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Abstract
Machine learning (ML) models may be deemed con-

fidential due to their sensitive training data, commercial

value, or use in security applications. Increasingly often,

confidential ML models are being deployed with pub-

licly accessible query interfaces. ML-as-a-service (“pre-

dictive analytics”) systems are an example: Some allow

users to train models on potentially sensitive data and

charge others for access on a pay-per-query basis.

The tension between model confidentiality and pub-

lic access motivates our investigation of model extraction

attacks. In such attacks, an adversary with black-box ac-

cess, but no prior knowledge of an ML model’s param-

eters or training data, aims to duplicate the functionality

of (i.e., “steal”) the model. Unlike in classical learning

theory settings, ML-as-a-service offerings may accept

partial feature vectors as inputs and include confidence

values with predictions. Given these practices, we show

simple, efficient attacks that extract target ML models

with near-perfect fidelity for popular model classes in-

cluding logistic regression, neural networks, and deci-

sion trees. We demonstrate these attacks against the on-

line services of BigML and Amazon Machine Learning.

We further show that the natural countermeasure of omit-

ting confidence values from model outputs still admits

potentially harmful model extraction attacks. Our results

highlight the need for careful ML model deployment and

new model extraction countermeasures.

1 Introduction

Machine learning (ML) aims to provide automated ex-

traction of insights from data by means of a predictive

model. A predictive model is a function that maps feature

vectors to a categorical or real-valued output. In a super-

vised setting, a previously gathered data set consisting

of possibly confidential feature-vector inputs (e.g., digi-

tized health records) with corresponding output class la-

bels (e.g., a diagnosis) serves to train a predictive model

that can generate labels on future inputs. Popular models

include support vector machines (SVMs), logistic regres-

sions, neural networks, and decision trees.

ML algorithms’ success in the lab and in practice has

led to an explosion in demand. Open-source frameworks

such as PredictionIO and cloud-based services offered

by Amazon, Google, Microsoft, BigML, and others have

arisen to broaden and simplify ML model deployment.

Cloud-based ML services often allow model owners to

charge others for queries to their commercially valuable

models. This pay-per-query deployment option exem-

plifies an increasingly common tension: The query in-

terface of an ML model may be widely accessible, yet

the model itself and the data on which it was trained

may be proprietary and confidential. Models may also

be privacy-sensitive because they leak information about

training data [4, 23, 24]. For security applications such

as spam or fraud detection [9,29,36,55], an ML model’s

confidentiality is critical to its utility: An adversary that

can learn the model can also often evade detection [4,36].

In this paper we explore model extraction attacks,

which exploit the tension between query access and con-

fidentiality in ML models. We consider an adversary that

can query an ML model (a.k.a. a prediction API) to ob-

tain predictions on input feature vectors. The model may

be viewed as a black box. The adversary may or may

not know the model type (logistic regression, decision

tree, etc.) or the distribution over the data used to train

the model. The adversary’s goal is to extract an equiva-

lent or near-equivalent ML model, i.e., one that achieves

(close to) 100% agreement on an input space of interest.

We demonstrate successful model extraction attacks

against a wide variety of ML model types, including de-

cision trees, logistic regressions, SVMs, and deep neu-

ral networks, and against production ML-as-a-service

(MLaaS) providers, including Amazon and BigML.1 In

nearly all cases, our attacks yield models that are func-

1We simulated victims by training models in our own accounts. We

have disclosed our results to affected services in February 2016.
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Service Model Type Data set Queries Time (s)

Amazon
Logistic Regression Digits 650 70
Logistic Regression Adult 1,485 149

BigML
Decision Tree German Credit 1,150 631
Decision Tree Steak Survey 4,013 2,088

Table 1: Results of model extraction attacks on ML services. For

each target model, we report the number of prediction queries made to

the ML API in an attack that extracts a 100% equivalent model. The

attack time is primarily influenced by the service’s prediction latency

(≈ 100ms/query for Amazon and ≈ 500ms/query for BigML).

tionally very close to the target. In some cases, our at-

tacks extract the exact parameters of the target (e.g., the

coefficients of a linear classifier or the paths of a decision

tree). For some targets employing a model type, param-

eters or features unknown to the attacker, we addition-

ally show a successful preliminary attack step involving

reverse-engineering these model characteristics.

Our most successful attacks rely on the information-

rich outputs returned by the ML prediction APIs of all

cloud-based services we investigated. Those of Google,

Amazon, Microsoft, and BigML all return high-precision

confidence values in addition to class labels. They also

respond to partial queries lacking one or more features.

Our setting thus differs from traditional learning-theory

settings [3,7,8,15,30,33,36,53] that assume only mem-

bership queries, outputs consisting of a class label only.

For example, for logistic regression, the confidence value

is a simple log-linear function 1/(1+e−(w·x+β )) of the d-

dimensional input vector x. By querying d + 1 random

d-dimensional inputs, an attacker can with high proba-

bility solve for the unknown d + 1 parameters w and β
defining the model. We emphasize that while this model

extraction attack is simple and non-adaptive, it affects all

of the ML services we have investigated.

Such equation-solving attacks extend to multiclass lo-

gistic regressions and neural networks, but do not work

for decision trees, a popular model choice. (BigML, for

example, initially offered only decision trees.) For de-

cision trees, a confidence value reflects the number of

training data points labeled correctly on an input’s path

in the tree; simple equation-solving is thus inapplicable.

We show how confidence values can nonetheless be ex-

ploited as pseudo-identifiers for paths in the tree, facili-

tating discovery of the tree’s structure. We demonstrate

successful model extraction attacks that use adaptive, it-

erative search algorithms to discover paths in a tree.

We experimentally evaluate our attacks by training

models on an array of public data sets suitable as stand-

ins for proprietary ones. We validate the attacks locally

using standard ML libraries, and then present case stud-

ies on BigML and Amazon. For both services, we show

computationally fast attacks that use a small number of

queries to extract models matching the targets on 100%

of tested inputs. See Table 1 for a quantitative summary.

Having demonstrated the broad applicability of model

extraction attacks to existing services, we consider the

most obvious potential countermeasure ML services

might adopt: Omission of confidence values, i.e., output

of class labels only. This approach would place model

extraction back in the membership query setting of prior

work in learning theory [3, 8, 36, 53]. We demonstrate

a generalization of an adaptive algorithm by Lowd and

Meek [36] from binary linear classifiers to more com-

plex model types, and also propose an attack inspired by

the agnostic learning algorithm of Cohn et al. [18]. Our

new attacks extract models matching targets on >99% of

the input space for a variety of model classes, but need

up to 100× more queries than equation-solving attacks

(specifically for multiclass linear regression and neural

networks). While less effective than equation-solving,

these attacks remain attractive for certain types of adver-

sary. We thus discuss further ideas for countermeasures.

In summary, we explore model extraction attacks, a

practical kind of learning task that, in particular, affects

emerging cloud-based ML services being built by Ama-

zon, Google, Microsoft, BigML, and others. We show:

• Simple equation-solving model extraction attacks that

use non-adaptive, random queries to solve for the pa-

rameters of a target model. These attacks affect a wide

variety of ML models that output confidence values.

We show their success against Amazon’s service (us-

ing our own models as stand-ins for victims’), and also

report successful reverse-engineering of the (only par-

tially documented) model type employed by Amazon.

• A new path-finding algorithm for extracting decision

trees that abuses confidence values as quasi-identifiers

for paths. To our knowledge, this is the first example

of practical “exact” decision tree learning. We demon-

strate the attack’s efficacy via experiments on BigML.

• Model extraction attacks against models that output

only class labels, the obvious countermeasure against

extraction attacks that rely on confidence values. We

show slower, but still potentially dangerous, attacks in

this setting that build on prior work in learning theory.

We additionally make a number of observations about the

implications of extraction. For example, attacks against

Amazon’s system indirectly leak various summary statis-

tics about a private training set, while extraction against

kernel logistic regression models [57] recovers signifi-

cant information about individual training data points.

The source code for our attacks is available online at

https://github.com/ftramer/Steal-ML.

2 Background

For our purposes, a ML model is a function f : X → Y .

An input is a d-dimensional vector in the feature space
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X = X1 ×X2 ×·· ·×Xd . Outputs lie in the range Y .

We distinguish between categorical features, which as-

sume one of a finite set of values (whose set size is the

arity of the feature), and continuous features, which as-

sume a value in a bounded subset of the real numbers.

Without loss of generality, for a categorical feature of ar-

ity k, we let Xi = Zk. For a continuous feature taking

values between bounds a and b, we let Xi = [a,b]⊂ R.

Inputs to a model may be pre-processed to perform

feature extraction. In this case, inputs come from a space

M, and feature extraction involves application of a func-

tion ex : M → X that maps inputs into a feature space.

Model application then proceeds by composition in the

natural way, taking the form f (ex(M)). Generally, fea-

ture extraction is many-to-one. For example, M may

be a piece of English language text and the extracted

features counts of individual words (so-called “bag-of-

words” feature extraction). Other examples are input

scaling and one-hot-encoding of categorical features.

We focus primarily on classification settings in which

f predicts a nominal variable ranging over a set of

classes. Given c classes, we use as class labels the set

Zc. If Y = Zc, the model returns only the predicted class

label. In some applications, however, additional informa-

tion is often helpful, in the form of real-valued measures

of confidence on the labels output by the model; these

measures are called confidence values. The output space

is then Y = [0,1]c. For a given x ∈ X and i ∈ Zc, we de-

note by fi(x) the ith component of f (x) ∈ Y . The value

fi(x) is a model-assigned probability that x has associ-

ated class label i. The model’s predicted class is defined

by the value argmaxi fi(x), i.e., the most probable label.

We associate with Y a distance measure dY . We drop

the subscript Y when it is clear from context. For Y =Zc

we use 0-1 distance, meaning d(y,y′) = 0 if y = y′ and

d(y,y′) = 1 otherwise. For Y = [0,1]c, we use the 0-1

distance when comparing predicted classes; when com-

paring class probabilities directly, we instead use the to-

tal variation distance, given by d(y,y′) = 1
2 ∑ |y[i]−y′[i]|.

In the rest of this paper, unless explicitly specified other-

wise, dY refers to the 0-1 distance over class labels.

Training algorithms. We consider models obtained

via supervised learning. These models are generated by

a training algorithm T that takes as input a training set

{(xi,yi)}i, where (xi,yi) ∈ X ×Y is an input with an as-

sociated (presumptively correct) class label. The output

of T is a model f defined by a set of parameters, which

are model-specific, and hyper-parameters, which spec-

ify the type of models T generates. Hyper-parameters

may be viewed as distinguished parameters, often taken

from a small number of standard values; for example, the

kernel-type used in an SVM, of which only a small set

are used in practice, may be seen as a hyper-parameter.

DB#
Data#owner#

Train#
model##

Extrac3on#
adversary#

f̂

ML#service#

f(x1)

f(xq)

xq

x1

…
#

Figure 1: Diagram of ML model extraction attacks. A data owner

has a model f trained on its data and allows others to make prediction

queries. An adversary uses q prediction queries to extract an f̂ ≈ f .

3 Model Extraction Attacks

An ML model extraction attack arises when an adversary

obtains black-box access to some target model f and at-

tempts to learn a model f̂ that closely approximates, or

even matches, f (see Figure 1).

As mentioned previously, the restricted case in which

f outputs class labels only, matches the membership

query setting considered in learning theory, e.g., PAC

learning [53] and other previous works [3, 7, 8, 15, 30,

33, 36]. Learning theory algorithms have seen only lim-

ited study in practice, e.g., in [36], and our investiga-

tion may be viewed as a practice-oriented exploration of

this branch of research. Our initial focus, however, is on

a different setting common in today’s MLaaS services,

which we now explain in detail. Models trained by these

services emit data-rich outputs that often include confi-

dence values, and in which partial feature vectors may

be considered valid inputs. As we show later, this setting

greatly advantages adversaries.

Machine learning services. A number of companies

have launched or are planning to launch cloud-based ML

services. A common denominator is the ability of users

to upload data sets, have the provider run training algo-

rithms on the data, and make the resulting models gener-

ally available for prediction queries. Simple-to-use Web

APIs handle the entire interaction. This service model

lets users capitalize on their data without having to set

up their own large-scale ML infrastructure. Details vary

greatly across services. We summarize a number of them

in Table 2 and now explain some of the salient features.

A model is white-box if a user may download a rep-

resentation suitable for local use. It is black-box if ac-

cessible only via a prediction query interface. Ama-

zon and Google, for example, provide black-box-only

services. Google does not even specify what training

algorithm their service uses, while Amazon provides

only partial documentation for its feature extraction ex

(see Section 5). Some services allow users to monetize

trained models by charging others for prediction queries.

To use these services, a user uploads a data set and

optionally applies some data pre-processing (e.g., field

removal or handling of missing values). She then trains a
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Amazon [1] ✗ ✗ ✓ ✓ ✗ ✗ ✗

Microsoft [38] ✗ ✗ ✓ ✓ ✓ ✓ ✓

BigML [11] ✓ ✓ ✓ ✓ ✗ ✗ ✓

PredictionIO [43] ✓ ✗ ✗ ✓ ✓ ✗ ✓

Google [25] ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Particularities of major MLaaS providers. ‘White-box’

refers to the ability to download and use a trained model locally, and

‘Monetize’ means that a user may charge other users for black-box

access to her models. Model support for each service is obtained from

available documentation. The models listed for Google’s API are a pro-

jection based on the announced support of models in standard PMML

format [25]. Details on ML models are given in Appendix A.

model by either choosing one of many supported model

classes (as in BigML, Microsoft, and PredictionIO) or

having the service choose an appropriate model class (as

in Amazon and Google). Two services have also an-

nounced upcoming support for users to upload their own

trained models (Google) and their own custom learning

algorithms (PredictionIO). When training a model, users

may tune various parameters of the model or training-

algorithm (e.g., regularizers, tree size, learning rates) and

control feature-extraction and transformation methods.

For black-box models, the service provides users with

information needed to create and interpret predictions,

such as the list of input features and their types. Some

services also supply the model class, chosen training pa-

rameters, and training data statistics (e.g., BigML gives

the range, mean, and standard deviation of each feature).

To get a prediction from a model, a user sends one

or more input queries. The services we reviewed accept

both synchronous requests and asynchronous ‘batch’ re-

quests for multiple predictions. We further found vary-

ing degrees of support for ‘incomplete’ queries, in which

some input features are left unspecified [46]. We will

show that exploiting incomplete queries can drastically

improve the success of some of our attacks. Apart from

PredictionIO, all of the services we examined respond to

prediction queries with not only class labels, but a variety

of additional information, including confidence scores

(typically class probabilities) for the predicted outputs.

Google and BigML allow model owners to mone-

tize their models by charging other users for predictions.

Google sets a minimum price of $0.50 per 1,000 queries.

On BigML, 1,000 queries consume at least 100 credits,

costing $0.10–$5, depending on the user’s subscription.

Attack scenarios. We now describe possible motiva-

tions for adversaries to perform model extraction attacks.

We then present a more detailed threat model informed

by characteristics of the aforementioned ML services.

Avoiding query charges. Successful monetization of

prediction queries by the owner of an ML model f re-

quires confidentiality of f . A malicious user may seek to

launch what we call a cross-user model extraction attack,

stealing f for subsequent free use. More subtly, in black-

box-only settings (e.g., Google and Amazon), a service’s

business model may involve amortizing up-front training

costs by charging users for future predictions. A model

extraction attack will undermine the provider’s business

model if a malicious user pays less for training and ex-

tracting than for paying per-query charges.

Violating training-data privacy. Model extraction

could, in turn, leak information about sensitive training

data. Prior attacks such as model inversion [4, 23, 24]

have shown that access to a model can be abused to infer

information about training set points. Many of these at-

tacks work better in white-box settings; model extraction

may thus be a stepping stone to such privacy-abusing at-

tacks. Looking ahead, we will see that in some cases,

significant information about training data is leaked triv-

ially by successful model extraction, because the model

itself directly incorporates training set points.

Stepping stone to evasion. In settings where an ML

model serves to detect adversarial behavior, such as iden-

tification of spam, malware classification, and network

anomaly detection, model extraction can facilitate eva-

sion attacks. An adversary may use knowledge of the

ML model to avoid detection by it [4, 9, 29, 36, 55].

In all of these settings, there is an inherent assumption

of secrecy of the ML model in use. We show that this

assumption is broken for all ML APIs that we investigate.

Threat model in detail. Two distinct adversarial mod-

els arise in practice. An adversary may be able to make

direct queries, providing an arbitrary input x to a model f

and obtaining the output f (x). Or the adversary may be

able to make only indirect queries, i.e., queries on points

in input space M yielding outputs f (ex(M)). The feature

extraction mechanism ex may be unknown to the adver-

sary. In Section 5, we show how ML APIs can further

be exploited to “learn” feature extraction mechanisms.

Both direct and indirect access to f arise in ML services.

(Direct query interfaces arise when clients are expected

to perform feature extraction locally.) In either case, the

output value can be a class label, a confidence value vec-

tor, or some data structure revealing various levels of in-

formation, depending on the exposed API.

We model the adversary, denoted by A, as a random-

ized algorithm. The adversary’s goal is to use as few

queries as possible to f in order to efficiently compute

an approximation f̂ that closely matches f . We formalize

“closely matching” using two different error measures:

• Test error Rtest: This is the average error over a test set

D, given by Rtest( f , f̂ ) = ∑(x,y)∈D d( f (x), f̂ (x))/|D|.
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A low test error implies that f̂ matches f well for in-

puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly

chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature

space on which f and f̂ disagree. (In our experiments,

we found |U |= 10,000 was sufficiently large to obtain

stable error estimates for the models we analyzed.)

We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we

implicitly refer to accuracy under 0-1 distance. When as-

sessing how close the class probabilities output by f̂ are

to those of f (with the total-variation distance) we use

the notations RTV
test( f , f̂ ) and RTV

unif( f , f̂ ).
An adversary may know any of a number of pieces

of information about a target f : What training algorithm

T generated f , the hyper-parameters used with T , the

feature extraction function ex, etc. We will investigate a

variety of settings in this work corresponding to different

APIs seen in practice. We assume that A has no more

information about a model’s training data, than what is

provided by an ML API (e.g., summary statistics). For

simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s

goal is to extract a model f̂ from the same class. We

discuss some intuition in favor of proper extraction in

Appendix D, and leave a broader treatment of improper

extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on

prediction APIs that return confidence values. As per

Section 2, the output of a query to f thus falls in a range

[0,1]c where c is the number of classes. To motivate this,

we recall that most ML APIs reveal confidence values

for models that support them (see Table 2). This includes

logistic regressions (LR), neural networks, and decision

trees, defined formally in Appendix A. We first introduce

a generic equation-solving attack that applies to all logis-

tic models (LR and neural networks). In Section 4.2, we

present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks

Many ML models we consider directly compute class

probabilities as a continuous function of the input x and

real-valued model parameters. In this case, an API that

reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations

in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better

than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8

Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,

thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily

be experimental. We use a suite of synthetic or pub-

licly available data sets to serve as stand-ins for propri-

etary data that might be the target of an extraction at-

tack. Table 3 displays the data sets used in this section,

which we obtained from various sources: the synthetic

ones we generated; the others are taken from public

surveys (Steak Survey [26] and GSS Survey [49]), from

scikit [42] (Digits) or from the UCI ML library [35].

More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,

apply one-hot-encoding to categorical features, and scale

all numeric features to the range [−1,1]. We train our

models over a randomly chosen subset of 70% of the

data, and keep the rest for evaluation (i.e., to calculate

Rtest). We discuss the impact of different pre-processing

and feature extraction steps in Section 5, when we evalu-

ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-

tic regression (LR). A LR model performs binary clas-

sification (c = 2), by estimating the probability of a bi-

nary response, based on a number of independent fea-

tures. LR is one of the most popular binary classifiers,

due to its simplicity and efficiency. It is widely used in

many scientific fields (e.g., medical and social sciences)

and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
R

d , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it

defines a hyperplane in the feature space X (defined by

w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-

tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both

necessary and sufficient (if the queried x are linearly in-

dependent) to recover w and β . Note that the required
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samples are chosen non-adaptively, and can thus be ob-

tained from a single batch request to the ML service.

We stress that while this extraction attack is rather

straightforward, it directly applies, with possibly devas-

tating consequences, to all cloud-based ML services we

considered. As an example, recall that some services

(e.g., BigML and Google) let model owners monetize

black-box access to their models. Any user who wishes

to make more than d + 1 queries to a model would then

minimize the prediction cost by first running a cross-

user model extraction attack, and then using the extracted

model for personal use, free of charge. As mentioned in

Section 3, attackers with a final goal of model-inversion

or evasion may also have incentives to first extract the

model. Moreover, for services with black-box-only ac-

cess (e.g., Amazon or Google), a user may abuse the ser-

vice’s resources to train a model over a large data set D

(i.e., |D| ≫ d), and extract it after only d+1 predictions.

Crucially, the extraction cost is independent of |D|. This

could undermine a service’s business model, should pre-

diction fees be used to amortize the high cost of training.

For each binary data set shown in Table 3, we train a

LR model and extract it given d + 1 predictions. In all

cases, we achieve Rtest = Runif = 0. If we compare the

probabilities output by f and f̂ , RTV
test and RTV

unif are lower

than 10−9. For these models, the attack requires only 41

queries on average, and 113 at most. On Google’s plat-

form for example, an extraction attack would cost less

than $0.10, and subvert any further model monetization.

4.1.2 Multiclass LRs and Multilayer Perceptrons

We now show that such equation-solving attacks broadly

extend to all model classes with a ‘logistic’ layer, includ-

ing multiclass (c > 2) LR and deeper neural networks.

We define these models formally in Appendix A.

A multiclass logistic regression (MLR) combines c bi-

nary models, each with parameters wi,βi, to form a mul-

ticlass model. MLRs are available in all ML services we

reviewed. We consider two types of MLR models: soft-

max and one-vs-rest (OvR), that differ in how the c bi-

nary models are trained and combined: A softmax model

fits a joint multinomial distribution to all training sam-

ples, while a OvR model trains a separate binary LR for

each class, and then normalizes the class probabilities.

A MLR model f is defined by parameters w ∈ R
cd ,

βββ ∈R
c. Each sample (x, f (x)) gives c equations in w and

βββ . The equation system is non-linear however, and has

no analytic solution. For softmax models for instance,

the equations take the form ewi·x+βi/(∑c−1
j=0 ew j ·x+β j) =

fi(x). A common method for solving such a system is

by minimizing an appropriate loss function, such as the

logistic loss. With a regularization term, the loss func-

tion is strongly convex, and the optimization thus con-

Model Unknowns Queries 1−Rtest 1−Runif Time (s)

Softmax 530
265 99.96% 99.75% 2.6
530 100.00% 100.00% 3.1

OvR 530
265 99.98% 99.98% 2.8
530 100.00% 100.00% 3.5

MLP 2,225

1,112 98.17% 94.32% 155
2,225 98.68% 97.23% 168
4,450 99.89% 99.82% 195

11,125 99.96% 99.99% 89

Table 4: Success of equation-solving attacks. Models to extract

were trained on the Adult data set with multiclass target ‘Race’. For

each model, we report the number of unknown model parameters, the

number of queries used, and the running time of the equation solver.

The attack on the MLP with 11,125 queries converged after 490 epochs.

verges to a global minimum (i.e., a function f̂ that pre-

dicts the same probabilities as f for all available sam-

ples). A similar optimization (over class labels rather

than probabilities) is actually used for training logistic

models. Any MLR implementation can thus easily be

adapted for model extraction with equation-solving.

This approach naturally extends to deeper neural net-

works. We consider multilayer perceptrons (MLP), that

first apply a non-linear transform to all inputs (the hid-

den layer), followed by a softmax regression in the trans-

formed space. MLPs are becoming increasingly popular

due to the continued success of deep learning methods;

the advent of cloud-based ML services is likely to further

boost their adoption. For our attacks, MLPs and MLRs

mainly differ in the number of unknowns in the system

to solve. For perceptrons with one hidden layer, we have

w ∈ R
dh+hc, βββ ∈ R

h+c, where h is the number of hidden

nodes (h = 20 in our experiments). Another difference

is that the loss function for MLPs is not strongly convex.

The optimization may thus converge to a local minimum,

i.e., a model f̂ that does not exactly match f ’s behavior.

To illustrate our attack’s success, we train a softmax

regression, a OvR regression and a MLP on the Adult

data set with target ‘Race’ (c = 5). For the non-linear

equation systems we obtain, we do not know a priori

how many samples we need to find a solution (in con-

trast to linear systems where d+1 samples are necessary

and sufficient). We thus explore various query budgets

of the form α · k, where k is the number of unknown

model parameters, and α is a budget scaling factor. For

MLRs, we solve the equation system with BFGS [41]

in scikit [42]. For MLPs, we use theano [51] to run

stochastic gradient descent for 1,000 epochs. Our experi-

ments were performed on a commodity laptop (2-core In-

tel CPU @3.1GHz, 16GB RAM, no GPU acceleration).

Table 4 shows the extraction success for each model,

as we vary α from 0.5 to at most 5. For MLR models

(softmax and OvR), the attack is extremely efficient, re-

quiring around one query per unknown parameter of f

(each query yields c = 5 equations). For MLPs, the sys-

tem to solve is more complex, with about 4 times more
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(a) (b)

Figure 2: Training data leakage in KLR models. (a) Displays 5 of

20 training samples used as representers in a KLR model (top) and 5 of

20 extracted representers (bottom). (b) For a second model, shows the

average of all 1,257 representers that the model classifies as a 3,4,5,6
or 7 (top) and 5 of 10 extracted representers (bottom).

unknowns. With a sufficiently over-determined system,

we converge to a model f̂ that very closely approximates

f . As for LR models, queries are chosen non-adaptively,

so A may submit a single ‘batch request’ to the API.

We further evaluated our attacks over all multiclass

data sets from Table 3. For MLR models with k = c ·(d+
1) parameters (c is the number of classes), k queries were

sufficient to achieve perfect extraction (Rtest = Runif = 0,

RTV
test and RTV

unif below 10−7). We use 260 samples on

average, and 650 for the largest model (Digits). For

MLPs with 20 hidden nodes, we achieved >99.9% accu-

racy with 5,410 samples on average and 11,125 at most

(Adult). With 54,100 queries on average, we extracted a

f̂ with 100% accuracy over tested inputs. As for binary

LRs, we thus find that cross-user model extraction at-

tacks for these model classes can be extremely efficient.

4.1.3 Training Data Leakage for Kernel LR

We now move to a less mainstream model class, kernel

logistic regression [57], that illustrates how extraction at-

tacks can leak private training data, when a model’s out-

puts are directly computed as a function of that data.

Kernel methods are commonly used to efficiently ex-

tend support vector machines (SVM) to nonlinear clas-

sifiers [14], but similar techniques can be applied to lo-

gistic regression [57]. Compared to kernel SVMs, kernel

logistic regressions (KLR) have the advantage of com-

puting class probabilities, and of naturally extending to

multiclass problems. Yet, KLRs have not reached the

popularity of kernel SVMs or standard LRs, and are not

provided by any MLaaS provider at the time. We note

that KLRs could easily be constructed in any ML library

that supports both kernel functions and LR models.

A KLR model is a softmax model, where we re-

place the linear components wi · x + βi by a mapping

∑
s
r=1 αi,rK(x,xr)+βi. Here, K is a kernel function, and

the representers x1, . . . ,xs are a chosen subset of the

training points [57]. More details are in Appendix A.

Each sample (x, f (x)) from a KLR model yields c

equations over the parameters ααα ∈ R
sc
,βββ ∈ R

c and the

representers x1, . . . ,xs. Thus, by querying the model,

A obtains a non-linear equation system, the solution of

which leaks training data. This assumes that A knows

the exact number s of representers sampled from the data.

However, we can relax this assumption: First, note that

f ’s outputs are unchanged by adding ‘extra’ representers,

with weights α = 0. Thus, over-estimating s still results

in a consistent system of equations, of which a solution

is the model f , augmented with unused representers. We

will also show experimentally that training data may leak

even if A extracts a model f̂ with s′ ≪ s representers.

We build two KLR models with a radial-basis function

(RBF) kernel for a data set of handwritten digits. We se-

lect 20 random digits as representers for the first model,

and all 1,257 training points for the second. We extract

the first model, assuming knowledge of s, by solving a

system of 50,000 equations in 1,490 unknowns. We use

the same approach as for MLPs, i.e., logistic-loss min-

imization using gradient descent. We initialize the ex-

tracted representers to uniformly random vectors in X ,

as we assume A does not know the training data distribu-

tion. In Figure 2a, we plot 5 of the model’s representers

from the training data, and the 5 closest (in l1 norm) ex-

tracted representers. The attack clearly leaks information

on individual training points. We measure the attack’s ro-

bustness to uncertainty about s, by attacking the second

model with only 10 local representers (10,000 equations

in 750 unknowns). Figure 2b shows the average image

of training points classified as a 3,4,5,6 or 7 by the tar-

get model f , along with 5 extracted representers of f̂ .

Surprisingly maybe, the attack seems to be leaking the

‘average representor’ of each class in the training data.

4.1.4 Model Inversion Attacks on Extracted Models

Access to a model may enable inference of privacy-

damaging information, particularly about the training

set [4, 23, 24]. The model inversion attack explored by

Fredrikson et al. [23] uses access to a classifier f to find

the input xopt that maximizes the class probability for

class i, i.e., xopt = argmaxx∈X fi(x). This was shown

to allow recovery of recognizable images of training set

members’ faces when f is a facial recognition model.

Their attacks work best in a white-box setting, where

the attacker knows f and its parameters. Yet, the authors

also note that in a black-box setting, remote queries to a

prediction API, combined with numerical approximation

techniques, enable successful, albeit much less efficient,

attacks. Furthermore, their black-box attacks inherently

require f to be queried adaptively. They leave as an open

question making black-box attacks more efficient.

We explore composing an attack that first attempts to

extract a model f̂ ≈ f , and then uses it with the [23]

white-box inversion attack. Our extraction techniques re-

place adaptive queries with a non-adaptive “batch” query

to f , followed by local computation. We show that ex-

traction plus inversion can require fewer queries and less

time than performing black-box inversion directly.
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As a case study, we use the softmax model from [23],

trained over the AT&T Faces data [5]. The data set con-

sists of images of faces (92 × 112 pixels) of 40 peo-

ple. The black-box attack from [23] needs about 20,600

queries to reconstruct a recognizable face for a single

training set individual. Reconstructing the faces of all 40

individuals would require around 800,000 online queries.

The trained softmax model is much larger than those

considered in Section 4.1, with 412,160 unknowns (d =
10,304 and c = 40). We solve an under-determined sys-

tem with 41,216 equations (using gradient descent with

200 epochs), and recover a model f̂ achieving RTV
test,R

TV
unif

in the order of 10−3. Note that the number of model

parameters to extract is linear in the number of people c,

whose faces we hope to recover. By using f̂ in white-box

model inversion attacks, we obtain results that are visu-

ally indistinguishable from the ones obtained using the

true f . Given the extracted model f̂ , we can recover all

40 faces using white-box attacks, incurring around 20×
fewer remote queries to f than with 40 black-box attacks.

For black-box attacks, the authors of [23] estimate a

query latency of 70 milliseconds (a little less than in our

own measurements of ML services, see Table 1). Thus,

it takes 24 minutes to recover a single face (the inversion

attack runs in seconds), and 16 hours to recover all 40 im-

ages. In contrast, solving the large equation system un-

derlying our model-extraction attack took 10 hours. The

41,216 online queries would take under one hour if exe-

cuted sequentially and even less with a batch query. The

cost of the 40 local white-box attacks is negligible.

Thus, if the goal is to reconstruct faces for all 40 train-

ing individuals, performing model inversion over a pre-

viously extracted model results in an attack that is both

faster and requires 20× fewer online queries.

4.2 Decision Tree Path-Finding Attacks

Contrary to logistic models, decision trees do not com-

pute class probabilities as a continuous function of their

input. Rather, decision trees partition the input space into

discrete regions, each of which is assigned a label and

confidence score. We propose a new path-finding attack,

that exploits API particularities to extract the ‘decisions’

taken by a tree when classifying an input.

Prior work on decision tree extraction [7, 12, 33] has

focused on trees with Boolean features and outputs.

While of theoretical importance, such trees have limited

practical use. Kushilevitz and Mansour [33] showed that

Boolean trees can be extracted using membership queries

(arbitrary queries for class labels), but their algorithm

does not extend to more general trees. Here, we propose

attacks that exploit ML API specificities, and that apply

to decision tree models used in MLaaS platforms.

Our tree model, defined formally in Appendix A, al-

lows for binary and multi-ary splits over categorical fea-

tures, and binary splits over numeric features. Each leaf

of the tree is labeled with a class label and a confidence

score. We note that our attacks also apply (often with bet-

ter results) to regression trees. In regression trees, each

leaf is labeled with a real-valued output and confidence.

The key idea behind our attack is to use the rich in-

formation provided by APIs on a prediction query, as a

pseudo-identifier for the path that the input traversed in

the tree. By varying the value of each input feature, we

then find the predicates to be satisfied, for an input to

follow a given path in the tree. We will also exploit the

ability to query incomplete inputs, in which each feature

xi is chosen from a space Xi ∪ {⊥}, where ⊥ encodes

the absence of a value. One way of handling such inputs

([11, 46]) is to label each node in the tree with an output

value. On an input, we traverse the tree until we reach a

leaf or an internal node with a split over a missing fea-

ture, and output that value of that leaf or node.

We formalize these notions by defining oracles that

A can query to obtain an identifier for the leaf or inter-

nal node reached by an input. In practice, we instantiate

these oracles using prediction API peculiarities.

Definition 1 (Identity Oracles). Let each node v of a tree

T be assigned some identifier idv. A leaf-identity oracle

O takes as input a query x ∈ X and returns the identifier

of the leaf of the tree T that is reached on input x.

A node-identity oracle O⊥ takes as input a query x ∈
X1 ∪{⊥}× ·· ·×Xd ∪{⊥} and returns the identifier of

the node or leaf of T at which the tree computation halts.

4.2.1 Extraction Algorithms

We now present our path-finding attack (Algorithm 1),

that assumes a leaf-identity oracle that returns unique

identifiers for each leaf. We will relax the uniqueness

assumption further on. The attack starts with a random

input x and gets the leaf id from the oracle. We then

search for all constraints on x that have to be satisfied to

remain in that leaf, using procedures LINE SEARCH (for

continuous features) and CAT SPLIT (for categorical fea-

tures) described below. From this information, we then

create new queries for unvisited leaves. Once all leaves

have been found, the algorithm returns, for each leaf, the

corresponding constraints on x. We analyze the algo-

rithm’s correctness and complexity in Appendix C.

We illustrate our algorithm with a toy example of a

tree over continuous feature Size and categorical feature

Color (see Figure 3). The current query is x = {Size =
50, Color = R} and O(x) = id2. Our goal is two-fold:

(1) Find the predicates that x has to satisfy to end up in

leaf id2 (i.e., Size ∈ (40,60], Color = R), and (2) create

new inputs x′ to explore other paths in the tree.
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Algorithm 1 The path-finding algorithm. The notation id ←
O(x) means querying the leaf-identity oracle O with an input x and

obtaining a response id. By x[i]⇒ v we denote the query x′ obtained

from x by replacing the value of xi by v.

1: xinit ←{x1, . . . ,xd} ⊲ random initial query
2: Q ←{xinit} ⊲ Set of unprocessed queries
3: P ←{} ⊲ Set of explored leaves with their predicates
4: while Q not empty do
5: x ← Q.POP()
6: id←O(x) ⊲ Call to the leaf identity oracle
7: if id ∈ P then ⊲ Check if leaf already visited
8: continue
9: end if

10: for 1 ≤ i ≤ d do ⊲ Test all features
11: if IS CONTINUOUS(i) then
12: for (α,β ] ∈ LINE SEARCH(x, i,ε) do
13: if xi ∈ (α,β ] then
14: P[id].ADD(‘xi ∈ (α,β ]‘) ⊲ Current interval
15: else
16: Q.PUSH(x[i]⇒ β ) ⊲ New leaf to visit
17: end if
18: end for
19: else
20: S,V ← CATEGORY SPLIT(x, i,id)
21: P[id].ADD(‘xi ∈ S‘) ⊲ Values for current leaf
22: for v ∈V do
23: Q.PUSH(x[i]⇒ v) ⊲ New leaves to visit
24: end for
25: end if
26: end for
27: end while

The LINE SEARCH procedure (line 12) tests continu-

ous features. We start from bounds on the range of a fea-

ture Xi = [a,b]. In our example, we have Size ∈ [0,100].
We set the value of Size in x to 0 and 100, query O, and

obtain id1 and id5. As the ids do not match, a split on

Size occurs on the path to id2. With a binary search over

feature Size (and all other features in x fixed), we find all

intervals that lead to different leaves, i.e., [0,40], (40,60],
(60,100]. From these intervals, we find the predicate for

the current leaf (i.e., Size ∈ (40,60]) and build queries to

explore new tree paths. To ensure termination of the line

search, we specify some precision ε . If a split is on a

threshold t, we find the value t̃ that is the unique multiple

of ε in the range (t − ε, t]. For values xi with granularity

ε , splitting on t̃ is then equivalent to splitting on t.

The CATEGORY SPLIT procedure (line 20) finds splits

on categorical features. In our example, we vary the

value of Color in x and query O to get a leaf id for each

value. We then build a set S of values that lead to the cur-

rent leaf, i.e., S = {R}, and a set V of values to set in x to

explore other leaves (one representative per leaf). In our

example, we could have V = {B,G,Y} or V = {B,G,O}.

Using these two procedures, we thus find the pred-

icates defining the path to leaf id2, and generate new

queries x′ for unvisited leaves of the tree.

A top-down approach. We propose an empirically

more efficient top-down algorithm that exploits queries

over partial inputs. It extracts the tree ‘layer by layer’,

Color
Size

id1

≤ 40

Size

Color

id2

= R

id3

= B

id4

= G

≤ 60

id5

> 60

> 40

∈ {R,B,G}

id6

∈ {Y,O}

Figure 3: Decision tree over features Color and Size. Shows the

path (thick green) to leaf id2 on input x = {Size = 50, Color = R}.

Data set # records # classes # features
IRS Tax Patterns 191,283 51 31
Steak Survey 430 5 12
GSS Survey 51,020 3 7
Email Importance 4,709 2 14
Email Spam 4,601 2 46
German Credit 1,000 2 11

Medical Cover 163,065 Y = R 13
Bitcoin Price 1,076 Y = R 7

Table 5: Data sets used for decision tree extraction. Trained trees

for these data sets are available in BigML’s public gallery. The last two

data sets are used to train regression trees.

starting at the root: We start with an empty query (all

features set to ⊥) and get the root’s id by querying O⊥.

We then set each feature in turn and query O again. For

exactly one feature (the root’s splitting feature), the input

will reach a different node. With similar procedures as

described previously, we extract the root’s splitting crite-

rion, and recursively search lower layers of the tree.

Duplicate identities. As we verify empirically, our at-

tacks are resilient to some nodes or leaves sharing the

same id. We can modify line 7 in Algorithm 1 to detect

id duplicates, by checking not only whether a leaf with

the current id was already visited, but also whether the

current query violates that leaf’s predicates. The main

issue with duplicate ids comes from the LINE SEARCH

and CATEGORY SPLIT procedures: if two queries x and

x′ differ in a single feature and reach different leaves with

the same id, the split on that feature will be missed.

4.2.2 Attack Evaluation

Our tree model (see Appendix A) is the one used by

BigML. Other ML services use similar tree models. For

our experiments, we downloaded eight public decision

trees from BigML (see Table 5), and queried them lo-

cally using available API bindings. More details on these

models are in Appendix B. We show online extraction

attacks on black-box models from BigML in Section 5.

To emulate black-box model access, we first issue

online queries to BigML, to determine the information

contained in the service’s responses. We then simulate

black-box access locally, by discarding any extra infor-

mation returned by the local API. Specifically, we make

use of the following fields in query responses:
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Without incomplete queries With incomplete queries
Model Leaves Unique IDs Depth 1−Rtest 1−Runif Queries 1−Rtest 1−Runif Queries

IRS Tax Patterns 318 318 8 100.00% 100.00% 101,057 100.00% 100.00% 29,609
Steak Survey 193 28 17 92.45% 86.40% 3,652 100.00% 100.00% 4,013
GSS Survey 159 113 8 99.98% 99.61% 7,434 100.00% 99.65% 2,752
Email Importance 109 55 17 99.13% 99.90% 12,888 99.81% 99.99% 4,081
Email Spam 219 78 29 87.20% 100.00% 42,324 99.70% 100.00% 21,808
German Credit 26 25 11 100.00% 100.00% 1,722 100.00% 100.00% 1,150

Medical Cover 49 49 11 100.00% 100.00% 5,966 100.00% 100.00% 1,788
Bitcoin Price 155 155 9 100.00% 100.00% 31,956 100.00% 100.00% 7,390

Table 6: Performance of extraction attacks on public models from BigML. For each model, we report the number of leaves in the tree, the

number of unique identifiers for those leaves, and the maximal tree depth. The chosen granularity ε for continuous features is 10−3.

• Prediction. This entry contains the predicted class la-

bel (classification) or real-valued output (regression).

• Confidence. For classification and regression trees,

BigML computes confidence scores based on a confi-

dence interval for predictions at each node [11]. The

prediction and confidence value constitute a node’s id.

• Fields. Responses to black-box queries contain a

‘fields’ property, that lists all features that appear ei-

ther in the input query or on the path traversed in the

tree. If a partial query x reaches an internal node v,

this entry tells us which feature v splits on (the feature

is in the ‘fields’ entry, but not in the input x). We make

use of this property for the top-down attack variant.

Table 6 displays the results of our attacks. For each

tree, we give its number of leaves, the number of unique

leaf ids, and the tree depth. We display the success

rate for Algorithm 1 and for the “top-down” variant with

incomplete queries. Querying partial inputs vastly im-

proves our attack: we require far less queries (except for

the Steak Survey model, where Algorithm 1 only visits

a fraction of all leaves and thus achieves low success)

and achieve higher accuracy for trees with duplicate leaf

ids. As expected, both attacks achieve perfect extraction

when all leaves have unique ids. While this is not al-

ways the case for classification trees, it is far more likely

for regression trees, where both the label and confidence

score take real values. Surprisingly maybe, the top-down

approach also fully extracts some trees with a large num-

ber of duplicate leaf ids. The attacks are also efficient:

The top-down approach takes less than 10 seconds to ex-

tract a tree, and Algorithm 1 takes less than 6 minutes

for the largest tree. For online attacks on ML services,

discussed next, this cost is trumped by the delay for the

inherently adaptive prediction queries that are issued.

5 Online Model Extraction Attacks

In this section, we showcase online model extraction at-

tacks against two ML services: BigML and Amazon. For

BigML, we focus on extracting models set up by a user,

who wishes to charge for predictions. For Amazon, our

goal is to extract a model trained by ourselves, to which

we only get black-box access. Our attacks only use ex-

Model OHE Binning Queries Time (s) Price ($)
Circles - Yes 278 28 0.03
Digits - No 650 70 0.07
Iris - Yes 644 68 0.07
Adult Yes Yes 1,485 149 0.15

Table 7: Results of model extraction attacks on Amazon. OHE

stands for one-hot-encoding. The reported query count is the number

used to find quantile bins (at a granularity of 10−3), plus those queries

used for equation-solving. Amazon charges $0.0001 per prediction [1].

posed APIs, and do not in any way attempt to bypass the

services’ authentication or access-control mechanisms.

We only attack models trained in our own accounts.

5.1 Case Study 1: BigML

BigML currently only allows monetization of decision

trees [11]. We train a tree on the German Credit data,

and set it up as a black-box model. The tree has 26

leaves, two of which share the same label and confidence

score. From another account, we extract the model us-

ing the two attacks from Section 4.2. We first find the

tree’s number of features, their type and their range, from

BigML’s public gallery. Our attacks (Algorithm 1 and

the top-down variant) extract an exact description of the

tree’s paths, using respectively 1,722 and 1,150 queries.

Both attacks’ duration (1,030 seconds and 631 sec-

onds) is dominated by query latency (≈ 500ms/query).

The monetary cost of the attack depends on the per-

prediction-fee set by the model owner. In any case, a

user who wishes to make more than 1,150 predictions

has economic incentives to run an extraction attack.

5.2 Case Study 2: Amazon Web Services

Amazon uses logistic regression for classification, and

provides black-box-only access to trained models [1].

By default, Amazon uses two feature extraction tech-

niques: (1) Categorical features are one-hot-encoded,

i.e., the input space Mi = Zk is mapped to k binary fea-

tures encoding the input value. (2) Quantile binning is

used for numeric features. The training data values are

split into k-quantiles (k equally-sized bins), and the input

space Mi = [a,b] is mapped to k binary features encod-

ing the bin that a value falls into. Note that |X | > |M|,
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i.e., ex increases the number of features. If A reverse-

engineers ex, she can query the service on samples M in

input space, compute x = ex(M) locally, and extract f in

feature-space using equation-solving.

We apply this approach to models trained by Amazon.

Our results are summarized in Table 7. We first train a

model with no categorical features, and quantile binning

disabled (this is a manually tunable parameter), over the

Digits data set. The attack is then identical to the one

considered in Section 4.1.2: using 650 queries to Ama-

zon, we extract a model that achieves Rtest = Runif = 0.

We now consider models with feature extraction en-

abled. We assume that A knows the input space M, but

not the training data distribution. For one-hot-encoding,

knowledge of M suffices to apply the same encoding lo-

cally. For quantile binning however, applying ex locally

requires knowledge of the training data quantiles. To

reverse-engineer the binning transformation, we use line-

searches similar to those we used for decision trees: For

each numeric feature, we search the feature’s range in in-

put space for thresholds (up to a granularity ε) where f ’s

output changes. This indicates our value landed in an ad-

jacent bin, with a different learned regression coefficient.

Note that learning the bin boundaries may be interesting

in its own right, as it leaks information about the train-

ing data distribution. Having found the bin boundaries,

we can apply both one-hot-encoding and binning locally,

and extract f over its feature space. As we are restricted

to queries over M, we cannot define an arbitrary sys-

tem of equations over X . Building a well-determined

and consistent system can be difficult, as the encoding ex

generates sparse inputs over X . However, Amazon facil-

itates this process with the way it handles queries with

missing features: if a feature is omitted from a query,

all corresponding features in X are set to 0. For a lin-

ear model for instance, we can trivially re-construct the

model by issuing queries with a single feature specified,

such as to obtain equations with a single unknown in X .

We trained models for the Circles, Iris and Adult data

sets, with Amazon’s default feature-extraction settings.

Table 7 shows the results of our attacks, for the reverse-

engineering of ex and extraction of f . For binary models

(Circles and Adult), we use d+1 queries to solve a linear

equation-system over X . For models with c > 2 classes,

we use c · (d + 1) queries. In all cases, the extracted

model matches f on 100% of tested inputs. To optimize

the query complexity, the queries we use to find quantile

bins are re-used for equation-solving. As line searches

require adaptive queries, we do not use batch predictions.

However, even for the Digits model, we resorted to using

real-time predictions, because of the service’s significant

overhead in evaluating batches. For attacks that require

a large number of non-adaptive queries, we expect batch

predictions to be faster than real-time predictions.

5.3 Discussion

Additional feature extractors. In some ML services

we considered, users may enable further feature extrac-

tors. A common transformation is feature scaling or nor-

malization. If A has access to training data statistics

(as provided by BigML for instance), applying the trans-

formation locally is trivial. More generally, for models

with a linear input layer (i.e., logistic regressions, linear

SVMs, MLPs) the scaling or normalization can be seen

as being applied to the learned weights, rather than the

input features. We can thus view the composition f ◦ ex

as a model f ′ that operates over the ‘un-scaled’ input

space M and extract f ′ directly using equation-solving.

Further extractors include text analysis (e.g., bag-of-

words or n-gram models) and Cartesian products (group-

ing many features into one). We have not analyzed these

in this work, but we believe that they could also be easily

reverse-engineered, especially given some training data

statistics and the ability to make incomplete queries.

Learning unknown model classes or hyper-parame-

ters. For our online attacks, we obtained information

about the model class of f , the enabled feature extrac-

tion ex, and other hyper-parameters, directly from the

ML service or its documentation. More generally, if A

does not have full certainty about certain model charac-

teristics, it may be able to narrow down a guess to a small

range. Model hyper-parameters for instance (such as the

free parameter of an RBF kernel) are typically chosen

through cross-validation over a default range of values.

Given a set of attack strategies with varying assump-

tions, A can use a generic extract-and-test approach:

each attack is applied in turn, and evaluated by comput-

ing Rtest or Runif over a chosen set of points. The adver-

sary succeeds if any of the strategies achieves a low error.

Note that A needs to interact with the model f only once,

to obtain responses for a chosen set of extraction samples

and test samples, that can be re-used for each strategy.

Our attacks on Amazon’s service followed this ap-

proach: We first formulated guesses for model charac-

teristics left unspecified by the documentation (e.g., we

found no mention of one-hot-encoding, or of how miss-

ing inputs are handled). We then evaluated our assump-

tions with successive extraction attempts. Our results in-

dicate that Amazon uses softmax regression and does not

create binary predictors for missing values. Interestingly,

BigML takes the ’opposite’ approach (i.e., BigML uses

OvR regression and adds predictors for missing values).

6 Extraction Given Class Labels Only

The successful attacks given in Sections 4 and 5 show

the danger of revealing confidence values. While current
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ML services have been designed to reveal rich informa-

tion, our attacks may suggest that returning only labels

would be safer. Here we explore model extraction in a

setting with no confidence scores. We will discuss fur-

ther countermeasures in Section 7. We primarily focus

on settings where A can make direct queries to an API,

i.e., queries for arbitrary inputs x∈X . We briefly discuss

indirect queries in the context of linear classifiers.

The Lowd-Meek attack. We start with the prior work

of Lowd and Meek [36]. They present an attack on any

linear classifier, assuming black-box oracle access with

membership queries that return just the predicted class

label. A linear classifier is defined by a vector w ∈ R
d

and a constant β ∈R, and classifies an instance x as pos-

itive if w ·x+β > 0 and negative otherwise. SVMs with

linear kernels and binary LRs are examples of linear clas-

sifiers. Their attack uses line searches to find points ar-

bitrarily close to f ’s decision boundary (points for which

w ·x+β ≈ 0), and extracts w and β from these samples.

This attack only works for linear binary models. We

describe a straightforward extension to some non-linear

models, such as polynomial kernel SVMs. Extracting a

polynomial kernel SVM can be reduced to extracting a

linear SVM in the transformed feature space. Indeed,

for any kernel Kpoly(x,x
′)=(xT · x′+ 1)d , we can derive

a projection function φ(·), so that Kpoly(x,x
′)=φ(x)T ·

φ(x′). This transforms the kernel SVM into a linear one,

since the decision boundary now becomes wF · φ(x) +
β = 0 where wF = ∑

t
i=1 αiφ(xi). We can use the Lowd-

Meek attack to extract wF and β as long as φ(x) and its

inverse are feasible to compute; this is unfortunately not

the case for the more common RBF kernels.3

The retraining approach. In addition to evaluating

the Lowd-Meek attack against ML APIs, we introduce

a number of other approaches based on the broad strat-

egy of re-training a model locally, given input-output

examples. Informally, our hope is that by extracting a

model that achieves low training error over the queried

samples, we would effectively approximate the target

model’s decision boundaries. We consider three re-

training strategies, described below. We apply these

to the model classes that we previously extracted using

equation-solving attacks, as well as to SVMs.4

(1) Retraining with uniform queries. This baseline

strategy simply consists in sampling m points xi ∈

X uniformly at random, querying the oracle, and

training a model f̂ on these samples.

3We did explore using approximations of φ , but found that the adap-

tive re-training techniques discussed in this section perform better.
4We do not expect retraining attacks to work well for decision trees,

because of the greedy approach taken by learning algorithms. We have

not evaluated extraction of trees, given class labels only, in this work.
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Figure 4: Average error of extracted linear models. Results are for

different extraction strategies applied to models trained on all binary

data sets from Table 3. The left shows Rtest and the right shows Runif.

(2) Line-search retraining. This strategy can be seen

as a model-agnostic generalization of the Lowd-

Meek attack. It issues m adaptive queries to the

oracle using line search techniques, to find samples

close to the decision boundaries of f . A model f̂ is

then trained on the m queried samples.

(3) Adaptive retraining. This strategy applies tech-

niques from active learning [18, 47]. For some

number r of rounds and a query budget m, it first

queries the oracle on m
r

uniform points, and trains a

model f̂ . Over a total of r rounds, it then selects m
r

new points, along the decision boundary of f̂ (in-

tuitively, these are points f̂ is least certain about),

and sends those to the oracle before retraining f̂ .

6.1 Linear Binary Models

We first explore how well the various approaches work

in settings where the Lowd-Meek attack can be applied.

We evaluate their attack and our three retraining strate-

gies for logistic regression models trained over the binary

data sets shown in Table 3. These models have d +1 pa-

rameters, and we vary the query budget as α ·(d+1), for

0.5 ≤ α ≤ 100. Figure 4 displays the average errors Rtest

and Runif over all models, as a function of α .

The retraining strategies that search for points near

the decision boundary clearly perform better than simple

uniform retraining. The adaptive strategy is the most ef-

ficient of our three strategies. For relatively low budgets,

it even outperforms the Lowd-Meek attack. However, for

budgets large enough to run line searches in each dimen-

sion, the Lowd-Meek attack is clearly the most efficient.

For the models we trained, about 2,050 queries on av-

erage, and 5,650 at most, are needed to run the Lowd-

Meek attack effectively. This is 50× more queries than

what we needed for equation-solving attacks. With 827

queries on average, adaptive retraining yields a model f̂

that matches f on over 99% of tested inputs. Thus, even

if an ML API only provides class labels, efficient extrac-
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tion attacks on linear models remain possible.

We further consider a setting where feature-extraction

(specifically one-hot-encoding of categorical features) is

applied by the ML service, rather than by the user. A is

then limited to indirect queries in input space. Lowd and

Meek [36] note that their extraction attack does not work

in this setting, as A can not run line searches directly over

X . In contrast, for the linear models we trained, we ob-

served no major difference in extraction accuracy for the

adaptive-retraining strategy, when limited to queries over

M. We leave an in-depth study of model extraction with

indirect queries, and class labels only, for future work.

6.2 Multiclass LR Models

The Lowd-Meek attack is not applicable in multiclass

(c > 2) settings, even when the decision boundary is a

combination of linear boundaries (as in multiclass re-

gression) [39, 50]. We thus focus on evaluating the three

retraining attacks we introduced, for the type of ML

models we expect to find in real-world applications.

We focus on softmax models here, as softmax and one-

vs-rest models have identical output behaviors when only

class labels are provided: in both cases, the class label

for an input x is given by argmaxi(wi · x+βi). From an

extractor’s perspective, it is thus irrelevant whether the

target was trained using a softmax or OvR approach.

We evaluate our attacks on softmax models trained on

the multiclass data sets shown in Table 3. We again vary

the query budget as a factor α of the number of model

parameters, namely α · c · (d +1). Results are displayed

in Figure 5. We observe that the adaptive strategy clearly

performs best and that the line-search strategy does not

improve over uniform retraining, possibly because the

line-searches have to be split across multiple decision-

boundaries. We further note that all strategies achieve

lower Rtest than Runif. It thus appears that for the models

we trained, points from the test set are on average ‘far’

from the decision boundaries of f (i.e., the trained mod-

els separate the different classes with large margins).

For all models, 100 · c · (d +1) queries resulted in ex-

traction accuracy above 99.9%. This represents 26,000

queries on average, and 65,000 at the most (Digits data

set). Our equation-solving attacks achieved similar or

better results with 100× less queries. Yet, for scenar-

ios with high monetary incentives (e.g., intrusion detec-

tor evasion), extraction attacks on MLR models may be

attractive, even if APIs only provide class labels.

6.3 Neural Networks

We now turn to attacks on more complex deep neural

networks. We expect these to be harder to retrain than

multiclass regressions, as deep networks have more pa-
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for three retraining strategies applied to models trained on all multiclass
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rameters and non-linear decision-boundaries. Therefore,

we may need to find a large number of points close to a

decision boundary in order to extract it accurately.

We evaluated our attacks on the multiclass models

from Table 3. For the tested query budgets, line-search

and adaptive retraining gave little benefit over uniform

retraining. For a budget of 100 · k, where k is the num-

ber of model parameters, we get Rtest = 99.16% and

Runif = 98.24%, using 108,200 queries per model on av-

erage. Our attacks might improve for higher budgets but

it is unclear whether they would then provide any mone-

tary advantage over using ML APIs in an honest way.

6.4 RBF Kernel SVMs

Another class of nonlinear models that we consider are

support-vector machines (SVMs) with radial-basis func-

tion (RBF) kernels. A kernel SVM first maps inputs into

a higher-dimensional space, and then finds the hyper-

plane that maximally separates the two classes. As men-

tioned in Section 6, SVMs with polynomial kernels can

be extracted using the Lowd-Meek attack in the trans-

formed feature space. For RBF kernels, this is not possi-

ble because the transformed space has infinite dimension.

SVMs do not provide class probability estimates. Our

only applicable attack is thus retraining. As for linear

models, we vary the query budget as α · (d + 1), where

d is the input dimension. We further use the extract-and-

test approach from Section 5 to find the value of the RBF

kernel’s hyper-parameter. Results of our attacks are in
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Figure 6. Again, we see that adaptive retraining performs

best, even though the decision boundary to extract is non-

linear (in input space) here. Kernel SVMs models are

overall harder to retrain than models with linear decision

boundaries. Yet, for our largest budgets (2,050 queries

on average), we do extract models with over 99% accu-

racy, which may suffice in certain adversarial settings.

7 Extraction Countermeasures

We have shown in Sections 4 and 5 that adversarial

clients can effectively extract ML models given access

to rich prediction APIs. Given that this undermines the

financial models targeted by some ML cloud services,

and potentially leaks confidential training data, we be-

lieve researchers should seek countermeasures.

In Section 6, we analyzed the most obvious defense

against our attacks: prediction API minimization. The

constraint here is that the resulting API must still be use-

ful in (honest) applications. For example, it is simple to

change APIs to not return confidences and not respond

to incomplete queries, assuming applications can get by

without it. This will prevent many of our attacks, most

notably the ones described in Section 4 as well as the fea-

ture discovery techniques used in our Amazon case study

(Section 5). Yet, we showed that even if we strip an API

to only provide class labels, successful attacks remain

possible (Section 6), albeit at a much higher query cost.

We discuss further potential countermeasures below.

Rounding confidences. Applications might need con-

fidences, but only at lower granularity. A possible de-

fense is to round confidence scores to some fixed preci-

sion [23]. We note that ML APIs already work with some

finite precision when answering queries. For instance,

BigML reports confidences with 5 decimal places, and

Amazon provides values with 16 significant digits.

To understand the effects of limiting precision further,

we re-evaluate equation-solving and decision tree path-

finding attacks with confidence scores rounded to a fixed

decimal place. For equation-solving attacks, rounding

the class probabilities means that the solution to the ob-

tained equation-system might not be the target f , but

some truncated version of it. For decision trees, round-

ing confidence scores increases the chance of node id

collisions, and thus decreases our attacks’ success rate.

Figure 7 shows the results of experiments on softmax

models, with class probabilities rounded to 2–5 decimals.

We plot only Rtest, the results for Runif being similar. We

observe that class probabilities rounded to 4 or 5 deci-

mal places (as done already in BigML) have no effect on

the attack’s success. When rounding further to 3 and 2

decimal places, the attack is weakened, but still vastly

outperforms adaptive retraining using class labels only.
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Figure 7: Effect of rounding on model extraction. Shows the av-

erage test error of equation-solving attacks on softmax models trained

on the benchmark suite (Table 3), as we vary the number of significant

digits in reported class probabilities. Extraction with no rounding and

with class labels only (adaptive retraining) are added for comparison.

For regression trees, rounding has no effect on our at-

tacks. Indeed, for the models we considered, the output

itself is unique in each leaf (we could also round out-

puts, but the impact on utility may be more critical). For

classification trees, we re-evaluated our top-down attack,

with confidence scores rounded to fewer than 5 decimal

places. The attacks on the ‘IRS Tax Patterns’ and ‘Email

Importance’ models are the most resilient, and suffer no

success degradation before scores are rounded to 2 deci-

mal places. For the other models, rounding confidences

to 3 or 4 decimal places severely undermines our attack.

Differential privacy. Differential privacy (DP) [22]

and its variants [34] have been explored as mechanisms

for protecting, in particular, the privacy of ML train-

ing data [54]. DP learning has been applied to regres-

sions [17,56], SVMs [44], decision trees [31] and neural

networks [48]. As some of our extraction attacks leak

training data information (Section 4.1.3), one may ask

whether DP can prevent extraction, or at least reduce the

severity of the privacy violations that extraction enables.

Consider naı̈ve application of DP to protect individual

training data elements. This should, in theory, decrease

the ability of an adversary A to learn information about

training set elements, when given access to prediction

queries. One would not expect, however, that this pre-

vents model extraction, as DP is not defined to do so:

consider a trivially useless learning algorithm for binary

logistic regression, that discards the training data and sets

w and β to 0. This algorithm is differentially private, yet

w and β can easily be recovered using equation-solving.

A more appropriate strategy would be to apply DP di-

rectly to the model parameters, which would amount to

saying that a query should not allow A to distinguish be-

tween closely neighboring model parameters. How ex-

actly this would work and what privacy budgets would

be required is left as an open question by our work.

Ensemble methods. Ensemble methods such as ran-

dom forests return as prediction an aggregation of pre-
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dictions by a number of individual models. While we

have not experimented with ensemble methods as targets,

we suspect that they may be more resilient to extraction

attacks, in the sense that attackers will only be able to ob-

tain relatively coarse approximations of the target func-

tion. Nevertheless, ensemble methods may still be vul-

nerable to other attacks such as model evasion [55].

8 Related Work

Our work is related to the extensive literature on learning

theory, such as PAC learning [53] and its variants [3, 8].

Indeed, extraction can be viewed as a type of learning, in

which an unknown instance of a known hypothesis class

(model type) is providing labels (without error). This is

often called learning with membership queries [3]. Our

setting differs from these in two ways. The first is con-

ceptual: in PAC learning one builds algorithms to learn a

concept — the terminology belies the motivation of for-

malizing learning from data. In model extraction, an at-

tacker is literally given a function oracle that it seeks to

illicitly determine. The second difference is more prag-

matic: prediction APIs reveal richer information than as-

sumed in prior learning theory work, and we exploit that.

Algorithms for learning with membership queries

have been proposed for Boolean functions [7, 15, 30, 33]

and various binary classifiers [36, 39, 50]. The latter line

of work, initiated by Lowd and Meek [36], studies strate-

gies for model evasion, in the context of spam or fraud

detectors [9, 29, 36, 37, 55]. Intuitively, model extraction

seems harder than evasion, and this is corroborated by

results from theory [36, 39, 50] and practice [36, 55].

Evasion attacks fall into the larger field of adversarial

machine learning, that studies machine learning in gen-

eral adversarial settings [6,29]. In that context, a number

of authors have considered strategies and defenses for

poisoning attacks, that consist in injecting maliciously

crafted samples into a model’s train or test data, so as to

decrease the learned model’s accuracy [10,21,32,40,45].

In a non-malicious setting, improper model extraction

techniques have been applied for interpreting [2, 19, 52]

and compressing [16, 27] complex neural networks.

9 Conclusion

We demonstrated how the flexible prediction APIs ex-

posed by current ML-as-a-service providers enable new

model extraction attacks that could subvert model mon-

etization, violate training-data privacy, and facilitate

model evasion. Through local experiments and online

attacks on two major providers, BigML and Amazon,

we illustrated the efficiency and broad applicability of

attacks that exploit common API features, such as the

availability of confidence scores or the ability to query

arbitrary partial inputs. We presented a generic equation-

solving attack for models with a logistic output layer and

a novel path-finding algorithm for decision trees.

We further explored potential countermeasures to

these attacks, the most obvious being a restriction on the

information provided by ML APIs. Building upon prior

work from learning-theory, we showed how an attacker

that only obtains class labels for adaptively chosen in-

puts, may launch less effective, yet potentially harmful,

retraining attacks. Evaluating these attacks, as well as

more refined countermeasures, on production-grade ML

services is an interesting avenue for future work.
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A Some Details on Models

SVMs. Support vector machines (SVMs) perform bi-

nary classification (c = 2) by defining a maximally sep-

arating hyperplane in d-dimensional feature space. A

linear SVM is a function f (x) = sign(w · x+ β ) where

‘sign’ outputs 0 for all negative inputs and 1 otherwise.

Linear SVMs are not suitable for non-linearly separable

data. Here one uses instead kernel techniques [14].
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A kernel is a function K : X ×X →R. Typical kernels

include the quadratic kernel Kquad(x,x
′) = (xT · x′+ 1)2

and the Gaussian radial basis function (RBF) kernel

Krbf(x,x
′) = e−γ||x−x′||2 , parameterized by a value γ ∈R.

A kernel’s projection function is a map φ defined by

K(x,x′) = φ(x) · φ(x′). We do not use φ explicitly, in-

deed for RBF kernels this produces an infinite-dimension

vector. Instead, classification is defined using a “ker-

nel trick”: f (x) = sign([∑t
i=1 αiK(x,xi)]+β ) where β is

again a learned threshold, α1, . . . ,αt are learned weights,

and x1, . . . ,xt are feature vectors of inputs from a training

set. The xi for which αi �= 0 are called support vectors.

Note that for non-zero αi, it is the case that αi < 0 if the

training-set label of xi was zero and αi > 0 otherwise.

Logistic regression. SVMs do not directly generalize to

multiclass settings c > 2, nor do they output class prob-

abilities. Logistic regression (LR) is a popular classi-

fier that does. A binary LR model is defined as f1(x) =
σ(w ·x+β ) = 1/(1+ e−(w·x+β )) and f0(x) = 1− f1(x).
A class label is chosen as 1 iff f1(x)> 0.5.

When c > 2, one fixes c weight vectors w0, . . . ,wc−1

each in R
d , thresholds β0, . . . ,βc−1 in R and defines

fi(x) = ewi·x+βi/(∑c−1
j=0 ew j ·x+β j) for i ∈ Zc. The class la-

bel is taken to be argmaxi fi(x). Multiclass regression is

referred to as multinomial or softmax regression. An al-

ternative approach to softmax regression is to build a bi-

nary model σ(wi ·x+βi) per class in a one-vs-rest fash-

ion and then set fi(x) = σ(wi ·x+βi)/∑ j σ(w j ·x+β j).

These are log-linear models, and may not be suit-

able for data that is not linearly separable in X . Again,

one may use kernel techniques to deal with more com-

plex data relationships (c.f., [57]). Then, one replaces

wi · x+ βi with ∑
t
r=1 αi,rK(x,xr) + βi. As written, this

uses the entire set of training data points x1, . . . ,xt as so-

called representors (here analogous to support vectors).

Unlike with SVMs, where most training data set points

will never end up as support vectors, here all training set

points are potentially representors. In practice one uses a

size s < t random subset of training data [57].

Deep neural networks. A popular way of extending

softmax regression to handle data that is non linearly sep-

arable in X is to first apply one or more non-linear trans-

formations to the input data. The goal of these hidden

layers is to map the input data into a (typically) lower-

dimensional space in which the classes are separable by

the softmax layer. We focus here on fully connected net-

works, also known as multilayer perceptrons, with a sin-

gle hidden layer. The hidden layer consists of a num-

ber h of hidden nodes, with associated weight vectors

w
(1)
0 , . . . ,w

(1)
h−1 in R

d and thresholds β
(1)
0 , . . . ,β

(1)
h−1 in R.

The i-th hidden unit applies a non linear transformation

hi(x) = g(w
(1)
i ·x+β

(1)
i ), where g is an activation func-

tion such as tanh or σ . The vector h(x) ∈ R
h is then

input into a softmax output layer with weight vectors

w
(2)
0 , . . . ,w

(2)
c−1 in R

h and thresholds β
(2)
0 , . . . ,β

(2)
c−1 in R.

Decision trees. A decision tree T is a labeled tree. Each

internal node v is labeled by a feature index i∈ {1, . . . ,d}
and a splitting function ρ : Xi → Zkv

, where kv ≥ 2 de-

notes the number of outgoing edges of v.

On an input x=(x1,x2, . . . ,xd), a tree T defines a com-

putation as follows, starting at the root. When we reach

a node v, labeled by {i,ρ}, we proceed to the child of

v indexed by ρ(xi). We consider three types of splitting

functions ρ that are typically used in practice ([11]):

(1) The feature xi is categorical with Xi = Zk. Let

{S,T} be some partition of Zk. Then kv = 2 and

ρ(xi) = 0 if xi ∈ S and ρ(xi) = 1 if xi ∈ T . This is a

binary split on a categorical feature.

(2) The feature xi is categorical with Xi = Zk. We have

kv = k and ρ(xi) = xi. This corresponds to a k-ary

split on a categorical feature of arity k.

(3) The feature xi is continuous with Xi = [a,b]. Let

a < t < b be a threshold. Then kv = 2 and ρ(xi) = 0

if xi ≤ t and ρ(xi) = 1 if xi > t. This is a binary split

on a continuous feature with threshold t.

When we reach a leaf, we terminate and output that leaf’s

value. This value can be a class label, or a class label and

confidence score. This defines a function f : X →Y .

B Details on Data Sets

Here we give some more information about the data sets

we used in this work. Refer back to Table 3 and Table 5.

Synthetic data sets. We used 4 synthetic data sets from

scikit [42]. The first two data sets are classic examples

of non-linearly separable data, consisting of two concen-

tric Circles, or two interleaving Moons. The next two

synthetic data sets, Blobs and 5-Class, consist of Gaus-

sian clusters of points assigned to either 3 or 5 classes.

Public data sets. We gathered a varied set of data sets

representative of the type of data we would expect ML

service users to use to train logistic and SVM based mod-

els. These include famous data sets used for supervised

learning, obtained from the UCI ML repository (Adult,

Iris, Breast Cancer, Mushrooms, Diabetes). We also

consider the Steak and GSS data sets used in prior work

on model inversion [23]. Finally, we add a data set of dig-

its available in scikit, to visually illustrate training data

leakage in kernelized logistic models (c.f. Section 4.1.3).

Public data sets and models from BigML. For experi-

ments on decision trees, we chose a varied set of models

publicly available on BigML’s platform. These models

were trained by real MLaaS users and they cover a wide

range of application scenarios, thus providing a realistic

benchmark for the evaluation of our extraction attacks.



618 25th USENIX Security Symposium USENIX Association

The IRS model predicts a US state, based on admin-

istrative tax records. The Steak and GSS models re-

spectively predict a person’s preferred steak preparation

and happiness level, from survey and demographic data.

These two models were also considered in [23]. The

Email Importance model predicts whether Gmail clas-

sifies an email as ‘important’ or not, given message

metadata. The Email Spam model classifies emails as

spam, given the presence of certain words in its content.

The German Credit data set was taken from the UCI li-

brary [35] and classifies a user’s loan risk. Finally, two

regression models respectively predict Medical Charges

in the US based on state demographics, and the Bitcoin

Market Price from daily opening and closing values.

C Analysis of the Path-Finding Algorithm

In this section, we analyze the correctness and com-

plexity of the decision tree extraction algorithm in

Algorithm 1. We assume that all leaves are assigned a

unique id by the oracle O, and that no continuous fea-

ture is split into intervals of width smaller than ε . We

may use id to refer directly to the leaf with identity id.

Correctness. Termination of the algorithm follows im-

mediately from the fact that new queries are only added

to Q when a new leaf is visited. As the number of leaves

in the tree is bounded, the algorithm must terminate.

We prove by contradiction that all leaves are eventu-

ally visited. Let the depth of a node v, denote the length

of the path from v to the root (the root has depth 0). For

two leaves id,id′, let A be their deepest common ances-

tor (A is the deepest node appearing on both the paths of

id and id
′). We denote the depth of A as ∆(id,id′).

Suppose Algorithm 1 terminates without visiting all

leaves, and let (id,id′) be a pair of leaves with maxi-

mal ∆(id,id′), such that id was visited but id′ was not.

Let xi be the feature that their deepest common ances-

tor A splits on. When id is visited, the algorithm calls

LINE SEARCH or CATEGORY SPLIT on feature xi. As all

leaf ids are unique and there are no intervals smaller than

ε , we will discover a leaf in each sub-tree rooted at A, in-

cluding the one that contains id′. Thus, we visit a leaf

id
′′ for which ∆(id′′,id′)> ∆(id,id′), a contradiction.

Complexity. Let m denote the number of leaves in the

tree. Each leaf is visited exactly once, and for each leaf

we check all d features. Suppose continuous features

have range [0,b], and categorical features have arity k.

For continuous features, finding one threshold takes at

most log2(
b
ε
) queries. As the total number of splits on

one feature is at most m (i.e., all nodes split on the same

feature), finding all thresholds uses at most m · log2(
b
ε
)

queries. Testing a categorical feature uses k queries.

The total query complexity is O(m · (dcat · k+ dcont ·m ·

log( b
ε
)), where dcat and dcont represent respectively the

number of categorical and continuous features.

For the special case of boolean trees, the complexity is

O(m ·d). In comparison, the algorithm of [33], that uses

membership queries only, has a complexity polynomial

in d and 2δ , where δ is the tree depth. For degenerate

trees, 2δ can be exponential in m, implying that the as-

sumption of unique leaf identities (obtained from confi-

dence scores for instance) provides an exponential speed-

up over the best-known approach with class labels only.

The algorithm from [33] can be extended to regression

trees, with a complexity polynomial in the size of the out-

put range Y . Again, under the assumption of unique leaf

identities (which could be obtained solely from the out-

put values) we obtain a much more efficient algorithm,

with a complexity independent of the output range.

The Top-Down Approach. The correctness and com-

plexity of the top-down algorithm from Section 4.2

(which uses incomplete queries), follow from a similar

analysis. The main difference is that we assume that all

nodes have a unique id, rather than only the leaves.

D A Note on Improper Extraction

To extract a model f , without knowledge of the model

class, a simple strategy is to extract a multilayer percep-

tron f̂ with a large enough hidden layer. Indeed, feed-

forward networks with a single hidden layer can, in prin-

ciple, closely approximate any continuous function over

a bounded subset of Rd [20, 28].

However, this strategy intuitively does not appear to be

optimal. Even if we know that we can find a multilayer

perceptron f̂ that closely matches f , f̂ might have a far

more complex representation (more parameters) than f .

Thus, tailoring the extraction to the ‘simpler’ model class

of the target f appears more efficient. In learning theory,

the problem of finding a succinct representation of some

target model f is known as Occam Learning [13].

Our experiments indicate that such generic improper

extraction indeed appears sub-optimal, in the context of

equation-solving attacks. We train a softmax regression

over the Adult data set with target “Race”. The model

f is defined by 530 real-valued parameters. As shown in

Section 4.1.2, using only 530 queries, we extract a model

f̂ from the same model class, that closely matches f ( f̂

and f predict the same labels on 100% of tested inputs,

and produce class probabilities that differ by less than

10−7 in TV distance). We also extracted the same model,

assuming a multilayer perceptron target class. Even with

1,000 hidden nodes (this model has 111,005 parameters),

and 10× more queries (5,300), the extracted model f̂ is

a weaker approximation of f (99.5% accuracy for class

labels and TV distance of 10−2 for class probabilities).


