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Summary

The steady (acoustic) streaming associated with a spherical drop displaced from the velocity
antinode of a standing wave is studied. The ratio of the particle size to the acoustic wavelength is
treated as small but non-zero, and the solution is developed in the form of a two-term expansion
in terms of the corresponding smallness parameter. The drop viscosity is assumed to be much
higher than that of the surrounding fluid, which is the case for a drop in a gas medium. There are
essentially three distinct regions where the steady streaming flow is analysed: inside the drop
(internal circulation), in the Stokes shear-wave layer at the surface on the gas side, and the gas
outside the Stokes layer (the outer streaming region). Solutions for the internal circulation and
the outer streaming are obtained in the limit of small Reynolds number.

Despite the gas-to-liquid viscosity ratio being small, the outer streaming may be dramatically
affected by the fact that the sphere is liquid as opposed to solid. The parameter that measures
the effect of liquidity is essentially the viscosity ratio divided by the relative (to the particle
size) thickness of the Stokes layer. The case of a solid sphere is recovered by letting this
parameter go to zero.

1. Introduction

Acoustic levitation is now in frequent use as an advanced technology for experiments in contain-
erless processing. For such systems, the acoustic field provides the radiation pressure necessary
to levitate a liquid drop in a gravitational field. The studies relating to the radiation pressure on
disks and spheres were carried out as early as the 1930s by King (1, 2). Subsequent investigations
on the radiation force have been conducted for both drops and bubbles by many researchers (such
as Apfel (3), Asaki and Marston (4), Eller (5), Lee and Wang (6), Wu and Du (7), Yosioka and
Kawasima (8)).

Under microgravity conditions, acoustic fields can be used to control, position, and stabilize
particles. In relation to this application, experimental work has been conducted by Trinh (9, 10).
In addition, there are analytical studies such as that by Lee and Wang (11) as well as Yarin et al.
(12). Lee and Wang (11) considered an oscillating sphere slightly displaced from the antinode of a

†〈sadhal@usc.edu〉
Q. Jl Mech. Appl. Math, Vol. 59. No. 3 c© The author 2006. Published by Oxford University Press;

all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Advance Access publication 9 June 2006. doi:10.1093/qjmam/hbl007

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/3/377/1852238 by guest on 20 August 2022



378 A. Y. REDNIKOV et al.

standing wave for the frequency parameter (defined below) |M | � 1. In their analysis, the Stokes
layer is accounted for by allowing a tangential slip velocity on the surface of the sphere. The flow
field for the displaced sphere is seen to be asymmetric about the equatorial plane of the sphere. This
asymmetry is attributed to the asymmetric velocity distribution around the particle as a consequence
of the compressibility of the oscillating flow.

With low gravity, liquid drops are generally undistorted and tend to be spherical in shape. Even
with ground-based studies, the distortion of small liquid drops is often negligible and we may
assume them to be spherical in shape. Drops larger than a few millimetres tend to deform into
spheroidal shapes. The case of a highly distorted non-spherical drop has been numerically studied
by Yarin, Pfaffenlehner and Tropea (13). Among the many results, they provide a relationship be-
tween the aspect ratio of the deformed drop and the sound pressure level. This is found to have good
agreement with measurements. Also, quite recently, Rednikov and Sadhal (14) gave the analytical
solution for a solid spheroid placed at the velocity antinode. They showed that although topolog-
ically the streaming around an oblate spheroid is quite similar to that for a sphere, the streaming
intensity grows appreciably with decreasing minor radius. Additionally, the zone of most intense
streaming shrinks and localizes to the vicinity of the equator.

There is fundamental interest in the streaming phenomenon that represents the non-zero time-
averaged mean of a fluctuating flow. This is often the result of the nonlinear interaction of an oscil-
latory flow with a boundary. Some of the earliest works go back many decades (see, for example,
Schlichting (15)) and perhaps even to as early as 1883 (Lord Rayleigh (16)). There are a few re-
views of acoustic and other oscillatory-type streaming in the literature (17 to 20), as well as several
applications to cylinders and spheres (21 to 24). Much of the earlier theoretical activity relevant to
streaming about particles has been focused on solid spheres (Gopinath (25, 26), Riley (21)), and
there has been little investigation on the effect of the boundary-layer interaction with a fluid parti-
cle. The problem of streaming about an oscillating bubble has been studied by Davidson and Riley
(27), and by Longuet-Higgins (28) who also included radial pulsations. Zhao, Sadhal and Trinh
(29) examined the streaming about a high-viscosity liquid drop placed at the velocity antinode of a
standing wave in a gaseous medium. One of their interesting results was the cessation of recircu-
lation in the Stokes layer for certain ranges relating the frequency parameter and the liquid-to-gas
viscosity ratio.

In the present study, we develop the flow field dealing with a liquid sphere in a gas medium
displaced between the velocity node and the antinode in acoustic levitation. The analysis is carried
out for a high-frequency standing acoustic wave which is used to levitate particles in Earth gravity
or to stabilize particles in low-gravity situations. The drop is considered to have sufficient mass so
that it occupies a stable position in the acoustic field and it does not experience significant body
oscillations. A perturbation procedure based on small-amplitude and high-frequency assumptions
is employed to derive the flow fields when particles are placed in the acoustic field. We choose
axially symmetric spherical polar coordinates (r, θ) with the origin at the centre of the sphere. The
z-axis passes through the centre of the sphere and points along the direction of vibration, and z = 0
represents the velocity antinode closest to the sphere, while z = z0 is the centre of the sphere. The
following dimensionless parameters are used:

M2 = ωa2/ν � 1, ε = U∞
ωa

� 1, k̄ = ka and Rs = ε2M2 � 1,

where U∞ is the velocity amplitude of the standing wave, ω is the frequency, ν is the kinematic
viscosity of the gas medium, a is the drop radius, k = ω/c is the acoustic wavenumber, M is the
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STEADY STREAMING AROUND A SPHERICAL DROP 379

frequency parameter, ε is the amplitude parameter, which is actually the reciprocal of the Strouhal
number. The high-frequency and small-amplitude case corresponds to M � 1 and ε � 1, re-
spectively. We assume that the particle size is much smaller than the acoustic wavelength, that is,
k̄ � 1, furthermore, Rs , the expected value of the Reynolds number for the resulting steady stream-
ing (the streaming Reynolds number (21)), is also assumed to be small.

The flow parameters are scaled as follows:

u = u∗∗∗

U∞
, ψ = ψ∗

U∞a2 , r = r∗

a
, z = z∗

a
, ϕ = ϕ∗

U∞a
,

t = ωt∗, p = p∗

ρ∗
c U∞ωa

, and ρ = ρ∗c2

ρ∗
c U∞ωa

,

where ρ∗
c is the unperturbed medium density, c is the speed of sound, ρ∗ is the density perturbation

due to the acoustic wave, and p∗ is the acoustic pressure. The flow field will be described by
the stream function ψ∗ and the velocity potential ϕ∗. The asterisks denote dimensional variables
while the dimensionless variables are without asterisks (although dimensional constants do not have
asterisks). The dimensionless continuity and momentum equations may be written as

k̄2 ∂ρ

∂t
+ ∇·∇·∇·u + εk̄2∇·∇·∇·(ρu) = 0 (1.1)

and

(1 + ρεk̄2)
∂u
∂t

+ ε(1 + ρεk̄2)u ·∇·∇·∇ u = −∇∇∇ p + 1

M2 ∇2u, (1.2)

respectively. By using the adiabatic relation ρ∗ = p∗/c2 with c as the speed of sound, the dimen-
sionless acoustic pressure and density can be shown to be equal for γ = cp/cv 	 1, that is,

p = ρ (1.3)

to leading order.
A particle levitated in a gravity field would position itself between the velocity node and the

antinode. To consider such a problem, we expand the standing-wave velocity u∗
z such that

u∗
z = U∞ cos(kz∗)eiωt∗ = U∞ cos(k̄z)eit

= U∞[cos k̄z0 − k̄(z − z0) sin k̄z0 + O(k̄2(z − z0)
2)]eit (1.4)

represents the local velocity in the neighbourhood of the sphere centred at (z = z0). As mentioned
earlier, z0 is the dimensionless displacement of the centre of the sphere from the velocity antinode.
The first term in the expanded version of equation (1.4) is just the far-field velocity for the situation
when the sphere is at velocity antinode of a standing wave, and the second term is the far-field
velocity for the case when the sphere is positioned at the node. The cases k̄z0 = 0 and k̄z0 = 1

2π
would correspond to cases of a sphere placed at the velocity antinode and node, respectively. The
displaced sphere problem is a combination of Riley’s (21) problem and the problem discussed in
the paper by Zhao, Sadhal and Trinh (30), together with additional nonlinear terms.

While the fluid within the Stokes layer near the surface of the sphere has vorticity to meet the
continuity conditions on the interface, the flow outside the layer behaves irrotationally as in a sound
field. This outer flow field can therefore be expressed as a velocity potential,

u = ∇∇∇ϕ. (1.5)
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380 A. Y. REDNIKOV et al.

The dimensionless far-field potential function, corresponding to equation (1.4), takes the form

ϕ∞ =
[

1

k̄
sin k̄z0 + (z − z0) cos k̄z0 − 1

2 k̄(z − z0)
2 sin k̄z0 + O

(
k̄2)] eit

=
[

1

k̄
sin(k̄z0) + r cos(k̄z0)P1(µ̄) − 1

6 k̄r2 sin(k̄z0)

− 1
3 k̄r2 sin(k̄z0)P2(µ̄) + O

(
k̄2)] eit , (1.6)

where Pn(µ̄) denotes Legendre polynomials, and µ̄ = cos θ . With the spherical coordinate system
centred at z = z0, it should be noted that z − z0 = rµ̄. From momentum equation (1.2), we have

∂u∞
∂t

= −∇∇∇ p∞, (1.7)

and using equation (1.5) we obtain

p∞ = ρ∞ = −i

[
1

k̄
sin(k̄z0) + r cos(k̄z0)P1(µ̄)

− 1
6 k̄r2 sin(k̄z0) − 1

3 k̄r2 sin(k̄z0)P2(µ̄)

]
eit, (1.8)

where the real part applies.

2. Solution

In this section, we analyse the flow field by the singular perturbation method using ε = U∞/(ωa) as
a small parameter. In the present analysis, parameters with ( ˆ) represent properties of liquid inside
the drop, and parameters without ( ˆ) correspond to the gas region outside the drop.

By applying the perturbation method, we expand the velocity, acoustic pressure and density out-
side the boundary layer in powers of ε as follows:

u = u0 + εu1 + O(ε2), (2.1)

p = p0 + εp1 + O(ε2), (2.2)

and

ρ = ρ0 + ερ1 + O(ε2). (2.3)

These expansions are substituted into equations (1.1) and (1.2) to form a hierarchy of equations in
orders of ε. We treat here the leading-order (O(1)) and O(ε) terms.

2.1 Leading-order solutions

2.1.1 Outer region. From the continuity equation (1.1), the leading-order velocity satisfies

k̄2 ∂ρ0

∂t
+ ∇∇∇ · u0 = 0. (2.4)
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STEADY STREAMING AROUND A SPHERICAL DROP 381

From the momentum equation (1.2), we find that

∂u0

∂t
= −∇∇∇ p0, (2.5)

which indicates that the leading-order outer flow behaves irrotationally. Thus, we can introduce the
potential function ϕ0, such that

u0 = ∇∇∇ϕ0. (2.6)

The use of (2.4) and (1.3) in (2.5) results in the standard wave equation,

k̄2 ∂2ρ0

∂t2 = ∇2ρ0 or k̄2 ∂2ϕ0

∂t2 = ∇2ϕ0. (2.7)

Upon examining the far-field behaviour of ρ given by equation (1.8), we see that for small k̄, the
dominant term is −i(1/k̄) sin(k̄z0)eit . Therefore, maintaining the same order for ρ0, and using (2.6),
the continuity equation (2.4) becomes

k̄ sin(k̄z0)e
it + ∇2ϕ0 = 0. (2.8)

The solution to (2.8) with the far-field condition (1.6) is found to be

ϕ0(r, µ̄) =
[(

A0 + B0

r

)
+
(

A1r + B1

r2

)
P1(µ̄) +

(
A2r2 + B2

r3

)
P2(µ̄) + 1

6 k̄ sin(k̄z0)r
2
]

eit

(2.9)

in which A0, B0, A1, B1, A2 and B2 are to be determined. Upon matching with the far-field potential
ϕ∞, we obtain

A0 = 1

k̄
sin(k̄z0),

A1 = cos(k̄z0),

A2 = − 1
3 k̄ sin(k̄z0).

On the surface of the sphere, the normal velocity is taken to be zero because surface oscillations are
neglected for the present range of interest. This gives

B0 = − 1
3 k̄ sin(k̄z0),

B1 = 1
2 cos(k̄z0),

B2 = − 2
9 k̄ sin(k̄z0).

Thus the expression for the potential ϕ0 takes the form

ϕ0 =
{

1

k̄
sin(k̄z0) + cos(k̄z0)

(
r + 1

2r−2
)

P1(µ̄)

− 1
3 k̄ sin(k̄z0)

[(
r−1 + 1

2r2
)

+
(

r2 + 2
3r−3
)

P2(µ̄)
]

+ O(k̄2)

}
eit . (2.10)
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382 A. Y. REDNIKOV et al.

This result may be rigorously derived from the full solution of equation (2.7) in the form

ϕ0(r, µ̄) =
2∑

n=0

[
an jn(k̄r) + bn yn(k̄r)

]
Pn(µ̄)eit , (2.11)

where jn(k̄r) and yn(k̄r) denote spherical Bessel functions, r is the dimensionless radial coordinate,
and the angular eigenfunctions are limited to those in the far-field potential given in (1.6). Satisfying
the zero normal velocity condition at r = 1 and satisfying (1.6) for the far-field by expansions in
small k̄ will yield a solution consistent with that from equation (2.8), that is, the above result (2.10).

The leading-order acoustic pressure p0 and density ρ0 are then given by

p0 = ρ0 = −∂ϕ0

∂t
= −i

{
1

k̄
sin(k̄z0) + cos(k̄z0)

(
r + 1

2r−2
)

P1(µ̄)

− 1
3 k̄ sin(k̄z0)

[(
r−1 + 1

2r2
)

+
(

r2 + 2
3r−3
)

P2(µ̄)
]

O(k̄2)

}
eit . (2.12)

2.1.2 Liquid-phase region. Before dealing with the gas-phase boundary layer we treat the liquid
regions since this procedure turns out to be somewhat easier. Because the medium inside the sphere
is a liquid, and the outside one is a gas, we may approximate the liquid motion as incompressible
flow. Then the leading-order liquid flow satisfies

D4ψ̂0 = 0, (2.13)

wherein D2 is the operator

D2 = ∂2

∂r2 + (1 − µ̄2)

r2

∂2

∂µ̄2 .

Equation (2.13) has the solution

ψ̂0 =
[
( Â1r2 + B̂1r−1)(1 − µ̄2) + ( Â2r3 + B̂2r−2)µ̄(1 − µ̄2)

]
eit . (2.14)

To satisfy the finite velocity condition at the origin, we require

1

r2 ψ̂0 < ∞,

from which we deduce that B̂1 = B̂2 = 0. On the surface of the sphere, the normal velocity is zero,
and thus Â1 = Â2 = 0. As a result, we obtain

ψ̂0 = 0, (2.15)

implying no flow at all to the leading order. This also means that the boundary layer, to this order,
will satisfy the no-slip conditions as for a solid sphere.

2.1.3 Gas-phase Stokes layer. In the boundary layer, we express the velocity as

ub = ub
r r̂ + ub

θθ̂θθ, (2.16)
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STEADY STREAMING AROUND A SPHERICAL DROP 383

where ub
r is the normal velocity, ub

θ is the tangential velocity, and (r̂, θ̂θθ) are unit vectors. As we
know, when M2 � 1, the vorticity generated at the surface of the sphere is confined to a thin shear-
wave layer of thickness O(M−1) (see Riley (21)), and we can scale the normal velocity inside the
shear-wave layer as

ub
η = M√

2
ub

r . (2.17)

Again, we seek a perturbation solution by expanding the velocity, the pressure and the density as
powers of ε in forms similar to equations (2.1) to (2.3), that is,

ub = ub
0 + εub

1 + O(ε2), (2.18)

pb = pb
0 + εpb

1 + O(ε2), (2.19)

ρb = ρb
0 + ερb

1 + O(ε2). (2.20)

With the insertion of (2.18), (2.19) and (2.20) into the momentum equation (1.2), we have

∂pb
0

∂η
= 0 (2.21)

and

∂ub
θ0

∂t
= −∂pb

0

∂θ
+ 1

2

∂2ub
θ0

∂η2 , (2.22)

where the inner variable η is defined as

η = M√
2
(r − 1). (2.23)

Equation (2.21) gives us the information that the leading-order pressure in the boundary layer is a
function of θ and t only. Therefore, we have

pb
0 = p0|r=1 = −i

{
1

k̄
sin(k̄z0) + 3

2 cos(k̄z0)P1(µ̄) − k̄ sin(k̄z0)
[

1
2 + 5

9 P2(µ̄)
]}

eit. (2.24)

As discussed earlier, to leading order, the liquid phase has zero velocity. Therefore, the boundary
condition at r = 1 is given by

ub
θ0 = 0 at r = 1. (2.25)

At the edge of the Stokes layer,

ub
θ0 → ∂ϕ0

∂θ

∣∣∣∣
r=1

as η → ∞, (2.26)

and the solution of equation (2.22) with boundary conditions (2.25) and (2.26) is

ub
θ0 =

{
− 3

2 cos(k̄z0) sin θ + 5
3 k̄ sin(k̄z0) sin θ cos θ

}(
1 − e−(1+i)η

)
eit. (2.27)

Using the same scale as (2.17) in the continuity equation (1.1), we may deduce that

k̄2 ∂ρb
0

∂t
+ ∂ub

η0

∂η
+ 1

sin θ

∂

∂θ

(
ub

θ0 sin θ
)

= 0. (2.28)
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384 A. Y. REDNIKOV et al.

Here, we assume the same adiabatic condition as the bulk of the fluid, that is, ρb
0 = pb

0, which is
then given by (2.24). With the boundary condition ub

η0 = 0 on the surface, the solution of ub
η0 is

found to be

ub
η0 =

{
3 cos(k̄z0)

[
η − 1

2 (1 − i)
(

1 − e−(1+i)η
)]

P1(µ̄)

− k̄ sin(k̄z0)
(
η + 10

3

[
η − 1

2 (1 − i)
(

1 − e−(1+i)η
)]

P2(µ̄)
)}

eit. (2.29)

Here, we notice that all the leading-order solutions, including velocity, pressure and density, are
just the linear combination of two groups of results; one is when the sphere is placed at the velocity
antinode, and the other one is at the node.

2.2 First-order solutions

As we are more interested in the steady streaming outside the sphere, we consider here only the
steady-state components of the solutions. We begin with the boundary layer.

The continuity equation in the boundary layer to order ε becomes

∇∇∇ · ub
1 + k̄2〈∇∇∇ · (ρb

0 ub
0)〉 = 0, (2.30)

where 〈 〉 denotes the time average over one wave cycle. As we already know the solutions of ρb
0

and ub
0, we can show that

〈∇∇∇ · (ρb
0 ub

0)〉 = 0, (2.31)

which implies that the first-order steady flow inside the boundary layer is incompressible. Equating
terms to order ε in the momentum equation, we obtain

∂pb
1

∂η
= 0 (2.32)

for the normal direction, and〈
ρb

0 k̄2 ∂ub
θ0

∂t

〉
+
〈

ub
η0

∂ub
θ0

∂η

〉
+
〈

ub
θ0

∂ub
θ0

∂θ

〉
= −∂pb

1

∂θ
+ 1

2

∂2ub
θ1

∂η2 (2.33)

for the tangential direction. Using the expression (2.27) for ub
θ0 on the left-hand side of equa-

tion (2.33), and with equation (2.32) in mind, we may write (2.33) to O(k̄) as

1

2

∂3ub
θ1

∂η3 = ∂

∂η

[
cos2(k̄z0) sin θ cos θ

{
9
8

(
1 + e−2η

)
− 9

4 e−η [(η − 1) sin η + (η + 1) cos η]
}

+ k̄ sin(k̄z0) cos(k̄z0)
{

sin θ
[
2 − 1

2ηe−η (sin η + cos η)

+ 5
4

(
e−η sin η + e−2η

)
− 13

4 e−η cos η
]

+ sin θ cos2 θ
[
− 15

4

(
1 + e−2η

)

+ 25
4 e−η (η sin η + η cos η − sin η) + 15

2 e−η cos η
]}]

. (2.34)
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STEADY STREAMING AROUND A SPHERICAL DROP 385

After successive integrations of (2.34), with the limit ub
θ1 = o(η) as η → ∞, we obtain

ub
θ1 = k̄ sin(k̄z0) cos(k̄z0)

{
sin θ

[
5
8 e−2η + 5

4 e−η cos η + 17
4 e−η sin η

+ 1
2ηe−η (sin η − cos η) + Q1

]
+ sin θ cos2 θ

[
− 15

8 e−2η

− 20e−η sin η + 25
4 e−η (η cos η − η sin η − sin η) + Q3

]}
+ cos2(k̄z0) sin θ cos θ

{
9

16 e−2η + 27
4 e−η sin η

+ 9
4 e−η (η sin η − η cos η + cos η) + Q2

}
+ O(k̄2), (2.35)

where Q1, Q2 and Q3 are constants to be determined.
Inside the drop, assuming that the Reynolds number is small, the steady streaming satisfies Stokes

equation, that is,

D4ψ̂1 = 0. (2.36)

Here, ψ̂1 is the stream function such that

ûr1 = 1

r2 sin θ

∂ψ̂1

∂θ
, ûθ1 = − 1

r sin θ

∂ψ̂1

∂r
.

We select a solution for ψ̂1 with a set of angular eigenfunctions consistent with the boundary-layer
solution (2.35). In view of the boundary conditions

ψ̂1

r2 < ∞ as r → 0 and ψ̂1 = 0 at r = 1 (2.37)

the solution of equation (2.36) is of the form

ψ̂1 = F1(r
2 − r4)(1 − µ̄2) + F2(r

3 − r5)µ̄(1 − µ̄2) + F3(r
4 − r6)(5µ̄2 − 1)(1 − µ̄2). (2.38)

Next, we apply the velocity and shear stress continuity conditions on the interface (r = 1), that is,

ub
θ1 = ûθ1 and

Mµ√
2

∂ub
θ1

∂η
= ∂

∂r

(
ûθ1

r

)
,

where Mµ = Mδµ is the product of a large parameter, M � 1, and a parameter considered to be
small, δµ = µ/µ̂ � 1; we treat Mµ as being of order unity.

After satisfying these conditions, we obtain the remaining constants and get the expressions for
ub

θ1 and ψ̂1 in (2.35) and (2.38). Thus

Q1 = 23
168

√
2Mµ − 15

8 , Q2 = 9
80

√
2Mµ − 45

16 and Q3 = − 15
56

√
2Mµ + 65

8 , (2.39)

while the flow field inside the drop is given by

ψ̂1 = k̄ sin(k̄z0) cos(k̄z0)
1
24

√
2Mµ(r2 − r4)(1 − µ̄2)

+ cos2(k̄z0)
9

160

√
2Mµ(r3 − r5)µ̄(1 − µ̄2)

− k̄ sin(k̄z0) cos(k̄z0)
3

112

√
2Mµ(r4 − r6)(5µ̄2 − 1)(1 − µ̄2) + O(k̄2). (2.40)
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It should be noted that this solution in the drop region is uniformly valid as there is no internal
Stokes layer.

Since the steady flow in the boundary layer is incompressible, the stream function ψb
1 can be

introduced such that

ub
η1 = 1

sin θ

∂ψb
1

∂θ
and ub

θ1 = − 1

sin θ

∂ψb
1

∂η
. (2.41)

Thus, using (2.35) in (2.41) and noting the constants in (2.39), the stream function in the boundary
layer may be expressed as

ψb
1 = −

{
k̄ sin(k̄z0) cos(k̄z0)

[(
− 5

16 e−2η − 3e−η cos η − 7
4 e−η sin η

− 1
2ηe−η sin η + 23

168

√
2Mµη − 15

8 η + 53
16

)
(1 − µ̄2)

+
(

15
16 e−2η + 65

4 e−η cos η + 10e−η sin η

+ 25
4 ηe−η sin η + 65

8 η − 15
56

√
2Mµη − 275

16

)
µ̄2(1 − µ̄2)

]

+ cos2(k̄z0)
(
− 9

32 e−2η − 45
8 e−η cos η − 27

8 e−η sin η − 9
4ηe−η sin η

+ 9
80

√
2Mµη − 45

16η + 189
32

)
µ̄(1 − µ̄2)

}
+ O(k̄2). (2.42)

This inner solution is valid only in the shear-wave layer, and to complete the analysis we must also
seek the steady streaming in the outer region, where

r − 1 = O(1).

The continuity equation outside the boundary layer to order ε becomes

∇∇∇ · u1 + k̄2〈∇∇∇ · (ρ0u0)〉 = 0. (2.43)

By inserting the expressions for ρ0 and u0 here, we can show that 〈∇∇∇ · (ρ0u0)〉 is zero, and therefore

∇·∇·∇·u1 = 0. (2.44)

This implies that the first-order steady flow outside the boundary layer is incompressible. Then, in
a manner similar to the inner variable ψb

1 , we introduce the outer stream function ψ1 such that

ur1 = 1

r2 sin θ

∂ψ1

∂θ
, uθ1 = − 1

r sin θ

∂ψ1

∂r
. (2.45)

In the limit of small streaming Reynolds number (Rs � 1) the outer streaming satisfies the Stokes
equation

D4ψ1 = 0. (2.46)

To obtain the solution to this equation, the angular eigenfunctions are chosen to be of the same form
as the inner solution, ψb

1 , given by (2.42). The far-field behaviour of the solution requires the flow
velocity to decay away. At the surface we require matching with the Stokes-layer solution (2.42).
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Thus, we obtain

ψ1 = k̄ sin(k̄z0) cos(k̄z0)

[(
1
8 − 1

24

√
2Mµ

)(
r − 1

r

)
(1 − µ̄2)

−
(

13
16 − 3

112

√
2Mµ

)(1

r
− 1

r3

)
(5µ̄2 − 1)(1 − µ̄2)

]

+ cos2(k̄z0)
(

45
32 − 9

160

√
2Mµ

)(
1 − 1

r2

)
µ̄(1 − µ̄2) + O(k̄2). (2.47)

In summary, the internal circulation within the drop is defined by equation (2.40), while the
steady streaming in the gas medium is given by (2.42) for the Stokes layer, and by (2.47) for the
outer region. We note that the case of the solid sphere is recovered in all these expressions by letting
the liquid-phase viscosity become large, that is, setting Mµ = 0.

3. Discussion

In the above analysis, we find that the leading-order solution is a linear combination of the two
groups of fundamental solutions corresponding to the sphere being placed at the node and antin-
ode, respectively, of a standing wave. At higher orders, nonlinear effects become important and
additional terms besides the two fundamental solutions are needed for the proper description of
the flow. The result obtained for the solid sphere case is consistent with the outer solution of Lee
and Wang (11) which allows for a slip velocity on the solid surface. In Figs 1 to 5, we plot the

Fig. 1 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 = π/8, k̄ = 0·3,
and M = 800
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388 A. Y. REDNIKOV et al.

Fig. 2 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3,
and M = 800

Fig. 3 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 = 5π/16,
k̄ = 0·3, and M = 800
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STEADY STREAMING AROUND A SPHERICAL DROP 389

Fig. 4 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 = 3π/8,
k̄ = 0·3, and M = 800

Fig. 5 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 = 7π/16,
k̄ = 0·3, and M = 800
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streamlines for a solid sphere with k̄ = 0·3. The asymmetry about the equator in the streaming
pattern when the sphere is away from the velocity antinode is due to the asymmetric distribution
of the undisturbed flow. The fluid velocity tends to be higher on the side of the velocity antin-
ode, creating stronger streaming there. The flow pattern outside the sphere does not depend on
M of course, but on the displacement k̄z0. There is a transition value in the flow pattern between
k̄z0 = 5π/16 and k̄z0 = 3π/8. When k̄z0 is less than the transition value, there exists a thin recir-
culating region, limited to the Stokes layer adjacent to the surface, akin to that for a solid particle
at the velocity antinode. This region is not clearly visible in Figs 1 to 3; however, when k̄z0 is
larger than the transition value, larger vortices appear around the north-pole region as shown in
Figs 4 and 5.

The leading-order oscillatory flow for a liquid sphere is essentially the same as for a solid one, in
view of the high inertia of the liquid as compared to the surrounding gas medium. However, this is
not the case for the steady streaming, when the difference between the liquid and the solid spheres
may be appreciable. The effect of the ‘liquidity’ on the streaming is measured by the parameter
Mµ. Typical flow patterns associated with the steady streaming of liquid sphere displaced between
velocity node and antinode are displayed in Figs 6 to 13. In these figures, we plot the streamlines for
k̄ = 0·3, and k̄z0 = π/4. Equation (2.42) contains three terms that are linear in η, with coefficients
a1, a2 and a3, identified as

a1 = 23
168

√
2Mµ − 15

8 , (3.1)

a2 = 9
80

√
2Mµ − 45

16 (3.2)

Fig. 6 Streaming about a drop displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 3·12
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Fig. 7 Streaming about a drop displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 9·36

Fig. 8 Detailed streaming near the surface of drop stretched in the (θ, r )-plane for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 9·36
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Fig. 9 Streaming about a drop displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 12·48

Fig. 10 Detailed streaming near the surface of drop stretched in the (θ, r)-plane for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 12·48
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Fig. 11 Streaming about a drop displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 19·5

Fig. 12 Detailed streaming about the drop for k̄z0 = π/4, k̄ = 0·3, and Mµ = 19·5
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Fig. 13 Streaming about a drop displaced between velocity node and antinode for k̄z0 = π/4, k̄ = 0·3, and
Mµ = 28·08

and

a3 = 15
56

√
2Mµ − 65

8 . (3.3)

These three factors divide the range of Mµ into four smaller ones. Each of these is discussed next.
For

a1 < 0 or Mµ < 315
46

√
2,

there are vortices near the surface of the drop on the side of the velocity node, as shown in Figs 6
and 7. Here there is a large recirculatory region on the ‘front side’ of the drop with respect to the
outer streaming which is downward. This may appear to be unusual from the standpoint of flows
past obstacles that have a rear-side wake. However, with levitation, there is a low-pressure region
on the top, and therefore it is possible for recirculation to occur in that region. An experimental
result is shown in Fig. 14 which is qualitatively consistent with the theoretical prediction. While
the experiment corresponds to M = 113, theoretical calculations at such a low value of Mµ do not
show a ‘front-side’ recirculatory region. However, in the experiment, there are some effects such as
those from the chamber walls that are not accounted for. There are a number of other interesting
features in this flow field. There exist very thin recirculatory regions in the gas phase on the lower
side of the drop. These are difficult to resolve graphically, except on a stretched scale (see Fig. 8).
With an increase in Mµ, when

a1 > 0 and a2 < 0, or 315
46

√
2 < Mµ < 25

2

√
2,
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STEADY STREAMING AROUND A SPHERICAL DROP 395

Fig. 14 An experimental result. The tested particle is a drop of water with diameter 1·8 to 1·85mm. The
acoustic frequency is 37kHz, corresponding to M 	 110 and Mµ 	 2·3

the vortices disappear. While the streamlines inside the shear-wave layer join the outside ones
smoothly, as shown in Fig. 9, the small recirculatory region still persists. With a further increase
in Mµ, when

a2 > 0 and a3 < 0, or 25
2

√
2 < Mµ < 91

6

√
2,

the thin layer of recirculation becomes apparent near the surface on the lower side of the drop, as
shown in Figs 11 and 12. When Mµ is very large, corresponding to

a3 > 0 or Mµ > 91
6

√
2,

the thin layer of recirculation becomes enlarged and vortices are created on the side of the velocity
antinode as shown in Fig. 13.

One of the important findings of the present study is the marked difference in the streaming
flow behaviour about a liquid drop from that about a solid sphere, even when the liquid viscosity
is quite high. It is apparent that the flow characterization is sensitive to surface mobility which
affects the interaction of the acoustic wave with that surface. As shown by Schlichting (15) and
by Riley (21), the interaction with a solid surface produces recirculating regions adjacent to the
surface. However, as argued earlier by Zhao, Sadhal and Trinh (29), the flow behaviour resulting
from vorticity generated at the interface by this interaction is affected by the surface mobility.
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