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" ABSTRACT

MSTER

Solutions for the axisymmetric_velocity and temperature

fields associated with a point source of thermal energy in

a fluid-saturated porous medium are obtained numerically

through use of similarity transformations. The two cases

considered are those of a point source located on the lower

‘boundary of a semi-infinite region and a point source

‘embedded.in an infinite region. Tabulated results are

presented from which complete deéeriptions‘of the Velocity"'

and temperature fields can be constructed for Rayleigh numbers

of 0.1, :1, 10, and 100.
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Steady Thermal Convection from a Concentrated

*
Source in a Porous Medium

C. E. Hickox and H. A. Watts

Introduction

‘In a previous paper, Woodin’g1 demonstrated the utility
of simple modeis‘for the description of geothermal flow

processes. Of particular interest in the present context,

Wooding considered the case of a point-source of thermal

_energy located on the lower boundary of a semi-infinite,

fluid-saturated, porous medium. When'vertical gradients
of velocity and thermal conduction are negligible compared
with horizontal gradlents, and the Bou881nesq approximation
invoked, Wooding was able to show that 51m11ar1ty solutions
for planar or axlsymmetrlc flow can be obtained by direct
analogy with the solutions given by Schliohting2 for planar
or axisymmetric, incompressible, laminar jets. The approx-
imations imposed are,,gene;ally speaking, valid only for
sufficientlyvlarge values of the Rayleigh number. |

Since po;nt source solutions can be of considerable

pract1ca1 utillty, a more complete analysis, which does not

kdepend on approxlmatlons 11ke.those mentioned above, is

v developed invthe present paper. Two-cases,.both concerned

with axisymmetric flow and valid for any value of the

Rayleigh'number, are considered. 1In the'first_instance,-the

e ._,,ll.,.“
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physical arrangementris identical to that considerd by
Woo&ing. The second case treats the problem of axisymmetric
flow induced by a point soﬁrce‘imbedded'in_an infinite,
fluid-saturated, porous medium. Both cases are analyzed
throughbthe introduction of similarity tfansformationsf
resulting in sets of nonlinear ordinary differential equations
which are then solved numerically in order to provide

descriptions of the velocity and temperature fields.

General Theory

In this section, mathematical models are déveloped for
the description of axisymmetric free convection in a fluid
saturated porous medium. .The medium is assumed to be
rigid, homogeneous, and iéotropic and the fluid incompressible,
with’density changes occurfingyonly as a result of |

changes in the temperature according to
p=op, [1=-8(T=-"T)I], - (1)

where p is the density, T is the temperature, B is the
coefficient of thermal.expansion,fahd the subscripts refer

to reference conditions. It isﬂalso assumed that the

- fluid motion obéys-Da:cy?s law.

The steady-state equations of continuity, motion,
and thermal transport are then

“div v = 0, | ' ' (2)

f v =-grad (p + pgh), S
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v grad T = a div(grad T), (4)

vwhere Ve k, u, o, p, and g are, respectively, the velocity vector,
permeability, dynamic viscosity, effective thermal diffusivity,
pressure, and acceleration due to gravity. The elevation.

h is measured vertically upward and g is oppositely directed.

- In accordance with the usual Boussinesq approximation,

. density changes are accounted for only in the buoyancy term

in the equations of motion. It is furthermore assumed that
permeability, viscosity, and thermal diffusivity are constants

and that dispersion effects are negligible.

'A. Point Source Below Semi-Infinite Region

“Here we wish. to consider the axisymmetric flo& induced
by a point source of strength Q (energy:generated per unit
time) situated on the lower, insulated, edge of a semi-in-
finite region. Cylindrical polar coordinates (r,z) with
associated velocity componentsr(u,w) are used in the sub-
sequent analysis. The origin of the coérdinate system is
66incident with thévpoint sourée, and the z-axis ié directed
vertical;y upward. | 7 ' | |

B The basic'formuiation now proceeds in a straightforward -

manner from Equations (1) through (4). Equation (1) admits

‘the introduction of a stream functionrw,defined by

-3 e
ra=-3t ,rw=gt N
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- Introduction of the similarity transformations

= (_Ho 6(n)
= (p ng) 2 ; (6)

©

n=x/z, $ = azf(n), T - T,

as suggested by Yih3, allows Equations (1) through (4) to be

reduced to the set of nonlinear ordinary differential equations

(n3 ) f" - £' = nzO, NG

~(£6)" = (8'n)  + (n26) + (n3e") , . (8)

where primes denote differentiation with respect to n. An
additional regquirement obtained upon integration of Equation

(4) over a plane taken normal to the z-axis is

| Ff',e + ne + ne")an = Ry, (9)
| o :
where RA is the Rayleigh number
R, = ngB/Znazuc, ’ (10)

and c is the specific heat of the fluid. For future

reference, the relationships between velocities and similarity

parameters are
. . L ‘
u=gad, w=2 G . (11)

From physical arguments, it is expected that u, w, and
(Tv4 Tw) should approadh zero for large r. In addition, u
as well as the radial gradients of w and T should be zéro
along the axis of symmetry. These requirements yield the

boundary conditions
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R

£(0) =0 =6'(0), - . (12a)
£'(x) = 0 = 6(®). (12b)

Solution of Equations (7) and (8) subject to the boundary
conditions (12) and integral relation (9) will provide a

complete description of the thermal and flow fields.

B. Point Source in an Infinite Medium

In order to analyze the axiéymmetric flow field induced
by a point source in an infinite mediﬁm, it is appropriate |
to adopt séherical polar coordinates (R,9) with associated
velocity componentS'(vR, v¢). The angle ¢ is measured from
the vertical axis (z-aiis as introduced in Section II.A)
to the radial position vector B. The velocity component
is in the direction of R. ‘The othervvelocity component

v

v, is normal to R, lies in the plane of R and z, and is

L
poSitive in the direction of increasiné-@. The origin of
coordinates is again taken coincident with the point source.

The formulation for this case, in essence, parallels
that presented in the first part of this section. A

stream function wAiS‘defined such that

1 v =1 Y ' '
V. & e e v, = = _ - : (13)
R p2.4n0 08¢ ' "¢ Rsind 3R

Based on certain apparent similarities between the present
system of equations and those derived by Squire4 in his study
of the round laminar jet, we introduce the following substi-

tutions

ve i an a  wmn e e i o b st st e s e P P e B T e s T 1 ia
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n =cos?, y = aRf(n), T - T = pugke B(R)>.' (14)

The original system of partial differential equations can

now be reduced to the system of ordinary differential equations
: L]
£" = ~-(no) , (15)
t “ 2 ]
(f6)- =6 = (n7e') , (16)

where primes denote differentiation with respect to n. Inte-
gration of Equation (4) over a sphere centered about the

origin provides the relation
1l
(1 - £')6dn = R,, (17)

where RA is the Rayleigh number as defined'in (10) . Velocity

components are now given by

-
o

-g ' =-g -

2 "1/2 .
) £(m) . (18)

As before, it is expected that vp, v, and (T - T_) should
- approach zero fot large R and that the solution should |
exhibit symmetry about a vertical axis. These physical

requireménts translate into the conditions

£() = 0= £(-1) , - asa

 8,0' bounded for n-=+ 1. T (19b)

L - o—




IiI.

Although, in some instances, the notation used in this sec-
tion is in conflict with that used in Section II.A, no confusion -

should exist so long as the two cases are considered separately.

Approximate Analytical Solutions

When the Rayleigh number is sufficiently small, approx-
imate analytical results can be obtained for both cases under
consideration. For latgevRayleigh numbers, Woodingl obﬁained
an approximate solﬁtion for the semi%infinite region by
analogy with the results of Schlichting2 for incompressible
laminar jets. ‘Presentiy, we know of ﬁo corresponding soiution-
for the point source in an infinite region. The various approx-

imate solutions are presented in the remainder of this section.

A. Point Source Below Semi-Infinite Region

- For small Rayleigh number, solutions to Equations (7),;

(8), and (9) can be obtained by straightforward expansion
of the dependent variables in térms,of the Rayleigh number.

The leading terms resulting from this process provide the

approximations

f=-gR (P72, (20)

e==gr, P+ 2, (21)
ﬁherevit‘may be noted that (21) producés the steady-state

conduction solution associated with a point source. .




For a sufficiently large Rayleigh number, Wooding'sl

aﬂalysis provides the results

. -1
3 2 3 2
6o3r (1+2r nd) (23)
A 32 A" .
B. Point Source in an Infinite Medium
For small Rayleigh number, the leading terms of an'
expansion in terms of the Rayleigh number provide the
approximate resultss
=1 3 - a2 1.2 _ 2
£=FR, (1L =1 +357R n(l -n%, (24)
‘ (25)

g = L 1 2
6 2R+8nRAt

vhere it may be noted that substitution of the first term

" of (25) into (14) produces the steady-state conduction solution "~

. associated with a point source.

The results of this section are useful in that they_

. provide bounds for the more general numerical results which

Iv.

will be‘presénted subsequently.

Computational;Approach

Although the use of similarity transformations results
in simplified formulations for the cases cohsidered,

the resulting equations are still of sufficient complexity
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to warrant the‘use of numericai techniques in order to

: dbtéin general solutions."Efficient, state-of-the-art
computer codes, currently under development at Sandia
Labbratories and designed specifically for the solution of
two-point boundary value probiems, were utilized for the
numerical solutions. 1In the remainder of this section
numerical results are pfesentéd along with brief descriptions

of the techniques employed in the analysis.

A. Point Source Below Semi-Infinite Region6

Equations (7) and (8) can be integrated once to provide
A( + EQf' - f=0+ C,,; (26)
TI n | 1 4 -
: 3 ' 2
- =f6 = (n + n)é' + ne6 , . : (27)

where Cl is a constant of integration, and the constant of
integ:ation associated with (27) is equal to zero by virtué
_of (12a) . Further integration of the differential eqﬁations
by analytical methods does not éppear feasible..

In order‘to optain,numerical solutions, equations (26)
and (27) could be solvéd subject to the boundary conditions
(12) for a specified;value of the cphstant Cl. Then Cl
could be varied until the constraint condition (9) is
| satisfied; However, it is desirable tb automaté the entire
 pchess within thé framework of solving only differential
eéuétions. Thus, a differential equation for C, is added

and (9) is modified to provide
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n
s(n) = /(f'e + 20 + g2en)az , | (28)
o)

where the integration variable is now Z. The original boundary
value problem can now be expressed by the system of first

order differential equations

| 3.~‘1 3
6'(n) = -(n + n7) (E+n7)é, n>0, (29a)
2"1
£f'(n) =n(l + n) (6 + £ + Cl) ' - {29Db)
Ci(n) =0 , A : (29c)
2. -1
S'(n) = n(l + n") (6 + c,+ l)e , (294)

subject to the boundary conditions

o .
- .

£(0) = 0 = S(0), ~ (30a)

f(=) = -Cl, S(e) = R_ . (30b)
A

The condition ¢'(0) = 0 is used directly to give proper
definition to (29a) at the origin. Equation'(29d) is obtained
upon differéntiation of (28) énd substitution from (29a) and
(29b) . The boundary conditions on S follow directly from
consideration of (9) and (28). The ’c:ond:il;ti‘on £'(=) =0

ié automatiéally satisfied'by the differential,eéuatioﬁ (29b)
under the assumption of boundednesébfor f(n)fand é6(n). An- |
eveh stronger condition émerges undef our physical constraints;
namely 1im nf'(n) = 0. Using this requirement along

. :

R

T
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" with the condition 6 (=) = 0 in (295) leads to the new boundary con-
.diﬁioﬁ on £, given by £(=) { Cl»= 0. .The motivation for using
this condition stems from difficulfies encountered in attempting
to obtain satisfactory numerical solutions when the.cop-
dition 8(«) = 0 was imposed; Itvﬁas observed that 6 was driven
to zero for large n regardléss of‘the}adéeptability of the
‘other variables. With the alternate boundary condition, the
vdsolutibp algorithm was less sénsitive.to‘poor initial guesses
for 6(0) and C.

Numerical solutions of (29) subject to the boundary
‘.conditiqns (30) wére obtained for val@es of the Rayleigh
number in the range 0.1 to 100 and aﬁe tabulated in Tables
1l through 3. The computer code SHQOT22 was employed for
tﬁe éélﬁtion of the boundary value problem. This code is
based on a shooting procedure which uses current state-of-
the-art variable step size1integr§§ion:péthpds. The
- integration was carried 6u§ to a value of 1000 for n in all
cases. This interval was found to be of sufficient magnitude
to'insure the accuracy of solutions in regions of physical |
interest. Tabulated results appear to be accurﬁte to |

four significant figures.

B. fPoint Source in an Infinite Medium

The numerical solution procedure utilized for this problem -
. closely parallels that of the preceding case. The basic
‘differential eQﬁations (15) and (16) can be integrated once

to provide

P
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A

f''=-ne +C,, (31)
2 . '
f6e = (1 - n%)e' , (32)
where C, is a constant of integration, and the constant of
'integration assdciated with (32) is zero by virtue of the
boundary conditions (19). As before, the integra1>con-
straint (17) is rewritten as
: T
S(n) =~/-(l - f£f')edg . (33)
' -1
Now the original boundary value problem can be expressed by
the systém
, | 2 -1
6'(n) = (1L - n%) fo , (34a)
C£'(n) =-ne +C, , (34b)
L] ~‘ .
S'(n) = (L+ 18 -Ce, ' (344d)
subject to the boundary conditions
£(-1) =0 = £(1), : - (35a)
§(-1) = 0, S(1) = R, . | (35b)

A complication arises due to the'sipgular-nature of (34a) at
the boundary points. This difficulty is, hoWever,réasily

removed since a'straightforward analysis using (34a) and
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(3§b) shows that 6'(+ 1) = F (1/2)e(+ 1)£'(+ 1). The s‘olutio‘n
of the differential system (34) Subject to the boundary
'conditiéns (35) was obtained through use of the computer code
SUPOR Q,8 a code utilizing quasi;inearization tech-

niques couéled»with superposition and an orthonormalizétion
proéess. Résults,'apparently accﬁrate to four significant

figures, are tabulated in Tables 4 through 6.

Discussion : -

Accurate numerical results have been obtained which pro-
‘vide for the complete description of the axisymmetric
flow and temperature fields assdciatea with a point source
situated on the lower edge of a semi-infinite region or
embedded'in an infinite.porous medium. .Represeﬁtative
sketches of the iéotherms and streamlines fot each case
considered are presented in Figures 1 and 2 for»a-Rayleigh
number of 10. A careful examination of the tabulated
results indicatesvthét for é Rayleigh number of 0.1 the
temperaturé distribution can be closely approximated_
by‘the steady?state conduction solution. Isothermal sur-
faces are agptOXimately hemisphericél or}Spherical sur-
féces,céhtered about the point source. The appfoximate' |
results given by (20), (21), (24), and (25) ‘provide |
reasonably accurate éstimates'to'the'true solutions. When
the Rayleigh number is 100 the solutions exhibit a
plﬁméélike behavior more in line with the boundary layer

model proposed by Wbodingl.~ For the semi-infinite

R o 14
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region, the approximate results given bj (22) and (23) are
found to be reasonably accurate, even for a relatively
modest value of 100 for the Rayleigh number.

It is readily obserﬁed that the vertical velocity
along the éxis>of symmetry above the point source is pfo-
 portiona1 to 1/z for both cases considered, where z is the
distance above the soﬁrce. An upper bound to the vertical
transport of a fluid particle can, thus, readily be found |
by integration. Estimates of this type can be useful
in the analysis of>induced fluid motion due to the emplacement
'of»thermally active canisters of nuclear waste material in
a fluid-saturated porous medium. .

Another interesting observation is that, for the
semi-infinite region,:the constant c1 can be obtained from
the‘cqndition cl = ’f(?)' Similarly, it is noﬁéd.thaﬁ, for
the infinite région, Cy = £'(0). ;Hence;‘vélges,for the .
constants of integration éan be obtained from the tabulated
results. This information is useful in that it can be
used to ptovide estimates for the constants of integration for
cases ﬁhich afe not tabulated; _Inﬁegration of the appropriate
differential‘éqﬁations can tﬁen be‘car;ied‘out in_a‘straight—f
» fétwar@ manner for any Rayleigh number.:llt is perhaps also
worth noting that thé'limiting values for C, and C, are,
respectively, for large Réyleigh number: -4 and 2, and for
small Rayleigh number: -R,/2 and R2/24.

R B |




Nomenclature

£  -nondimensional function rélated'tovstreamfunction
g - =acceleration of gravity

-h - =elevation

k- - ~intrinsic permeabiiity

P -pressure

Q -strenéth of point source

§ ~-position vector in spherical polar coordinates

RA -Rayleigh number

(r,z) -cylindrical polar coordinates
(R,¢4) -spherical polar coordinates

T . - =temperature -

(u,w)_ -velocity components in cylindiical polar coordinates

(vR,v@) -velocity components in spherical polar coordinates

v -veloéity vector

Greek

o ~thermal diffusivity

B -coefficient of volumetric thermal expansion
n ?similarity variable '
'9 -nondimensional function relétéd to temperature
" -dynémic’viécosity

P -density

'} -streaﬁ function

4 -integfation variable

Sﬁbscrigt

© ~-refers to conditions far from point source
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N .
; Rayleigh Number
n 0.1 1 10 100
0.0000 1.0106F-01 - 1.8959r+00 f1.12132¢01 8.05L1Fe01
«8100 1.0106F-014 L. 0958E+00 1.,121%E+01 8.0383F+01
0200 1.0104E-01 1.0956E+C9 1.1201Fen1 Te9911Ee01
«0300 | 1.0102E-01  1.39524+00 1.1184F+08 ~  7.9136F%01
« 0400 1.309%€E-N1 1.0943E+00 1.116€E401 T.®0REE+01
«0500 1.0093€-01 t.0941Fean 1.1140Fe¢D 7.R726F+N}
«0608 | 1.00885-n1 L.0O34END 1.1107Fen 1 T5136F+N1
<0700 | 1.0081E-nY 1.8924Fe0N 1.10705e01 7.3224F 401
«0300 1.0073%5-01 1,091 4E+ND 1a1027F+01 T.1317+01
0300 1.0065F-01 1.0012E¢00 " 1.,08978£401 5.8245E+01
<1000 1.3055€~01 1.%889E¢00 1.0925F¢91 5. 58L0F+01
" «2000 | 3.8053E-02 Lo ORBSF+AN 1.0143E+01 h.2135F+N
«3000 3.6699F=-02 1.0%69E+0N A, 86355400 2.4NRNGE+N]
«&000 8.2669E-02 3.9683E-01 T« RQ4AF+ND L.3837F¢01
* +5000 3.0159E~02 3.5129E-01 S«7R4SFeDN $,L2785400
«6100 2.6360F=02 3.0301E-01 5%N85E400  S,4945Er0N
«70080 8.2634F=-02 $.5417E-D1 %. OASOFEDT - 3,30G7E+00
8000 | T7.8505E~02 83.0A3UE~O1 43082E+080 2.7784E+0N
«S000 7Te4L5E66E~02 T.5056E-01 3.75L9E+T0 2.1714F400
£.0000 7.0977E~12 7.1740E-01 3.3036F¢90 LeSROSE4DD
- 240000 Le¥B7SE~02 %e3NRSE=-N1 1.38795+00 $.7022E=-01
© 3.0000 3.1533E-02 2.3888F~01 8. 5469F =01 2.6R435-01
4.0000 2.8165E~02 2,2732E-01 642983C-01 1.3959F-01
5.0008 1,3532F-02 1.3302E-01 %.96L2E~-01 1 47XE=-01
6.8000 1.5369E~02 1.5303€E-01 % 10{RE-01 1.2N81E-01
7.00CD 1.4D79E-02 L. 3144LE-01 3.4972E-01 1.925LE-01
8.8000 1e23427F=02 1.1516F=-01  3.9L92E-01 8.9144E=N2
©8,0000 1.0997€E~-02 1.3245E-01 2.7138€-01 T.8RBAE=02
$06,0000 $.3037E-03 3.2767E-02 2.4291E~01 T.8772F-0"
20,0000 %+8695E-N3 4e 6225€-02 Le2074E-01 3.5023F-02
- 300980 3.3152F-N13 - - 3.0K27E-02 8.0L07F=02 2.33045-02
, &8.0000 2,4B69E-03 2.31238-02 5.0281E-02 1.7466E-02
50,0000 1.9898E-03 1.8500F=~02 §.9246F=07 ©  1.3969E-02
60,0000 1.6582€-03 L.56175=02 %eB17RE~02 11639E~-N2
70,0000 1.642145-03 1.32715F=-102 T GLIUE-02 3.374BE~D3
€0,.0000 1.2437F=-03 1.1563€~02 3.0129F~02 $,727LE-0O%
94,0000 1,1856F-03 1.8278F~-02? 2.6781E-02 T7S73F-03%
. 406.0808 3,9503F-06 8.2506E~03 .  2.4102E-n2 5.971LF-073
- 200.0000 e 3753E-DL 4. 6254E~13 . 1e2050E-02 3 4O03F-03
300.0000 3.3169E-04 3.0836F-03% 1,0314E-03 243265E-03
£00.0000 2,4R77E-04 2.3127E~03 . 5.0250F-03 1.7451E-03
- $00,0000 | 1.3Q8N1E-0& 1.8502F-03 3«R200F=-03 1.3961E-03
'€00.0000 1.6585F=-04 1.5418F=-03 %.8167€-03 1.1634E-03
: ©700.0000 Le4215E-08 1.32155~03 3.4429F~N3 3.9720E~004
800.0000 1.243RE-04 1.1563E~03 3.31256~03 - %,7255F-04
00,6000 1.1056E-04 1.8279F~03 2.6778E~03 T« 7S6NE-NL
1000.0° 3,9507€-05 9.250BE-0% . 2.4100E~03 5.380LE-0L

Table 1. The function 6(n)

region

for the semi—infinité




b

o

Rayleigh Number

n 0.1 ) § 10 . 100
o 000000 Qe o. . Ce - B
<0100 2.5L4IE=06  2.9456E-05 & 27IAE-06 3, A3TLC-03
«0200 1.01765=05  1,1779E-04  1.7084E-N3 1.52855-02
«n300 2.28A56-05 _ 2,ALO2F-04  3.8602E-0% 3.4211E-02
© . 40400 4.0662E=05 K, 7N62E-04  5.B8176E-0%  6.0%77€-02
«0503 |  6.3091£-05 7.3490E-04 1.0534E-02 9, J46LF =02
<0600 G.1351E-05  1.057%E=0Y  1.5273E-02  1.330%E-01
<0700 1.24225-04  1.437SE-D3 2.074LE=02 - 1.TA7TE-NY
«080p 1.6206€-04  1,%PS1E-N% 2. 701LE-02 2.3002E-01
<0800 2.0495E-04  2.3598E-03  3.LO077E-02 = 2.8630E-01
21000 | 2.5253-04  2,92185-13 4. 1915€-02 3.4703E-01
«2009 9. A789E-14  1.1396E-02 1.5R465~01 1.0787F 430
- <3000 2.1LLAKE =03  2.4637E-02 - "3.2673E-01°  1.76945+00
<4000 3.6351E-085  §.1539€-12  5.202%E-01 = 2.2821€+10
<5001 5.362LE-N3  6.0908E-82 ~ T.1735E-01 2.6361cC+00
teons | 7.23376-03 8.1636E-02  9.0393E-01  2,8795E¢00
T7008 | ©.1693E-13  1.0281E-01  1,0732308  3.0505E400
«8000 1.1109E=-02  1.2375E-01 1.222RE400  3.17L0E+00
<9008 1,30055-02  1.4399E-01 1.3534€400 3. 26552 0
1.0000 1.4830€-02 1.5326E-N1 1.46E5S+00 3.31525 400
2.0000 2.7879E-02  2.9545E-01 2.0503E+80 3.600LEDD
3.0000 3.4424E-02  3,5%83-01 2.2577E400 3.67045400
€.0000 | -3.8100E-02 - 3.9379€-01 2.3605E+00 1.7025E+00
- 549000 4. 0413502 L. i5RLE=01  2.4213E400 3.72115400
6.0000 %.1993E-02  Ge3045I-01 2.4624E400  3.7333E+00
. 7.0000 4.3137E-02 - GLeH116E=01  2.49143400  3.74185400
£.0000 | & LODB3E-02  Ge4925E-31 2.51315¢00  3.7432E+400
+ 8,0000 L LHADE=02  4.5558E-01  2.52995419 3.7531E+00
10,0000 4.5224E-02 4. 60655-01 2.54335400 3. 7571Z+00
20,0000 % 75G1E=N2 = 4 A363E~N1  2.E6038E£+409 3. 7775400
30,0000 4, 8518E=02 L. 913TE-N1 2.62335400 3.7805E¢00
§0.0000 £.8933E-02 = %,951QE~01 . 2.6333£+00 3.TRILEND
50,0000 4.9192E-02 . 4.97SAE-N1 2.64005400  3.78525400
. 60,0008 | %.93485-02  %.9905E-01  2.64405+00 3, 7863E+90
. 708000 4. 9467E~02  S.001SE-01.  2.646SE+N0 T ZAT2E40D
©0.0000 4. 9557E-02  S.009%E=01 2.64977+90 3.7878E+00
$0.0000 4,9526E-02 - 5,.01K3E-01 2.65975400 - 3.7RA3E+00
£96.0000 4.9682E~82 ~ 5.0215E=01  2.6571E€400 ~ 3.7887E+00
. 280,0000 &e9935E-02 5. 0451<~01 2.65%2E+00 3,73062+00
'308.0000 5.00245-02  S5.06%2E-01  2.6604LE+00 3.7911E+00
£00,0000 S.0070E-02  Se05755-01 2.6616E+00  3.7914E+0)
600.0000 5.0100E-02  5,0603E-01 ° 2.6622£400  3.7916£+400
€50.0000 5.0121€-02  S.0623E~-01  2,66275+09  3.79142400
700.0000 5.01%86-02. - $.06332-01 2,6531F +010 T 7915E+00
£00.0000 6.01526-02  5.06523-01 2.6635E400 3.7920E+00
900.0000 G.O016WE=12  5.0663I-01  2,66385400 - 3.T921E+00
1000.0 S.0474E-02 - S.0673E-01  2,66LOE«0D . 3.7921E+¢00
. Table 2. The function f(n) -for the semi-infinite

region.
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Rayleigh Number
n 0.1 1l 10 100
0.0000 c. o Be t. g.
#0100 5.0882c-0% S.8INTE-03 R.54S5E-02 7.65ATE-OL
<0200 "1.8172€-03 1.1775E-02 1,7071F-01 1.5221E+0)
+0300 1.5245E-03 1,754E=02 2.5555E-01 2.2392E¢ 09
«0400 2.0305E-93 2.350%-02 3.338)E~-01 - 2.95%3E+00
T 40500 2.5348E-03 2.0333E=02 4,2323E-91 . 3.6422E:0D
. «0600 3.D36AE=03 3.5134E-02 $.0571E-01 4.2732E:00
0700 3.5353E-03 4.0383E-02 G4 8359)E~01 4,85535¢09
<ORD0 §,.8313E-03 4.6524E=82 £.6592E~-01 5.3%53E¢00
9080810 %+5243E-03 S.23M2E-12 .7 4533E-01"  5.8501E+0)
«10010 5.0125E-93 6§.7327TE=-N2 - 8,2205E-11 6.,27675400
2000 G.5395F-03 1.,1023E~-01 1.4587E+03 7.53105¢09
«3000 1.3393E-02 1.5273E-101 1.8512E400 65.8397E+ 109
YTY 1.6251E-02 1.8333E-01  1.9331E:00 %«2303E+00
«5000 1.8133E-02 2.0213E-01 1.9353E+ 00 2.9127E+ 900
6000 1.9153E=92 ' 2,10AS5FE-01  1.TS6LE+0D  2,0213E00
«7000 1.9463F=02 2.1153E-01 1.535)E+ 60 1.4391E+00
+«8000 1.9239€-02 2.0552E€=01 1.39R5E+01 1.03%3E+ 00
«5000° 1.8645E-02 1.,9781€-01 1.2154%E400 7.929%E-01
; 140000 1.7813E-92 1.8595E-01" 1,0531E+10 6 1184E-01
2.0000 8.9517E=33 = 8,7323%E-02 3.0397F~01  1.1140E-O1
. 30000 | W 7ILTE-B3 - B#,S295E-02 . 1.3752E-91 %.4003E-N2
" 448000 [ - 2.8%GT7E~C3 2.6313E-02 7.6781E~02 2.352%E-02
. 540000 1.87%3E-03 1.7673E-02 4. 8380E-02 1.4573E-02
6.0000 1.3277E-03 4.244TE=-02 3.3825E~02 1.03L%E-N2
" 7.0000 G.83831E~-04 9,2222€-03 2.4 92EN2 T.312%E-03
‘840000 7.5998E-04  7.0393E~-03 1.%350E~-02 S5.5553E-03
9.0000 6.0335E-04  5.6%710€E-03 4.4355E~02 %.3792€E-03
‘£0.00800 4,97133E-0% 4.5T35€-03 1.2103E-02 3,5368E-03
20,0000 1.2393E-04 . 1.1535E~03 3.0172E-03 R,7581E-D%
30.0000 5.5282E-05 5.1373E-04 1.3%03E=03 " 3.8873E-0t . | .
&0.0000 3.1117€-85 2.8335E-04 7.5455E~04 2.1867E-04
$0.0000 1.934)E-05 1.8533E-04 %,8330E-0% 1,4003E-0%
60,0000 t.3363E+05 1.2591E-04 3.3597€-0%  S.7335E-C5
70.00800] . 1.8201E-35 9.4337E=05 2.4713E-04 7.1597£-05
80,0000 7.8223E-96 7.2722€-05 1.,%95%€=-04 5,4%95E~05
90,0000 6.1311E~06 5.7353F-05 4 . LGGRE-DY 4o3443E-05
$00.0000 S.0244E=06 - . Le6TL1E~BS 1,217LE-BY 3.5255E=-05
200.0000 1.,2333E-06 1.2025E-05 3.4339€-05 9, 07L8E~56
300.0000 6.0255E-07 5.6313E-06. 1.4598E=05 . &,2271E-96
‘400.0000 S.6071E-Q7 . 3+3534E-05 8.7363E-06 2.5304E-05
500.0000] - 2.4877E-07 2.3127€-16 6.0251E-06  1.TuS1E-06
600.0002 1.87955~07 1.7NVTLE=06 4,5522-06 1.3185E-06
700.0000 1.5123E-07 1.43655-05 3.6642E~06 1.0513E-05
£00.0008 1.27T%3E-07 1.1853€E=06 3.0373E-06 £.9437E-Q7
‘G0 0,0000" 1.1118E=-07 1.0335E-06 2.6327€-06 7.7991E~-07
T 400040 9.9503E-08 9.2508E-07 2.4103E-06. 6.9504E-Q7

:'Table 3. The funcéion £'(n)

region.

, for tﬁg semi~infinite
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. Rayleigh Number
‘(deg) 0.1 1 10 100
(4} . 5.1246E-2 6.1577E-1 8.25705-0 7.6984E+1
10 . 5.1226 60130 7.8103 'l{'.6587 r
20 5.1167 6.,0522 |  6.6875 17113
ag 5.1072 5.9272 3.3290 6.4265E-0
' 5.09%3 5,763 .0811 2.£029
50 5.078 5.5735’ 3.0850 1.,4112
60 5.0602 53652 2.3437 Z.98163-1
0 0188 <9347 1.4276 3¢319
90 « 9971 4,728 1015 . 2.366
100 L.975% | - .h.536 9.5715E-1 1.7792
110 L,9546 4,3621 8.1350 |  1.3998
120 h.935§ L,2085 7.0827 1.1467
130 4,917 4,0773 6.3112 9, 7406E~2
) | %.902 3-3695 5¢7509 8.554
150 4.890 3.8854 5.33&1 7. 7486
o | i) MR e LaE
O . . R °
180 - h.87h6 3.777# 93 |  6.8408

_Urable 4.

The function 6(9) for the infinite region.
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. Table 5.

o Rayleigh Number
(deg) 0.1 1 10 100
0 0.0000 . 0,0000 ., 0,0000 0.0000
10 7.6654E-4 8.6744E-3 1,0858E-1 8.7685E-1
20 2.96962-3 3.33492-2 3.8509 2.0273E-0
Eg 6.3l+ol+ l 7.0327 | 7.2188 | 2,601
1.0461E~ 13E-1 1,02062-0 2.7770
50 1.482% 1.5853 1.2278 2.7381
60 " 1.8901 1.9760 13303 2.5787
0 2.2195 2.2644 1.3377 2.3480
0 2.4309 2. 1{-172 1.2692 2.07u48
‘90 2.#992 2.423 1.1457 1.7792
100 2.%16 ‘2.2862 3.86935-1 1.4761
110 2.19 2,0277 «0981 | 1,1782
120 1.8589 1.6813 6.2897 8.9666E-1
130 1.4510 1.2877 « 5654 6.4118
1 1.0197 | 8.9062E-2 13,0252 L,2028
150 6.1601E-3 5.3116 1.7463 | - 2.4076
160 2.8780 |~ 2,558 7.9C01E-2  1,0836
. 180 0.0000° 0.0000 - 0.,0000 0.0000
The function £(¢) for the infinite region.




" Rayleigh Number
(deg) 0.1 1 10 100
10 . - 00031 -5.61‘"69 -608651 " . 1 50
20 =k, 7666 -5.2965 -5.4578 =1.,4352
Eg =4,3812 =L, 7422 -3.7884 -3.83658-0
-3,8606 =L,0247 -2,2997 =4,18158-1
50 ~-3.2228 -~3.191 ~1.1566 8.2177 |
60 =26 4884 =2,291 «3.45418-1 1 .3298E—O
- 80 -8 296 E-E -4,6592E-2 5.7860 1.6712
Q0 4,1638E-L 3.907% |  8.26u43 1.7289
100 9.0538E-3 1 1783E-1 9,9259 | 1.7597
110 1.7361E-2 1,8826 1.1046E-0 1.7767
120 2. 509 2 %90 1.1806 1.7862
130 3.202 3.0116 1.2321 1.791%
150 «2771 3.7599 1.2901 1.7960
160 4.6292 _ .9855 13047 1.7968
180 4.,9163 | . %.1682 1.3154 1.7973

- Table 6.

The funétipn £'(¢) for 'the' infiknite region.
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