

Lagrangian–Eulerian framework.
24,25

The equations are nor-

malized using the alveolus mouth dimension of L

=416 �m and peak velocity of U0=0.032 m /s. A sinusoidal

flow rate is specified at one end of the duct while a Neumann

boundary condition is employed at the other. Homothetic

wall motion, where corresponding sides of the duct and al-
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veolar wall remain parallel in a geometric expansion or con-

traction is prescribed. The domain is discretized using tetra-

hedral elements with a smallest element having a size of

�0.009L. A single alveolar unit consists of �40 000 ele-

ments. For a detailed description of the computational

method and boundary conditions, the reader is referred to

Kumar et al.
26

The breathing period �T� is chosen as 2.5 s �at

24 breaths/min� to match the Womersley number �Wo

=D�� /�=0.2, �=2� /T is the angular frequency� in previ-

ous studies.
14,19

The inverse of Strouhal number �St� is

known as Keulegan–Carpenter number,
27

KC=1 /St=U0T /L.

It determines the displacement or length of fluid particle ex-

cursion over a characteristic length, L. For analysis, Case I

�with Re=2, 1, and 0.52� and Case II �with Re=1, 0.6, and

0.2� are investigated. For Case I, Re=2, 1, and 0.52 yield KC

of 386, 193, and 96.5, respectively. An additional case with

Re=0.06 of Case I is included to demonstrate that advection

with Re approaching zero, predicted by the current analysis,

exhibits essentially reversible behaviors. The flow phenom-

ena along the acinar pathway are commonly associated with

the fractional flow rate QA /QD introduced by Tsuda et al.
14

Here, QA is the alveolar flow rate and QD is the ductal en-

trance flow rate. Note that in a rigid-wall model, QA /QD=0.

The amount of alveolar expansion determines QA while the

volume change rate of the air volume in generations distal to

the current generation determines QD. This ratio, by defini-

tion increases down the acinar tree. For example, based on

the ductal flow rate in Case I, QA /QD=0.0024 for Re=2 and

FIG. 1. Representative geometrical models for regions of the acinus. �a� “Case I” model for respiratory bronchiole, �b� “Case II” model for alveolar duct,

where �A, AD, and E� denote �alveoli, alveolar duct, and ductal entrance�, �c� and �d� shows two presentations of an alveolar sac, denoted by ALV in �a� to

be analyzed in Sec. III. �c� ALV with solid and dashed edges for front and rear faces, respectively. �d� ALV with three planes to show the orientation of the

unit. The y-direction is the axial direction. Some results are displayed in the y-z plane for clarity.
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QA /QD=0.0047 for Re=1. For isolated alveolar representa-

tions, we use QA /QD and Re to identify flow conditions in

Cases I and II. For Case I with Re=1, due to nonzero QA the

Re at the exit of the model is approximately reduced by 4%.

The transport model of small �less than �1 �m� aerosol

particles across the interface of residual and inhaled air re-

duces to advection equation as sedimentational and deposi-

tional effects become negligible. Advection is governed by

the 3D kinematic vector equation:

dx

dt
= u�x,t�,x�0� = x0, �1�

where x is the position vector of a passive particle �some-

times referred as a marker�; u is the numerically generated

velocity field and x0 is an initial condition. The advection is

passive involving no diffusion of particles and the particle

velocity exactly matches the fluid velocity. The advection is

carried out using a fourth-order Runge–Kutta scheme and a

time-step independent solution is ensured with a choice of

�t=T /500 000. For details on a typical procedure to solve

for particle transport, the reader is referred to Wang et al.
28

All simulations are carried up to five cycles unless specified

otherwise.

The mixing measures used in this study are designed to

clarify the role of flow topology and geometry in the process

of tracer transport. Three independent techniques have been

used: tracer advection, stretching analysis, and axial disper-

sion. Each of these is chosen toward a specific objective and

has relative advantages. All three techniques are based on

massless particle tracking. The formulation details are given

below. Material advection �i.e., tracer deformation� involves

passive tracking of tracers placed at strategic locations in a

flow. The tracer or dye is constructed from a uniform distri-

bution of particles. The second technique, stretch rate analy-

sis, is based on evolution of unit line elements computed

from velocity and its gradient. This technique is an extension

of the line element approach in Roberts and Mackley

�1995�29
to 3D. Note that particle advection could also be

used to compute stretch rate by considering relative separa-

tion distance of adjacent particles, which however is a lower-

order approximation as it relies on only fluid velocity and

fails in high stretch regions.
29

The stretch rate computation

based on the line element approach relies on higher-order

approximation using fluid velocity and its gradient. In this

approach, each particle location is tagged with line elements,

following:
29

Dm

Dt
= m . �u-�D� :mm�m ,

D�ln ��

Dt
= D� :mm ,

s1�nT� =
1

nT
	

0

nT 
D ln �

Dt
�dt , �2�

where m= �dx ,dy ,dz�T is the orientation vector of any line

element with �mm�=1; u is the fluid velocity, D� is the sym-

metric stretching tensor, and D�ln �� /Dt is the stretching

function. Time-averaged stretch rate, sl, is obtained from the

instantaneous stretching function �of dimension s−1� aver-

aged from three initially orthogonal line elements.

The third measure of mixing employed here is axial dis-

persion. In this approach, the variance of particle displace-

ment is calculated based on axial location of particles.
30

The

initial condition is a bolus of particles released at the en-

trance of the alveolar duct. For a bolus consisting of N mark-

ers, the axial mean 
y� and variance 	y
2 at the end of the nth

breathing cycle are defined as


y� = �
N

�yi�nT� − yi�t0��/N ,

	y
2 = �

N

��yi�nT� − yi�t0�� − 
y��2
/�N − 1� , �3�

where nT is the total time after “n” breathing periods and t0

may be the initial release time or some reference state, say

the end of first breathing period. Because the current acinar

model consists of alveoli attached to a straight duct, they

represent a section of the acinar tree. A periodic boundary

condition is employed so that particles exiting the domain

are allowed to reenter thus approximating multiple alveolar

units attached to the duct.

B. Eulerian streaming, Stokes drift, and Lagrangian
drift velocities

The mechanism of Lagrangian drift outlined here derives

its background from the well-known “steady streaming” in

oscillatory flows.
27,31–37

In an oscillatory flow setting, a non-

zero mean flow averaged over one time period may be ob-

served. This nonzero mean flow can result in significant drift

of particles at end cycle called steady streaming. An entire

treatise on steady streaming was given by Riley.
33

Suh and

Kang presented different instances of streaming and the im-

portance of Stokes drift.
37

Larrieu et al. presented an analyti-

cal treatment of drift in a simple setting of Couette flow

weakly perturbed by a wavy bottom.
34

For any given passive

particle under the assumption of small displacement,
37

Eq.

�1� with x�t=0�=x0 may be expanded in a Taylor series.

dx

dt
= u�x,t� � u�x0,t� + �
x · ��u�x0,t� + H.O.T., �4�

where the small displacement 
x=�0
t u�x0 , t�dt and “H.O.T.”

indicates higher-order terms of the series. Let the time aver-

age of a variable � over one period of T be denoted as 
��.
Then, to the first-order approximation,

x�T� − x�0�

T
= uL�x0� = uE�x0� + uS�x0� , �5�

where uE�x0�= 
u�x0 , t�� and uS�x0�= 

x ·�u�x0 , t��. uE is

known as the “Eulerian mean” �or “Eulerian streaming”� ve-

locity and uS is the “Stokes drift” velocity. uL, which is the

sum of uE and uS, is called the “Lagrangian mean” �or “La-

grangian streaming” or “Lagrangian drift”� velocity. La-

grangian streaming is often referred to as steady streaming.

Conceptually the decomposition of u�x , t�=u�x0 , t�
+ �
x ·��u�x0 , t� or uL=uE+uS resembles the material deriva-

041902-4 Kumar et al. Phys. Fluids 23, 041902 �2011�



tive D� /Dt=�� /�t+u ·�� in a Lagrangian framework that

consists of a local derivative �the former� and a convective

derivative �the latter�. More precisely, the acceleration of a

fluid parcel is obtained by taking the time derivative of Eq.

�4�, which yields the material derivative of the parcel’s ve-

locity. Although steady streaming is a nonlinear phenom-

enon, the Eulerian streaming is caused by the fluid dynami-

cal interaction �between fluid parcels and with the geometry

of the fluid system under consideration� and the Stokes drift

arises from a kinematic viewpoint, depending on the pathline

of the tracked particle.
37

The decomposition Eq. �5� allows

distinction between the two effects. Nonetheless, Eq. �5�
holds true only when the displacement of a particle is small

such that u�x , t� can be expanded in series with respect to the

initial reference location xo. Typically, acinar flows are char-

acterized by a large KC number. Hence the above differential

form of Eq. �5� must be modified in discrete form for large

particle displacements. Consider a particle at a location x j at

t j = j�t with �t=T /N. To the first-order approximation of the

Taylor series expansion of Eq. �1�, the generalized stencil for

the particle location is as follows:

x1 − x0

�t
= u�x0,t0� for P = 1, �6�

xP − xP−1

�t
= u�x0,tP−1� + uI for P = 2,N ,

where the “instantaneous” Stokes drift velocity at time tP−1

reads

uI = ��x1 − x0� · ��u�x0,tP−1� + ��x2 − x1� · ��u�x1,tP−1�

+ ¯ + ��xP−1 − xP−2� · ��u�xP−2,tP−1� .

Summation of the above discrete equations for P=1 to N

gives

xN − x0

T
=

1

N
�
i=1

N

u�x0,ti−1� + �
j=1

N ���x j − x j−1� · ��

�� 1

N
�

i=j+1

N

u�x j−1,ti−1��� , �7�

where uL= �xN−x0� /T is the Lagrangian streaming velocity,

uE= �1 /N��i=1
N u�x0 , ti−1� is the Eulerian streaming velocity,

and uS=� j=1
N ���x j −x j−1� ·����1 /N��i=j+1

N u�x j−1 , ti−1��� is the

Stokes drift velocity.

Furthermore uS=
uI /N. For validation of formula �7�,
please refer to Appendix A.

C. Code validation

Henry et al. recently investigated mixing in a stationary

wall axisymmetric model to study the effect of unsteadiness

induced by the oscillatory flow and nonzero inertia.
19

The

flow conditions pertained to proximal generations in the aci-

nus. Their model has been chosen here for validation. The

problem details and some of the results are given below. The

geometry is a central channel surrounded by three cavities as

shown in Fig. 2�a�. The solution is obtained for Re=2

�QA /QD=0� and a time period of 3 s. The flow streamlines in

the central cavity extracted onto the y-z plane are shown in

FIG. 2. �a� An axisymmetric alveolated duct model used for validation. The model geometry and dimensions are chosen from Henry et al. �Ref. 19�. �b�
Streamlines in the cross-section of an axisymmetric alveolus near peak inspiration.
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Fig. 2�b�. Typical of open cavity flows, a single recirculatory

flow region is observed in the cavity. A pair of fluid-particles

initially separated by an infinitesimal distance of d0�10−11

are advected for 50 cycles. The rate of separation of this

particle pair is estimated by finding the Liapunov exponent

given as: 	n= �1 / t�ln�dt /d0�. Here dt is the final distance af-

ter time t. 	n converges to a positive value of �0.02 in good

agreement with Henry et al.
19

III. RESULTS

A. Flow in a 2D channel

Before embarking on the analysis of flow structure and

mixing in the 3D alveolar geometry, a representative 2D case

is used to demonstrate various important, but not well-

understood, mixing patterns, some of which had been re-

ported before.
10,18

We will first discuss the steady streaming

phenomenon and its characteristics, and then relate it to the

origin of various interface stretching and folding patterns

observed in the duct, in the duct mouth, and within the cav-

ity. Consider an oscillating flow in a 2D long, straight chan-

nel with multiple rectangular grooves located periodically on

the lower part of the channel as shown in Fig. 3�a�. All di-

mensions and flow conditions are chosen to match closely

with Case I. Unlike the 3D cases to be discussed later, the

channel and cavity walls remain rigid. Flow is simulated

only in the midsection of length �L+2dEL�. Due to low-Re,

the flow becomes fully developed within distances much less

than one channel height. Hence a parabolic profile with a

sinusoidal waveform is imposed at the ductal entrance E,

while a Neumann outflow condition is applied at “N.” The

Re in a 2D setting is defined using the channel height �H� as

Re=U0H /�. The simulation is carried out for Re=1 and

KC=193. This combination of low-Re and high-KC is unique

for acinar flows. For the given flow conditions, the flow

separates and forms one single recirculation eddy in the cav-

ity. The flow structure is not symmetric with respect to the

vertical centerline in the cavity as shown in Fig. 3�b� and the

deviation from symmetry is resulted from nonzero-Re inertia

effects. The flow in the channel is separated from flow in the

cavity by a separation line, which attaches itself to the side-

walls of the cavity. This separation line or “separatrix”
7

pen-

etrates roughly to 25% of the cavity depth.

In the following presentation, the advection and ob-

served drift are understood in relation to the Eulerian mean

FIG. 3. �a� Schematic of a 2D channel with multiple rectangular cavities.

The flow streamlines shown correspond to t /T=0.24, close to peak inspira-

tion. dE is the entrance length parameter. E, model entrance where a para-

bolic velocity profile is imposed; N, model exit where a Neumann outflow

boundary condition is imposed. �b� Streamlines at near peak inspiration

�t /T=0.24� and expiration �t /T=0.76� in the cavity of a channel flow with

Re=1. Arrows indicate the axial flow direction in the channel.

FIG. 4. �Color� Contours of Eulerian mean velocities computed using Eq. �7�: �a� axial velocity �y-component� and �b� transverse velocity �x-component�.
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TABLE I. Lagrangian streaming, Eulerian mean and Stokes drift velocities for points 1, 2, 3, 4, and 5 inside the cavity marked in Fig. 5�a�.

Point Lagrangian streaming �uL ,vL� Eulerian mean �uE ,vE� Stokes drift �uS ,vS�

1 3.943�10−005, −5.693�10−005 −4.681�10−006, 5.807�10−006 4.412�10−005, −6.215�10−005

2 1.478�10−004, −3.257�10−004 −1.244�10−006, 1.751�10−006 1.491�10−004, −3.266�10−004

3 3.931�10−007, 1.919�10−006 −1.022�10−006, 1.455�10−006 1.286�10−006, 9.840�10−007

4 −1.507�10−003, 6.737�10−004 −7.970�10−007, 1.131�10−006 −1.507�10−003, 6.726�10−004

5 −2.253�10−006, 5.470�10−006 −1.295�10−007, 2.309�10−009 −2.121�10−006, 5.467�10−006

FIG. 5. �a� Drifts �solid line� of two initially vertical line dyes �dotted line� at end cycle t /T=1. �b� Location of line dye Ao-Bo at end inspiration t /T=0.5,

A�-1-2-3-4-5-B�. Points 1-2-3-4-5 correspond to those in �a�. The pathlines for points 1 and 5 on inspiration and expiration �marked by I and E, respectively�
are also plotted. �c� Location of line dye Co-Do at end inspiration t /T=0.5, C�-D�. �d� The distribution of y-component instantaneous Stokes drift velocity vI

for point 1 over one period. The instants at the three locations along the pathlines in the upper left insert are marked by the same symbols in the main plot.

In the lower right insert, the inspiratory curve with an inverted sign �solid line� and the expiratory curve with the reversed time t�
/T=1− t /T �dashed line� are

overlapped to compare their magnitudes.
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and Stokes drift velocities in Eq. �7�. The axial and trans-

verse components of Eulerian mean flow is shown in Fig. 4.

Note that the local maximum positive and negative axial

Eulerian streaming velocities occur near the two corners of

the cavity and are asymmetric in sign with respect to the

vertical centerline of the cavity. The nonzero Eulerian

streaming components are a result of asymmetries from

nonzero-Re inertia effects, which do not cancel out between

inspiration and expiration cycles. The distribution of nonzero

axial mean in Fig. 4 agrees with the asymmetry of the

streamlines shown in Fig. 3�b�. Hence, the presence of a

nonzero Eulerian mean flow is due to asymmetry in the fluid

flow between the two half-cycles and the effect decreases

with decreasing Re. On inspiration the fluid flows from right

to left, and on expiration the flow is reversed �see Fig. 3�b��.
The flow fields on inspiration and expiration become more

asymmetric near the upper corners of the cavity than near the

bottom because fluid in the channel experiences immediate

expansion and contraction when flowing over the cavity. The

Eulerian mean magnitude is about three orders smaller

than the mean velocity of the fluid. Such nonzero mean flow

effects are typically observed in other low-Re settings such

as flow over a wavy bottom. For example, Larrieu et al.

showed the formation of positive and negative peaks of Eu-

lerian mean velocities observed between two crests of the

wavy wall.
34

Because the magnitude of the Eulerian mean

velocity uE is small, to assess the sensitivity of uE on mesh

size we present in Appendix B the comparison of the ob-

served maximum Eulerian mean velocities for three different

mesh sizes. The results show that a mesh-independent solu-

tion is ensured. The “fine mesh” of Table IV is henceforth

used.

FIG. 6. �Color� Tracer advection in the cavity of a 2D channel flow with Re=1. Distributions of tracer particles at t /T=: �a� 0, �b� 0.5, and �c� 1. �d� Stretch

rate map calculated in the same region as �a� within the cavity.
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We now consider advection in three regions: the cavity,

the cavity-channel mouth, and the outer channel. First, let us

consider advection of particles inside the cavity. Let A0-B0

and C0-D0 denote the respective right and left vertical mate-

rial lines �comprising a number of Lagrangian particles� at

t /T=0 in Fig. 5�a�. The drifts of two initial vertical lines of

particles at the end of one cycle are also displayed. At end

cycle, the right line dye A0-B0 forms a fold denoted by 1-2-

3-4-5 in Fig. 5�a�. On the other hand, the left line dye C0-D0

is almost reversed back to its initial location. The shapes of

the two dyes at half-cycle t /T=0.5, A�-B� and C�-D�, are

displayed in Figs. 5�b� and 5�c�, respectively. The locations

of points �Lagrangian particles� 1, 2, 3, 4, and 5 at t /T=1 in

Fig. 5�a� are also marked along A�-B� at t /T=0.5 in Fig.

5�b�. At t /T=0 these points are aligned vertically along

A0-B0. During inspiration, these points are advected upward

toward the mouth region where nonzero streaming is domi-

nant �see Fig. 4�. Point 1 is advected to the left wall of the

cavity on inspiration, passing through positive and negative

streaming zones and resting away from the nonzero stream-

ing zone. The �uppermost� thin line marked by “I” in Fig.

5�b� delineates the pathline of point 1 during forward excur-

sion. On expiration, the pathline E almost follows the in-

spiratory pathline I, which is expected in very low-Re flow.

Points 1 and 5 experience almost zero drift. Points 2, 3, and

4 spread along from negative to positive streaming zones.

The resulting Lagrangian drift of the material line at end

cycle in Fig. 5�a� takes the shape of a fold with the under-

shoot of point 2 to the left and the overshoot of point 4 to the

right. For the left line C�-D� at end inspiration shown in Fig.

5�c�, only the tip of the dye reaches the peripheral lower

portion of the positive Eulerian streaming zone, producing

little drift.

To better understand the roles played by Eulerian mean

and Stokes drift on the total �Lagrangian� drift, Table I com-

pares the three terms of Eq. �7�: Lagrangian streaming veloc-

ity �uL�, Eulerian mean velocity �uE�, and Stokes drift veloc-

ity �uS� for the five points along the right line A0-B0. For all

the points, the independently calculated uL, uE, and uS satisfy

uL�uE+uS, �with average error of �0.15%� again validat-

ing Eq. �7�. The undershoot of point 2 to the left and the

overshoot of point 4 to the right that forms a fold as illus-

trated in Fig. 5�a� are reflected by the negative and positive

y-component steady streaming velocities vL.

Table I further shows the dominant contribution of

Stokes drift to the total drift, suggesting the kinematic �or

pathline-dependent� nature of the folding pattern. To further

understand this kinematic nature, we shall examine the con-

tribution of the instantaneous Stokes drift velocity uI in Eq.

�6� from various locations along the inspiratory and expira-

tory pathlines to the total Stokes drift velocity uS�=
uI /N�.
Figure 5�d� shows the distribution of y-component instanta-

neous Stokes drift velocity vI for point 1 �see the insert in the

upper left corner where the inspiratory and expiratory path-

lines are almost overlapped�. On inspiration �solid line� vI is

negative, whereas on expiration �dashed line� vI becomes

positive. The time instants at the three locations along the

pathlines in the insert are marked by the same symbols in the

main plot. The distributions of vI on inspiration and expira-

tion are of nearly the same shape, but opposite sign. vI

reaches a local minimum or maximum when the particle

reaches around the midway between the left and right walls

of the cavity. By inverting the sign of vI for t /T=0−0.5 and

reversing the time axis �t�
/T=1− t /T� for t /T=0.5–1 as

shown in the lower right insert, we can compare vI of the

same particle at approximately the same location, but oppo-

site phase. On the left side of the peak value �in the lower

FIG. 7. �Color online� Tracer advection in a 2D channel with dE=1.2. �a� Advection of an initial line dye �gray� into multiple cavities downstream is shown

in blue. �b� Appearance of layer structure at end inspiration t /T=0.5. The dye in multiple cavities shown in �a� is overlaid on to a single cavity due to

periodicity. �c� Fold structure is formed after one cycle at t /T=1 and covers the cavity-channel mouth region.

041902-9 Steady streaming: A key mixing mechanism Phys. Fluids 23, 041902 �2011�



insert�, the dashed line is slightly higher than the solid line,

signifying the net vI that contributes to vS when the particle

is near the right upper corner �e.g., the triangle in the upper

insert� is positive. On the other hand, on the right side of the

peak value, the dashed line is slightly lower than the solid

line, resulting in the negative net vI that the particle experi-

ences near the left upper corner of the cavity. The positive

and negative local Stokes drift velocities cancel out at end

cycle, resulting in nearly zero displacement in Fig. 5�a� for

point 1. This analysis suggests that if a particle is advected

through positive and negative Eulerian mean regions and

rests at a zero Eulerian mean region at end inspiration t /T

=0.5, the total drift at end cycle may be zero due to the

cancellation effect.

Next, particle advection and stretch rate maps are dem-

onstrated inside the cavity for two purposes. First, it high-

lights the connection between particle advection and fluid

kinematics reflecting through deformation of line elements

expressed by Eq. �2�. Second, it helps elucidate the behavior

of stretch rate in association with Lagrangian drifts. Figures

6�a�–6�c� show a time sequence of the advection of Lagrang-

ian particles at t /T=0, 0.5, and 1, respectively. Here, the

particles initially fill a rectangle, expanding from previous

two vertical line dyes to a surface, to map out the drift in the

core region of the cavity. At end inspiration �Fig. 6�b�� par-

ticles exhibit a spiral shape, equivalent to a combination of

Figs. 5�b� and 5�c�. At end expiration �i.e., end cycle t /T

=1� Fig. 6�c� shows the majority of particles are reversed

back to their original locations, except that a series of folds

are formed and distributed along a curved strip from the right

wall to the bottom wall, and then to the left wall. Figure 6�d�
shows the stretch rate map of the same region within the

cavity. A tongue of higher stretch rate region surrounds an

almost zero mixing core. The higher stretch rate region co-

incides with the advection map shown in Fig. 6�c�, indicating

that the stretch rate can capture and distinguish the regions of

small and large drifts. A higher stretch rate yields greater

separation and fold of dyes.

TABLE II. Lagrangian streaming, Eulerian mean and Stokes drift velocities for points 1, 2, 3, 4, and 5 in the outer channel marked in Fig. 8�b�.

Point Lagrangian streaming �uL ,vL� Eulerian mean �uE ,vE� Stokes drift �uS ,vS�

1 3.585�10−004, −1.073�10−003 −7.160�10−004, 1.061�10−003 1.074�10−003, −2.141�10−003

2 −8.467�10−005, 1.749�10−003 −6.889�10−004, 1.047�10−003 6.027�10−004, 6.955�10−004

3 4.805�10−006, 2.671�10−006 −5.547�10−004, 9.521�10−004 5.566�10−004, −9.621�10−004

4 6.922�10−004, −1.315�10−003 −3.810�10−004, 7.502�10−004 1.076�10−003, −2.076�10−003

5 −6.687�10−005, 2.689�10−003 −3.529�10−004, 7.097�10−004 2.869�10−004, 1.972�10−003

FIG. 8. Drifts of two line dyes in the channel near the two cavity corners for dE=: �a� 1.2, �b� 5. �c� Locations of points 1-2-3-4-5 at end inspiration t /T

=0.5. Their locations at end expiration t /T=1 are marked in �b�.
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Having demonstrated typical advection patterns in the

cavity, we present results of advection and drift in the mouth

region. The visualization of advection of a line dye for which

periodic boundary condition has been applied is shown in

Fig. 7. The initial line is stretched into multiple cavities at

t /T=0.5 as shown in Fig. 7�a�. A large increase in length of

the tracer during the positive half-cycle is noted. The dye is

overlaid back on to a single cavity, resulting in an appear-

ance of “layer structure” in the mouth as shown in Fig. 7�b�.
This is equivalent to the pattern of advection that can be

expected when a dye is placed periodically in the alveolar

mouth of all cavities in a physical scenario. Figure 7�c�
shows the final shape of the dye after one complete advec-

tion cycle, exhibiting multiple folds �as opposed to a single

fold of the right line dye inside the cavity in Fig. 5�a��. The

origin of folding is also attributable to steady streaming and

will be discussed next in conjunction with the drift charac-

teristics in the outer channel.

Advection in particle motion in the outer channel is stud-

ied by releasing two vertical lines of particles in the channel

adjacent to the two corners of the cavity. The final shape of

the tracer after one cycle shows the Lagrangian drift from its

initial condition. Two values of dE=1.2 and 5 are considered.

As seen in Fig. 3, the upstream channel length is dEL. By this

specification, dE→� is a model with a single cavity in an

infinitely long channel, and dE=0 is one where the channel is

completely lined with grooves with no spacing in between.

The drifts of these line tracers at end cycle calculated from

Eq. �1� are shown in Figs. 8�a� and 8�b�. Like Fig. 7�c�,
multiple folding patterns, hereafter referred to as “fold struc-

ture,” are observed. The number of folds is higher for dE

=1.2 than for dE=5. Multiple folds in the tracer clearly indi-

cate that two particles initially located close to each other

might overshoot or undershoot its initial location as observed

inside the cavity �Fig. 5�a��, in the mouth region �Fig. 7�c��,
and in the outer channel �Figs. 8�a� and 8�b��.

The advection characteristics of selected points �La-

grangian particles� 1, 2, 3, 4, and 5 marked in the dye for

dE=5 in Figs. 8�b� and 8�c� for t /T=1 and 0.5, respectively,

are studied. The initial vertical line tracer on the right hand

side is stretched over multiple cavities at end inspiration

t /T=0.5. Only a section of the stretched tracer is shown in

Fig. 8�c�. Points 1 and 4 that consistently fall short of their

initial positions �undershoot� after one cycle are always lo-

cated near the left corner of the cavity at end inspiration. On

the other hand, points 2 and 5 that overshoot their initial

positions after one cycle are located at the right corner of the

cavity at end inspiration. Point 3 which is almost traced back

to its initial location is located over the channel at t /T=0.5.

Table II shows that points 1 and 2 �or points 4 and 5� have

nonzero y-component streaming velocities vL of opposite

signs, and the calculated uL, uE, and uS satisfies uL�uE

+uS with an average error of 0.7%. Hence, it can be con-

cluded that nonzero steady streaming velocities combined

with pathlines of particles that traverse over multiple cavities

�due to large KC� result in the observed advection drift and

folding patterns. The number of folds increases with increas-

ing KC �or decreasing cavity spacing�. If a horizontal line dye

is released in the mouth region as shown in Fig. 7, the re-

sulting fold structure covers the mouth region as shown in

Fig. 7�c�. Unlike the fold structure formed at end cycle, the

layer structure in Fig. 7�b� is irrelevant to mixing and is

observed at end inspiration when a number of stretched trac-

ers appear periodically over multiple cavities.

Axial dispersion in the channel caused by steady stream-

ing shown in Fig. 8 is quantified by Eq. �3�. The data at the

end of first cycle are used as the reference initial condition to

remove the effect of initial transient drift in the first cycle,

which is usually greater than subsequent cycles. This is be-

cause of larger increase of dye interface from a line to folds

in the first cycle while the fold pattern is retained in subse-

quent cycles. The variance shows an exponentially increas-

ing trend with cycle number as seen in Fig. 9 for both cases

dE=1.2 and 5. Additional experiments were carried out and

two important variables that alter the observed fold structure

significantly were realized. These are the Keulegan–

Carpenter number, KC and geometrical ratio L /H �ratio of

cavity length to channel height�. Nevertheless, an elaborate

parametrical study and identification of critical threshold val-

ues of these parameters is beyond the scope of this paper.

In summary, the relation between advection, stretch rate,

steady streaming, and Lagrangian drift has been established

in a simple 2D channel flow for Re=1 and KC=193. It is

shown that a mechanism that leads to large increase in dye

interface length exists in a low-Re flow that arises due to

streaming. With the physical insights gained from this case,

we proceed to report the results in 3D acinar models. Unlike

the 2D channel flow, all cases, except one, presented below

consider uniform expansion and contraction of the 3D duct

and alveolar walls.

B. Alveolar flow structure

The characteristics of the flows in Cases I and II are

briefly described here. In the proximal generations, the main

cavity flow typically consists of a recirculation near the

FIG. 9. Axial dispersion quantified by axial variance as a function of num-

ber of cycle. Subscript “L” is used for variance to indicate that the compu-

tation is carried out on the right vertical line of tracer shown in Figs. 8�a�
and 8�b�.
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proximal wall. The only nondiffusive interaction between the

duct and the alveoli occurs through an entrainment region.

The presence of such an entraining flow is a consequence of

expansion and contraction of alveolar walls. Hence the fluid

exchange to and from the alveoli occurs through a region

located near the proximal wall corner.
18,26

An instantaneous

portrait of stream-traces above and within the alveolus for

Case I is given in Figs. 10�a�–10�c� for Re=2, 1, and 0.52,

respectively. For flows with Re=2 and 1, a recirculation is

present within the cavity near the proximal wall.
26

Figure

10�c� corresponds to a lower-Re flow where recirculation is

absent. Also, for all Re�0.52 including Re=0.06 case which

will be considered later, no recirculation is observed within

the alveolus. The flow structure within an alveolus in Case II,

in general is similar to Case I. However, due to the asym-

metric arrangement of alveoli around the duct, alveolar units

surrounding the duct are ventilated nonuniformly.

Since steady streaming plays an important role in mixing

as demonstrated before with a 2D alveolated channel flow,

Fig. 10�d� shows the contours of the steady streaming Eule-

rian mean axial �y-component� velocity in the y-z plane of an

alveolus for Case I with Re=1 �refer to Fig. 1�d� for the

location of the y-z plane�. The positive and negative stream-

ing velocities are observed in the proximal �right� and distal

�left� corners of the alveolus, exhibiting the same feature as

the 2D rigid-channel case in spite of the 3D moving wall.

For a given Re, the major difference from the rigid-wall case

is that the magnitude of the streaming velocity in the

FIG. 10. �Color� 3D view of instantaneous stream-trace portrait near peak inspiration at t /T=0.24 within and over the alveolar cavity ALV for Case I �see Fig.

1� with �a� Re=2; QA /QD=0.0024, �b� Re=1; QA /QD=0.0047, �c� Re=0.52; QA /QD=0.0095. P, proximal wall; D, distal wall. �d� Contours of Eulerian mean

axial �y-component� velocity in the y-z plane of the cavity ALV for Case I with Re=1.
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moving-wall case is slightly lower than that of the rigid-wall

case and is more asymmetric, having greater positive stream-

ing velocity than negative one. With increasing �decreasing�
Re to 2 �0.52�, the maximum Eulerian axial velocity in-

creases �decreases� approximately by twofold.

C. Flow topology classification

Figure 11 illustrates the flow topology and associated

critical points within the alveolus by showing the instanta-

neous stream-traces in the y-z plane of the alveolus “ALV”

displayed in Fig. 1�d�. The reasons for identifying critical

points are twofold. First, a stagnation saddle point had been

attributed before for chaotic mixing in the alveoli.
10,14,15,18

Second, the observed flow topology helps identify advection

regions of interest for analysis in subsequent sections.

The flow topology can be classified by the first-order

critical points of the flow in the y-z midplane. The type of

critical points depends on the eigenvalues of the velocity

gradient in the vicinity of a critical point.
38,39

The magnitude

of fluid velocity vanishes at a critical point. The eigenvalues

are computed from the characteristic equation ��A�−��I��
=0, where �A�=Aij =�ui /�x j is the Jacobian matrix based on

the velocity gradient in the midplane and �s are eigenvalues,

�1 and �2. The eigenvalues and the type of critical points for

Case I, Re=2 and 1, are listed in Table III at time instants

that roughly correspond to the maximum flow rate during

inspiration and expiration. Two critical points are observed in

Fig. 11. By definition, if both eigenvalues are real with at

least one of them being negative, the critical point is a

“saddle” point �see Fig. 11�b��. If both eigenvalues are com-

plex conjugates, the critical point is called a “center” �see

Fig. 11�c��. The center point is found at the center of the

recirculation, whereas the saddle point is near the proximal

wall. The presence of the saddle point is consistent with

Refs. 14, 17, and 18 who also recognized its presence within

the cavity. Tsuda et al. explained that such a saddle point

arises from superposition of a main recirculating cavity flow

and the radial flow generated by wall motion.
14

As the critical point is in essence a stagnation point, the

magnitude of velocity near the saddle point is relatively

small. During expansion, the saddle point and recirculation

are displaced deeper into the cavity. As shown in Fig. 11�b�,
a saddle point diverts streamlines that pass into it to different

regions, thus leading to uncertainty. The nonzero real part of

the eigenvalue of the center-like point depicts a spiral behav-

ior. The change in sign between inspiration and expiration

indicates the direction of this spiral. That is, the negative

�positive� real part of the center-like spiral point implies that

particles in its vicinity tend to move toward �away from� that

point in a spiral fashion. Although the particles could move

toward the spiral point from any direction, there is no guar-

antee that they would follow the same path in a reversible

manner when moving away from it, resulting in uncertainty.

Hence it was postulated that the presence of critical points

might give rise to mixing in its neighborhood.

The entrainment region, a thin layer attached to the duc-

tal wall, is also marked in Fig. 11. The stream-trace, which

represents the upper bound of this layer, is overlaid with

solid circles. This stream-trace is open to the channel on the

proximal wall side, but is closed and attached to the distal

wall, allowing advection of fluid into or out of the cavity.

The presence of the entrainment region restricts the recircu-

lation eddy to the right hand side of the cavity close to the

proximal wall, and forms a saddle point where recirculating

flow interacts with entrained flow and radial flow induced by

wall motion. In contrast, for the rigid-wall case, like the 2D

channel flow shown in Fig. 3�b�, a separation line is formed

at the mouth region to separate ductal flow from cavity flow

and the recirculation is located approximately at the center of

the cavity.

D. Tracer advection and deformation

In this section, we investigate the Lagrangian drift that

arises in tracer transport in an alveolus. For the tracer advec-

tion experiments below we shall consider the alveolus ALV

marked in Fig. 1�a�. For clarity, different 3D views of the

alveolus are provided in Figs. 1�c� and 1�d�. A cross-shaped

dye is introduced within the cavity and its deformation is

monitored for ten cycles to assess the effect of recirculation

on mixing. A visualization of the final shape of the dye for

three different flow conditions is shown in Fig. 12. The four

arms of the dye are numbered, aiming to observe advection

TABLE III. Critical points in the flow.

Re Time Eigenvalues Type

Location

w/L h/L

Re=2 0.48� 0.203�5.63i Spiral 0.366 0.477

15.194, �0.98 Saddle 0.03 0.187

1.52� −0.2054�5.6i Spiral 0.38 0.482

0.987, �15.83 Saddle 0.032 0.192

Re=1 0.48� 0.03�3.33i Center 0.2665 0.447

2.542, �8.099 Saddle 0.046 0.207

1.52� −0.036�3.3i Center 0.267 0.45

8.351, �2.74 Saddle 0.045 0.21

FIG. 11. �a� Stream-traces in the y-z plane of the alveolus ALV �see

Fig. 1�d�� for Case I, Re=1 at t /T=0.24. The entrainment layer is denoted

by a double-sided arrow, and its upper bound is delineated by the stream-

trace marked with circles. P, proximal wall; D, distal wall. Enlarged view of:

�b� a saddle point, �c� a center point �associated with recirculation�. For a

saddle point, Im��1�=Im��2�=0, Real��1��Real��2��0; for a center point,

Real��1�=Real��2�=0.
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in four regions of the cavity. The dye experiences an increase

in the interface area due to the alveolar flow: �45% increase

for Re=2�QA /QD=0.0024�, �12% for Re=1�QA /QD

=0.0047� and �3.5% for Re=0.52�QA /QD=0.0095�. Similar

to the observed folding phenomena in the 2D case of Fig. 6,

a stretch of material into the proximal corner is observed due

to steady streaming. Again indicative of the Re effects, the

drift is more pronounced for Re=2 than Re=1 and for Re

=1 than Re=0.52. In particular, at Re=2, blue arm #1 is

folded and stretched toward the upper proximal wall, and

arm #3 near the mouth region is also highly stretched. At

Re=1, the recirculation zone is reduced �see Figs. 10 and

11�, and thus only stretch of arm #2 is evident. Arm #3 still

experiences stretching because of its proximity to the mouth

region. At Re=0.52, the recirculation is absent �see Fig. 10�
and only the stretch of arm #3 seems significant. The in-

crease in the red-blue interface area ratio is correlated as

roughly quadratic with increasing Re �see Fig. 12�d��. It is

also useful to plot the ratio as a function of the flow ratio

QA /QD defined earlier. The interface area increases almost

exponentially with decreasing values of QA /QD.

Previously the advection and deformation of tracers in-

side the cavity are examined by a cross-shaped dye. Next, a

planar tracer is advected for one full cycle. The tracer is

FIG. 12. �Color� Advection patterns for an initial cross-shaped dye within the cavity ALV of Case I for �a� Re=2; QA /QD=0.0024, �b� Re=1; QA /QD

=0.0047, and �c� Re=0.52; QA /QD=0.0095 after ten periods of breathing. The blue dye is the initial shape of the dye and the red dye is the deformed shape

after advection. �d� Correlation of red-blue interface area ratio with QA /QD and Re.
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constructed using �20 000 particles and placed initially in

the y-z plane shown in Fig. 1�d�. The advection is carried out

in a complete 3D sense utilizing all the three velocity com-

ponents. Figure 13 shows advection characteristics in the

midplane for Case I, which are of particular interest for rea-

sons discussed in Sec. III A in association with steady

streaming. For studying the characteristics of deformation

within the alveolus, the advection pattern in strategic regions

within the planar tracer are separately followed. These re-

gions are depicted by different colors and illustrated in Fig.

13. The blue tracer, on average, covers the region inside the

cavity where recirculation �in the neighborhood of the center

point� is observed. Mixing in the neighborhood of the proxi-

mal region �associated with the saddle point� within the al-

veolus is identified using the green tracer. As observed in

Fig. 11, the midplane contains a saddle point near the proxi-

mal cavity wall. The rest of the cavity is colored in gray.

The layered appearance of the gray tracer at end inspi-

ration, as seen in the middle panel of Figs. 13�a�–13�c�, is a

visualization of traverse of the tracer in multiple alveolar

units and has already been discussed in conjunction with Fig.

7�b�. Because the axial distance traveled is greater for Re

=2 than Re=1, and for Re=1 than Re=0.52, the number of

layers observed is higher in Fig. 13�a� than Fig. 13�b�, and in

Fig. 13�b� than Fig. 13�c�.
Mixing within the alveolus is visualized by the deforma-

tion of the blue and green regions. For Re=2 the blue region

at end inspiration t /T=0.5 is stretched in a manner similar to

the 2D channel case shown in Fig. 6�b�. Recall that in the

presence of alveolar and ductal wall expansion, the recircu-

lation eddy is shifted toward the proximal wall to accommo-

date the entrained flow. Therefore, the blue dye can hardly

reach the distal wall of the cavity. At end expiration �i.e., end

cycle, t /T=1�, the fold structure similar to the 2D case in

Fig. 6�c� is observed. The fold structure extends further up to

the green tracer region. At the mouth region, the fold struc-

FIG. 13. �Color� Material advection in the y-z plane of the cavity ALV of Case I �see Fig. 1�d�� with �a� Re=2; QA /QD=0.0024 �b� Re=1; QA /QD

=0.0047, �c� Re=0.52; QA /QD=0.0095 at t /T=0 �top panel�, 0.5 �middle panel�, and 1.0 �bottom panel�. P, proximal wall; D, distal wall. The blue �green� dye

in �a� and �b� covers a center-like spiral point �a stagnation saddle point�. There is no critical point in �c� due to very low-Re.
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ture is also formed at t /T=1. The particle distribution at the

mouth region in association with folds appears to shift to the

proximal wall side, closer to the entrainment layer, especially

at Re=2. The appearance of fold structure implies mixing

which will be quantified later. For Re=1, the blue tracer

region is smaller than that of Re=2 because the size of the

recirculation eddy reduces in size. A smaller recirculation

yields smaller stretching of the blue tracer at peak inspiration

�see Fig. 13�b�, middle panel�. The fold structures inside the

cavity and at the mouth region are also observed in Fig.

13�b�, bottom panel. For Re=0.52, there is no recirculation,

nor a stagnation saddle point. The green tracer is almost

restored to its original shape as shown in Fig. 13�c�, bottom

panel. Nonetheless, the fold structure at the mouth region is

still observed. We also performed advection experiment for

tracers released within the cavity for Re=0.06 case men-

tioned earlier in Sec. III B. The net displacement of particles

within the cavity after five cycles is observed to be three

orders-of-magnitude smaller than observed in the Re=0.52

case.

E. Stretch rate map

The spatial distribution of stretch rate, also known as a

“stretch rate map,” represents stretching histories of La-

grangian particles seeded over an area and computed by Eq.

�2�. First, stretch rate within the cavity is considered. Figure

14 depicts slices of stretch rate inside the alveolus in the y-z

plane for Cases I and II. Relatively high-stretch rate zones

are limited to localized regions within the alveolus. In Fig.

FIG. 14. �Color� Maps of stretch rate �sl� after five cycles in the y-z plane of the alveolar cavity for: �a� Case I, Re=2.0, QA /QD=0.0024, �b� Case I, Re

=1, QA /QD=0.0047, �c� Case II, Re=1; QA /QD=0.0047, �d� in the mouth region of Case I, Re=1. For Case I the alveolus ALV in Fig. 1�a� is examined. For

Case II two alveoli marked by “A” and “B” in the two inserts of �c� are examined with the left one A closer to the ductal entrance E. The distributions of

particles covering the recirculation region of Case I �the blue dyes in Figs. 13�a� and 13�b�� after five cycles are overlaid with stretch rate maps in �a� and �b�,
and the distribution of particles in the mouth region is overlaid in �d�.
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14�a�, a tongue of high stretching surrounds a region of al-

most zero stretching, resembling the fold structure inside the

cavity shown in Figs. 6�c� and 6�d�. The high-stretch-rate

regions near the proximal wall in Figs. 14�a� and 14�b�
roughly correspond to the spreading of the blue tracer toward

the proximal wall in Figs. 13�a� and 13�b�. The distributions

of particle tracer after five cycles are superimposed on the

stretch rate maps in Figs. 14�a� and 14�b�, confirming the

physical correlation between stretch rate and tracer deforma-

tion. The shape and length of the tongue of this high-stretch

region are dependent on the size and shape of recirculation

and its advection of particles to the steady streaming zone as

discussed in Sec. III A. When Re=2, the size of recirculation

is larger. Hence the high-stretch tongue is larger in length,

extending into the cavity. On the other hand, when Re=1, the

size of recirculation is small and is more shifted toward the

proximal wall, resulting in the observed high-stretch region

in Fig. 14�b�. The stretch rate map for two alveolar units

�marked in Fig. 1�b�� for Case II with Re=1 are shown in

Fig. 14�c�. As in Case I, the high-stretch rate is observed near

the proximal region. Although both Cases I and II in Figs.

14�b� and 14�c� have the same Re at the ductal entrance,

more alveolation in Case II enhances stretch rate by �4

times. In addition, the left alveolus has higher stretch rate

than the right one because of the geometrical effect.

In Fig. 14�d�, the stretch rate map at the mouth region of

Case I with Re=1 is overlaid with the tracer distribution

after five cycles. The high stretch-rate distribution is corre-

lated well with the tracer distribution. Transport in this re-

gion represents the nature of duct-alveoli interaction. The

stretch rate map in the alveolar mouth region is of higher

complexity, stratified in appearance with alternating higher

and lower values of contours, resembling the fold structure

shown in Fig. 7�c� due to steady streaming. It is noted that

the stretch rate at the mouth region is an order-of-magnitude

higher than inside the cavity, suggesting that stretching and

folding of dye interface in the mouth region is much more

effective than inside the cavity.

To correlate the high-stretch rate region �effective mix-

ing region� inside the cavity with the flow topology �e.g.,

center and saddle critical points, recirculation, and entrain-

ment�, Fig. 15 overlays the stream-traces near peak inspira-

tion with the stretch rate map. This suggests that the high

stretch rate �effective mixing� takes places along the periph-

ery of the recirculation and at the mouth region in associa-

tion with entrained flow and it does not necessarily coincide

with the saddle point. The center point of the recirculation at

Re=2 appears to contribute little to mixing.

The time-averaged stretch rates shown in Fig. 15 can be

averaged over the entire flow field to get a single-value

volume-averaged stretch rate at various conditions for com-

parison. The volume-averaged stretch rate thus obtained

gives the mixing rate solely determined by the kinematics of

the flow, and is referred to as kinematic mixing rate. Figure

16 plots the variation of mixing rate with QA /QD and Re for

the cases considered. The mixing rate is approximately

equivalent to the separation rate of adjacent array of

particles.
29

The stretch rate in Eq. �2� is a logarithmic rate.

Hence, if the average stretch rate is “sl” after time “nT,” the

approximate separation between particles roughly increases

FIG. 15. �Color� Stream-traces near peak inspiration at t /T=0.24 overlaid with stretch rate map for Case I with Re=: �a� 2, �b� 1.
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by 100�esl�nT−1�%. The mixing rate for Case I is �0.04 at

Re=2 and �0.005 for Re=1. The average separation be-

tween particles in the flow roughly increases by �65% when

Re=2�QA /QD=0.0024�, and by only �7% for Re

=1�QA /QD=0.0047�. The mixing rate is �0.02 in Case II for

Re=1�QA /QD=0.0047� and decreases to �0.009 for Re

=0.6�QA /QD=0.008�. As illustrated in Fig. 12�d�, a rapid

reduction in mixing rate is evident for both Cases I and II as

Re decreases and QA /QD increases down the acinar tree.

F. Dispersion in alveolated duct

While the previous section focuses on convective dis-

placement of particles within the alveolus and at the alveolar

mouth region, this section is primarily concerned with axial

dispersion in the ductal region of the acinar airways. The

streaming mechanism governing axial spreading of a dye in a

2D alveolated channel is analyzed in Sec. III A. Based on the

definition of dE in Sec. III A, dE=1.2 for Case I and dE=0 for

Case II. For the 3D geometry considered here, it is not sur-

prising that a similar advection pattern would be observed.

But the motion of the wall introduces some changes to the

advection characteristics of particles close to the cavity. Un-

like the rigid-wall case, a fraction of particles from the duct

and from the alveolar mouth penetrate deeper into the cavity

during inspiration. These particles may not return back to its

original location. Also, the fraction of the particles entering

the alveoli is small �observed to be less than �2% when

Re=1�. The net dispersion of particles in the duct studied in

this section is hence primarily attributed to the axial spread-

ing mechanism. For illustrative purposes, the advection of a

planar dye released in the duct near the proximal wall is

displayed in Fig. 17�a�. Similar to the 2D-fold structure

shown in Fig. 8, a 3D-fold structure in the dye after one

advection cycle is observed. This drift is the 3D equivalent

of axial spreading caused by steady streaming as discussed

before. We now proceed to quantify the observed dispersion

in the axial direction.

A bolus consisting of �40 000 particles are released in

the entrance of the alveolar duct and advected through mul-

tiple cycles. Dispersion of the bolus is calculated by Eq. �3�.

The particle location at the first cycle is treated as the base

state in Eq. �3� to remove the initial transient effect. Two

different initial distributions of bolus with the same particle

flux density, number /�m3, are considered: �1� a parabolic

distribution and �2� a uniform particle flux distribution. Both

distributions are introduced at the entrance of the alveolar

duct. Figures 17�b� and 17�c� show the evolution of axial

variance for Case I and Case II at different QA /QD and Re.

There exists significant difference in the estimated dispersion

for the two initial distributions. For example, when Re=1,

about threefold increase for Case I and fourfold increase for

FIG. 16. Effects of QA /QD and Re on kinematic mixing rate.

FIG. 17. �Color� �a� Drift of an initial rectangular-plane dye �blue� in the

duct for Case I, Re=1. The final shape of the dye after one cycle is in red.

The insert shows the same when looking into the x-plane. ��b� and �c�� Axial

variance vs cycle number in Case I and Case II, respectively. The variances

for Re=0.52 have been amplified by five times.
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Case II are observed at the end of five time periods as shown

in Figs. 17�b� and 17�c� clearly illustrating the accelerated

dispersion due to streaming. The extent of the axial spread of

the tracer increases as we move away from the centerline as

evident in Fig. 17�a�. This can also be seen in Fig. 8�b� for

the 2D case, where the drifts of points 1 and 2 are smaller

than those of points 4 and 5. In an initial parabolic distribu-

tion, the concentration of particles decreases away from the

duct centerline. Hence, dispersion of particles in a region of

higher particle concentration, which is near the ductal center,

is less. The importance of geometry on axial dispersion can

be related back to the streaming mechanism discussed in

Sec. III A. It is recollected that the variances in Fig. 9 for the

two cases of dE differed significantly. Hence, it can be con-

cluded that geometry plays a crucial role in the accurate es-

timation of dispersion in acinar airways.

The effect of Re on the resulting dispersion is also sig-

nificant. For example, variance in Cases I and II drops by

one order-of-magnitude when Re is halved, for both initial

flux distributions.

IV. DISCUSSION AND CONCLUSIONS

Alveolar flow is a time-periodic low-Re flow phenom-

enon occurring in open cavities. Cavities, in general, are

stagnant pockets, which show weak transport unless modi-

fied by some form of temporal perturbation.
7

The extent of

mixing achieved by low-Re acinar flow, under normal

breathing conditions, reversible wall motion and perfectly

sinusoidal ductal flow is the topic of the current investiga-

tion. Improved understanding of acinar mixing helps in bet-

ter prediction of particle transport, dispersion, and the ulti-

mate deposition of fine particles deep in the lung. For

example, bolus dispersion studies cannot individually simu-

late flow and transport in each region of the acinus, due

entirely to its complexity. Mixing factor is a term commonly

used in these studies to denote the fraction of particles trans-

ported from the inhaled to residual air in the alveolar region.

This factor is mostly empirical and accounts for the flow-

induced mixing. Its importance can be quickly realized from

the observation that 0.5–1 �m particles show an order-of-

magnitude difference in deposition fraction between cases of

zero and total mixing.
40–42

Hence, obtaining average mixing

estimates is a main objective of this work.

The mixing measures rely on the estimation of particle

motion due to nonzero inertia and geometry. The important

contributions of this paper may be summarized as follows.

Acinar flows belong to a unique category of low-Re high KC

oscillatory flows. An open cavity geometry is used as a

simple prototype for alveoli, to observe a Lagrangian drift

and hence an increase in interface length. This is shown to

result in advective mixing studied from different

viewpoints—mixing in the duct, mixing within the alveolus

and their interaction. The origin of the Lagrangian drift in

these regions can all be explained by the steady streaming

phenomenon in an oscillatory flow. Using this basic under-

standing of the mechanism, estimates such as tracer defor-

mation, stretching, and dispersion are used to quantify this

advective mixing in 3D acinar models. Critical points in the

flow are also identified within the cavity based on an analysis

of eigenvalues computed from the velocity gradient in the

midplane. However, they are not physically correlated with

regions of high stretch rate.

The steady streaming mechanism also accounts for con-

siderable axial dispersion in alveolated channels and ducts.

Such a drift mechanism exists due to alveolation even in the

absence of wall motion. Previously, Henry et al. observed a

“finger-like” stretch of the dye interface in their multicell

alveolar model.
18

Their model was one of expanding and

contracting during one cycle. The exact origins of this finger-

like structure in the tracer advection were not discussed.

Also, it was reported that the formation of this structure in

the duct was associated with the presence �or absence� of

recirculation. On the contrary, our analysis and results clearly

indicate that the presence of recirculation inside the cavity

have no bearing on the observed drift in the dye. Instead, the

observed drift in tracer transport is of hydrodynamic origin

and can be directly correlated with steady streaming. Such

low-Re hydrodynamic streaming-induced phenomenon has

been recorded earlier in different environments. For ex-

ample, Flekkøy et al. observed similar “pinch” dispersion of

tracer in a Hele–Shaw cell in the presence of an obstacle.
36

More recently, Larrieu et al. observed Lagrangian drift for

oscillatory flow over a wavy wall due to streaming.
34

Wang

and Ottino observed that increasing KC increases disorder in

tracer motion in a lid-driven cavity flow.
43

The present find-

ing is unique to low-Re open cavity flows directly applicable

to dispersion in acinar airways with a large displacement

parameter, KC.

We have also supplemented our mixing study with

stretching analysis. Haber et al. investigated flow inside a

hemispherical cavity.
17

In their study of mixing, stretching

was computed using �D� :D� �1/2 where the velocity gradient

tensor D� was calculated through advection of an array of

particles, although they did not arrive at a parametrical mix-

ing estimate. The stretch rate map for Case I agrees qualita-

tively with those of Haber et al., showing higher stretch rate

near the proximal wall.
17

The conclusions presented thus far have important

physiological implications with respect to the fate of inhaled

pharmaceutical and pollutant particle clouds in the acinus. In

the adult human lung, less than �13% of alveoli originate

from bronchioles in the first three acinar generations, while

almost �87% originate from alveolar ducts and sacs.
8

Under

normal breathing conditions, Re is typically 0.6–1.0, for the

first few acinar generations. Hence, when one neglects gravi-

tational and diffusional mechanisms, advective mixing of an

inhaled bolus could originate in respiratory bronchioles �and

more significantly for Re�1� and may extend up to the be-

ginning of alveolar ducts. In the later generations �when

Re�0.52�, the flow-induced dispersion and the resulting

convective mixing inside the cavity are negligible. But, the

unique combination of low-Re, high-KC oscillatory shear

flow in the presence of an alveolar cavity causes nonnegli-

gible dispersion in the alveolar duct. The low-Re flow in

distal generations could still achieve effective mixing

through other mechanisms like parent-daughter branching,
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hysteresis in wall motion and ductal-alveolar flow phase

lag
17

and is a topic of future work.

The extrapolation of the mixing measures and correla-

tions to the entire acinar region of the lung should be done

with caution and the predictions may not completely hold

true in the lung in-vivo. Just like the upper airways, the

acinus also consists of bifurcations or branching causing a

progressive reduction in Re along the acinar tree. Although

the low-Re flow quickly assumes a parabolic velocity profile

in the duct space at the end of one branch before entering the

daughter branch, the role of the bifurcation on mixing is not

completely known. The present approach cannot capture this

effect as it requires an elaborate geometry of the entire aci-

nus although certain efforts in this direction have been at-

tempted recently.
11,12

Harrington et al. and Sznitman et al.

have performed computations in a bifurcation model at

low-Re.
11,12

But none of these works have performed advec-

tive mixing analysis or dispersion estimates. Recent efforts

have used high-resolution Computed Tomography �CT�
based models of alveolar sac to perform simulation.

44
Apart

from the geometrical variations, asymmetry effects, like

waveform differences between inspiration and expiration and

hysteresis in wall motion,
17

are yet to be investigated.
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APPENDIX A: VALIDATION OF STOKES DRIFT

Equation �7� for the Eulerian mean and Stokes drift ve-

locities is validated with a progressive-wave problem which

has an analytical solution. Consider a 2D progressive wave

having a velocity profile of u=U�y�sin��x-�t�i
+V�y�cos��x-�t�j with U�y� and V�y� satisfying continuity

�U+dV /dy=0. Here � is the wavenumber and � is the wave

frequency, and i and j are unit vectors in the respective x and

y directions. For this case, the Eulerian mean velocity uE is

zero and the Stokes drift velocity reads uS

=d2�V2
/4��� /dy2i. The set of parameters T=10, �=2� /16,

and U=0.02 are purposely chosen so that the analytical

Stokes drift velocity uS=�U2
/2�i=1.25�10−04 i is of the

same order-of-magnitude as those in the open-cavity flows

presented in Sec. III A. Our numerical advection procedure

and the formulation given in Sec. II A and Eq. �7� predict a

Stokes drift velocity within 0.5% of this analytical value.

APPENDIX B: MESH SENSITIVITY TEST

For the 2D open cavity flow at Re=1 considered in

Sec. III A, the flow solution is computed in three different

meshes. The mesh details are given in Table IV. As the mesh

is unstructured, the size of the closest node to the cavity

corner is reported. The Eulerian mean velocity uE is com-

puted. The peak of the Eulerian mean is reported at the same

location near the corner for all the three cases. The percent-

age error between the fine mesh and the very fine mesh is

�0.2%.
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