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Abstract In this paper, we present the actual risks of steal-

ing user PINs by using mobile sensors versus the perceived

risks by users. First, we propose PINlogger.js which is a

JavaScript-based side channel attack revealing user PINs on

an Android mobile phone. In this attack, once the user vis-

its a website controlled by an attacker, the JavaScript code

embedded in the web page starts listening to the motion and

orientation sensor streams without needing any permission

from the user. By analysing these streams, it infers the user’s

PIN using an artificial neural network. Based on a test set of

fifty 4-digit PINs, PINlogger.js is able to correctly identify

PINs in the first attempt with a success rate of 74% which

increases to 86 and 94% in the second and third attempts,

respectively. The high success rates of stealing user PINs on

mobile devices via JavaScript indicate a serious threat to user

security. With the technical understanding of the informa-

tion leakage caused by mobile phone sensors, we then study

users’ perception of the risks associated with these sensors.

We design user studies to measure the general familiarity with

different sensors and their functionality, and to investigate

how concerned users are about their PIN being discovered

by an app that has access to all these sensors. Our studies

show that there is significant disparity between the actual and

perceived levels of threat with regard to the compromise of

the user PIN. We confirm our results by interviewing our par-

ticipants using two different approaches, within-subject and

between-subject, and compare the results. We discuss how

this observation, along with other factors, renders many aca-

demic and industry solutions ineffective in preventing such

side channel attacks.
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1 Introduction

Smartphones equipped with many different sensors such as

GPS, light, orientation, and motion are continuously pro-

viding more features to end users in order to interact with

their real-world surroundings. Developers can have access

to the mobile sensors either by (1) writing native code using

mobile OS APIs [1], (2) recompiling HTML5 code into a

native app [2], or (3) using standard APIs provided by the

W3C which are accessible through JavaScript code within a

mobile browser.1 The last method has the advantage of not

needing any app-store approval for releasing the app or doing

future updates. More importantly, the JavaScript code is plat-

form independent, i.e., once the code is developed it can be

executed within any modern browser on any mobile OS.

In-browser access risks While sensor-enabled mobile

web applications provide users more functionalities, they

raise new privacy and security concerns. Both the academic

community and the industry have recognized such issues

regarding certain sensors such as geolocation [3]. For a web-

site to access the geolocation data, it must ask for explicit user

permission. However, to the best of our knowledge, there is

little work evaluating the risks of in-browser access to other

sensors. Unlike in-app attacks, an in-browser attack, i.e., via

JavaScript code embedded in a web page, does not require

any app installation. In addition, JavaScript code does not

require any user permission to access sensor data such as

device motion and orientation. Furthermore, there is no noti-

1 http://w3.org/TR/#tr_Javascript_APIs.
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Fig. 1 PINlogger.js potential attack scenarios; a the malicious code is

loaded in an iframe and the user is on the same tab, b the attack tab

is already open and the user is on a different tab, c the attack content

is already open in a minimized browser, and the user is on an installed

app, d the attack content is already open in a (minimized) browser, and

the screen is locked. The attacker listens to the side channel motion

and orientation measurements of the victim’s mobile device through

JavaScript code, and uses machine learning methods to discover the

user’s sensitive information such as activity types and PINs

fication while JavaScript is reading the sensor data stream.

Hence, such in-browser attacks can be carried out far more

covertly than the in-app counterparts.

However, an effective in-browser attack still has to over-

come the technical challenge that the sampling rates available

in browser are much lower than those in app. For example, as

we observed in [4], frequency rates of motion and orientation

sensor data available in-browser are 3 to 5 times lower than

those of accelerometer and gyroscope available in-app.

In-browser attacks Many popular browsers such as Safari,

Chrome, Firefox, Opera, and Dolphin have already imple-

mented access to the above sensor data. As we demonstrated

in [5] and [4], all of these mobile browsers allow such access

when the code is placed in any part of the active tab including

iframes (Fig. 1a). In some cases such as Chrome and Dolphin

on iOS, an inactive tab can have access to the sensor measure-

ments as well (Fig. 1b). Even worse, some browsers such as

Safari allow the inactive tabs to access the sensor data, when

the browser is minimized (Fig. 1c), or even when the screen

is locked (Fig. 1d).

Through experiments, we find that mobile operating sys-

tems and browsers do not implement consistent access

control policies in regard to mobile orientation and motion

sensor data. Partly, this is because W3C specifications [6]

do not specify any policy and do not discuss any risks asso-

ciated with this potential vulnerability. Also, because of the

low sampling rates available in browser, the community have

been neglecting the security risks associated with in-browser

access to such sensor data. However, in TouchSignatures [4],

we showed that despite the low sampling rates, it is possible

to identify user touch actions such as click, scroll, and zoom

and even the numpad’s digits. In this paper, we introduce

PINLogger.js, an attack on full 4-digit PINs as opposed to

only single digits in [4].

Mobile sensors Today, sensors are everywhere: from your

personalized devices such as mobiles, tablets, watches, fit-

ness trackers, and other wearables, to your TV, car, kitchen,

home, and to the roads, parking lots, and smart cities. These

new technologies are equipped with many different sensors

such as NFC, accelerometer, orientation, and motion and are

connected to each other. These sensors are continuously pro-

viding more features to end users in order to interact with

their real-world surroundings. While the users are benefiting

from richer and more personalized apps which are using these

sensors for different applications such as fitness, gaming, and

even security application such as authentication, the growing

number of sensors introduces new security and privacy risks

to end users, and makes the task of sensor management more

complex.

Research questions While sensors on mobile platforms

are getting more powerful and starting to collect more infor-

mation about the users and their environment, we want to

evaluate the general knowledge about these sensors among

the mobile users. We are particularly interested to know the

level of concern people may have about these sensors being

able to threaten their privacy and security.

Contributions In this work, we contribute to the study of

sensors and their actual risks and their perceived risks by

users as follows:

• We introduce PINLogger.js, an attack on full 4-digit PINs

as opposed to only single digits in [4]. We show that

unregulated access to these sensors imposes more serious

security risks to the users in comparison with more well-

known sensors such as camera, light, and microphone.

• We conduct user studies to investigate users’ understand-

ing about these sensors and also their perception of the

security risks associated with them. We show that users

123



Stealing PINs via mobile sensors: actual risk versus user perception 293

in fact have fewer security concerns about these sensors

comparing to more well-known ones.

• We study and challenge current suggested solutions, and

discuss why our studies show they cannot be effective.

We argue that a usable and secure solution is not straight-

forward and requires further research.

2 User activities

The potential threats to the user security posed by an unau-

thorized access to the motion and orientation sensor data

are not immediately clear. Here we demonstrate two simple

scenarios which show that sensitive user information such

as phone calls timing and physical activities can be deduced

from device orientation and motion sensor data obtained from

JavaScript.

Users tend to move their mobile devices in distinctive

manners while performing certain tasks on the devices, or

by simply carrying them. Examples of the former include

answering a call or taking a photograph, while the latter

covers their transport mode. In both cases, an identifiable

succession of movements is exhibited by the device. As a

result, a web-based program which has access to the device

orientation and motion data may reveal sensitive facts about

users such as the exact timing information of the start and

end of phone calls and that of taking photographs. On the

other hand, while the user is simply carrying her device, the

device movement pattern may reveal information about the

user’s transport mode, e.g. if the user is stationary at one

place, walking, running, on the bus, in a car or on the train.

We present the results of two initial experiments that we have

performed on a Nexus 5 using Maxthon Browser (as an exam-

ple of a browser that allows JavaScript to access sensor data

even when the screen is locked).

Motion and orientation sensors detail Before, presenting

the results, we first explain the motion and orientation sensors

in detail. According to W3C specifications [6], motion and

orientation sensor data are a series of different measurements

as follows:

• device orientation which provides the physical orienta-

tion of the device, expressed as three rotation angles (α,

β, γ ) in the device’s local coordinate frame,

• device acceleration which provides the physical accel-

eration of the device, expressed in Cartesian coordinates

(x , y, z) in the device’s local coordinate frame,

• device acceleration including gravity which is similar to

acceleration except that it includes gravity as well,

• device rotation rate which provides the rotation rate of

the device about the local coordinate frame, expressed as

three rotation angles (α, β, γ ), and

• interval which provides the constant sampling rate and

is expressed in milliseconds (ms).

The device coordinate frame is defined with respect to the

standard position of the mobile screen. When it is in the por-

trait mode, x and y axes are in the plane of the screen and are

positive towards the screen’s right and up, and z is perpendic-

ular to the plane of the screen and is positive outwards from

the screen. Moreover, the sensor data discussed above are

processed sensor data obtained from multiple physical sen-

sors such as gyroscope and accelerometer. In the rest of this

paper, unless specified otherwise, by sensor data we mean

the sensor data accessible through mobile browsers which

include acceleration, acceleration including gravity, rotation

rate, and orientation.

Phone call timing In the first experiment, we opened the

website carrying our JavaScript code and then locked the

screen. The JavaScript code continued to log orientation and

motion data while the Android phone was left on a desk. For

this experiment, we used another phone to call the Android

phone four times with a few seconds apart between the

calls. As demonstrated in Fig. 2 (left), the 4 distinct phone

calls along with their timing are recognizable from the three

dimensions of acceleration (including gravity) which come

from the device motion sensor. For a better comparison, Fig. 2

(right) shows the received call history of the phone during the

experiment with their start times and durations. As shown in

this figure, the captured sensor data match the call history.

User physical activities In the second experiment, we

again locked the phone and recorded the sensor data dur-

ing 22 s of sitting, 34 s of walking and 25 s of slow running.

We observed that the mentioned activities have visibly dis-

tinctive sensor streams. As an example, Fig. 3 shows the

acceleration data from motion sensor. As it can be seen, the

mentioned activities are recognizable from each other since

they are visibly different in the sensor measurements.

Our initial evaluations suggest that discovering device

movement related information such as call times and user’s

mode of transport can be easily implemented. However, as

we will explain, distinguishing user PINs is a lot harder as the

induced sensor measurements are only subtly different. In the

following sections, we will demonstrate that, with advanced

machine learning techniques, we are able to remotely infer

the entered PINs on a mobile phone with high accuracy.

3 PINlogger.js

In this section, we describe an advanced attack on user’s PINs

by introducing PINlogger.js. In the following subsections, we

describe the attack approach, our program implementation,

data collection, feature extraction, and neural network.
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Fig. 2 Left Three dimensions (x, y, and z) of acceleration data including gravity (from the motion sensor). The start time, duration, and end time

of four phone calls are easily recognizable from these measurements. Right The screenshot of the call history of the phone during the experiment

Fig. 3 Three dimensions (x, y, and z) of acceleration data (from the

motion sensor) during 22 s of sitting, 34 s of walking and 25 s of running

3.1 Attack approach

We consider an attacker who wants to learn the user’s PIN

tapped on a soft keyboard of a smartphone via side channel

information. We consider (digit-only) PINs since they are

popular credentials used by users for many purposes such as

unlocking phone, SIM PIN, NFC payments, bank cards, other

banking services, gaming, and other personalized applica-

tions such as health care and insurance. Unlike similar works

which have to gain the access through an installed app [7–16],

our attack does not require any user permission. Instead, we

assume that the user has loaded the malicious web content in

the form of an iframe, or another tab while working with the

mobile browser as shown in Fig. 1. At this point, the attack

code has already started listening to the sensor sequences

from the user’s interaction with the phone.

In order to uncover when the user enters his PIN, we need

to classify his touch actions such as click, scroll, and zoom.

We have already shown in TouchSignatures [4] that with the

same sensor data and by applying classification algorithms, it

is possible to effectively identify user’s touch actions. Here,

we consider a scenario after the touch action classification.

In other words, our attacker already knows that the user is

entering his PIN. Moreover, unless explicitly noted, we con-

sider a generic attack scenario which is not user dependant.

This means that we do not need to train our machine learn-

ing algorithm with the same user as the subject of the attack.

Instead, we have a one-round training phase with data from

multiple voluntary users and use the obtained trained algo-

rithm to output other users’ PINs later. This approach has the

benefit of not needing to trick individual users to collect their

data for training.

3.2 Web program implementation

We implemented a web page with embedded JavaScript code

in order to collect the data from voluntary users. Our code

registers two listeners on the window object to have access

to orientation and motion data separately. The event handlers

defined for these purposes are named DeviceOrientation-
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Fig. 4 Different input methods used by the users for PIN entrance

Event and DeviceMotionEvent, respectively. On the client

side, we developed a GUI in HTML5 which shows random

4-digit PINs to the users and activates a numpad for them

to enter the PINs as shown in Fig. 4. All sensor sequences

are sent to the database along with their associated labels

which are the digits of the entered PINs. We implemented our

server program using Node.js (nodejs.org). Our code sends

the orientation and motion sensor data of the mobile device

to our NoSQL database using MongoLab (mongolab.com,

web-based service for MongoDB). When the event listener

fires, it establishes a socket by using Socket.IO (socket.io)

between the client and the server and constantly transmits the

sensor data to the database. Both Node.js and MongoDB (as

a document-oriented database) are known for being capable

of supporting data intensive applications in real time.

In the proof-of-concept implementation of the attack, we

focus on working with active web pages, which allows us

to easily identify the start of a touch action through the

JavaScript access to the onkeydown event. A similar approach

is adopted in other works, e.g. TouchLogger [8] and TapLog-

ger [16]. In an extended attack scenario, a more complex

segmentation process would be needed to identify the start

and end of a touch action. This could be achieved by mea-

suring the peak amplitudes of a signal, as done in [12].

3.3 Data collection

Following the approach of Aviv et al. [7] and Spreitzer [15],

we consider a set of 50 fixed PINs with uniformly distributed

digits. We created these PINs in a way that all digits are

repeated about the same time (around 20 times). The data

collection code is publicly available via GitHub. Technical

details of the data collection process and the collected data

are publicly available too.2

We conducted our user studies using Chrome on an

Android device (Nexus 5). The experiments and results are

based on the collected data from 10 users, each entering all

the 50 4-digit PINs for 5 times. Our voluntary participants

2 http://github.com/maryammjd/Reading-sensor-data-for-fifty-4digit

-PINs.

were university students and staff and performed the experi-

ments at university offices. We simply explained to them that

all they needed was to enter a few PINs shown in a web page.

In relation to the environmental setting for the data col-

lection, we asked the users to remain sitting in a chair while

working with the phone. We did not require our users to hold

the phone in any particular mode (portrait or landscape) or

work with it by using any specific input method (using one

or two hands). We let them choose their most comfortable

posture for holding the phone and working with it as they do

in their usual manner. While watching the users during the

experiments, we noticed that all of our users used the phone

in the portrait mode by default. Users were either leaning

their hands on the desk or freely keeping them in the air. We

also observed the following input methods used by the users.

• Holding the phone in one hand and entering the PIN with

the thumb of the same hand (Fig. 4 left).

• Holding the phone in one hand and entering the PIN with

the fingers of the other hand (Fig. 4 centre).

• Holding the phone with two hands and entering the PIN

with the thumbs or fingers of both hands (Fig. 4 right).

In the first two cases, users exchangeably used either their

right hands or left hands in order to hold the phone. In order

to simulate a real-world data collection environment, we took

the phone to each user’s workspace and briefly explained the

experiment to them, and let them complete the experiment

without our supervision. All users found this way of data

collection very easy and could finish the experiments without

any difficulties. Our participants were given each an Amazon

voucher (worth £10) at the end for their participation.

3.4 Feature extraction

In order to build the feature vector as the input to our classifier

algorithm, we consider both time-domain and frequency-

domain features. We improve our suggested feature vectors in

[4] by adding some more complex features such as the corre-

lation between the measurements. This addition improves the

results, as we will discuss in Sect. 4. As discussed before, 12

different sequences obtained from the collected data include

orientation (ori), acceleration (acc), acceleration including

gravity (accG), and rotation rate (rotR) with three sequences

(either x , y and z, or α, β and γ ) for each sensor measure-

ment. As a pre-processing step and in order to remove the

effect of the initial position and orientation of the device, we

subtract the initial value in each sequence from subsequent

values in the sequence.

We use these pre-processed sequences for feature extrac-

tion in time domain directly. In frequency domain, we

apply the fast Fourier transform (FFT) on the pre-processed

sequences and use the transformed sequences for feature
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extraction. In order to build our feature vector, first we

obtain the maximum, minimum, and average values of each

pre-processed and FFT sequences. These statistical measure-

ments give us 3 × 12 = 36 features in the time domain and

the same number of features in the frequency domain. We

also consider the total energy of each sequence in both time

and frequency domains calculated as the sum of the squared

sequence values, i.e., E =
∑

v2
i which gives us 24 new

features.

The next set of features are in time domain and are based

on the correlation between each pair of sequences in different

axes. We have 4 different sequences; ori, acc, accG, and rotR,

each represented by 3 measurements. Hence, we can calcu-

late 6 different correlation values between the possible pairs;

(ori, acc), (ori, accG), (ori, rotR), (acc, accG), (acc, rotR),

and (accG, rotR), each presented in a vector with 3 elements.

We use the Correlation coefficient function in order to calcu-

late the similarity rate between the mentioned sequences. The

correlation coefficient method is commonly used to compare

the similarity of the shapes of two signals (e.g. [17]). Given

two sequences A and B and Cov(A, B) denoting covariance

between A and B, the correlation coefficient is computed as

below:

RAB =
Cov(A, B)

√
Cov(A, A) · Cov(B, B)

(1)

The correlation coefficient of two vectors measures their

linear dependence by using covariance. By adding these new

18 features, our feature vector consists of a total of 114 fea-

tures.

3.5 Neural network

We apply a supervised machine learning algorithm by using

an artificial neural network (ANN) to solve this classification

problem. The input of an ANN system could be either raw

data, or pre-processed data from the samples. In our case, we

have pre-processed our samples by building a feature vector

as described before. Therefore, as input, our ANN receives a

set of 114 features for each sample. As explained before, we

collected 5 samples per each 4-digit PIN from 10 users. While

reading the records, we realized that some of the PINs have

been entered wrongly by some users. This was expected since

each user was required to enter 250 PINs. Since we recorded

both expected and entered PINs in our data collection, we

could easily identify these PINs and exclude them from our

analysis. Overall, out of 2500 records collected from 10 users,

12 of the PINs were entered wrongly. Hence we ended up

with 2488 samples for our ANN.

The feature vectors are mapped to specific labels from a

finite set: i.e., 50 fixed random 4-digit PINs. We train and val-

idate our algorithm with two different subsets of our collected

Table 1 PINlogger.js’s PIN identification rates in different attempts

Attempts Multiple-users (%) Same-user (%)

One 74 79

Two 86 93

Three 94 97

data, and test the neural network against a separate subset of

the data. We train the network with 70% of our data, validate it

with 15% of the records, and test it with the remaining 15% of

our data set. We use a pattern recognition/classifying network

in MATLAB with one hidden layer and 1000 nodes. Pat-

tern recognition/classifying networks normally use a scaled

conjugate gradient (SCG) back-propagation algorithm for

updating weight and bias values in training. Scaled conju-

gate gradient is a fast supervised learning algorithm [18].

4 Evaluation

In this section, we present the results of our attack on 4-digit

PINs in two different forms: multi-users mode and same-

user mode. We also train separate ANN systems to learn

individual digits of PINs and compare these results with other

works.

4.1 Multiple-users mode

The second column of Table 1 shows the accuracy of our

ANN trained with the data from all users. In this mode, the

results are based on training, validating, and testing our ANN

using the collected data from all of our 10 participants. As the

table shows, in the first attempt PINlogger.js is able to infer

the user’s 4-digit PIN correctly with accuracy of 74.43%, and

as expected it gets better in further attempts. By comparison,

a random attack can guess a PIN from a set of 50 PINs with

the probability of 2% in the first attempt and 6% in three

attempts.

4.2 Same-user mode

In order to study the impact of individual training, we trained,

validated, and tested the network with the data collected from

one user. We refer to this mode of analysis as the same-user

mode. We asked our user to enter 50 random PINs, each five

times, and repeated the experiment for 10 times (rounds).

The reason we have repeated the experiments is that the clas-

sifier needs to receive enough samples to be able to train

the system. Interestingly, our user used all three different

input methods shown in Fig. 4 during the PIN entrance. As

expected, our classifier performs better when it is personal-
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Table 2 Average digit identification rates in different attempts

Attempts Multiple-users (%) Same-user (%)

One 70 79

Two 83 90

Three 92 96

ized: the accuracy reaches 79.23% in the first attempt and

increases to 93.52 and 97.71% in two and three attempts,

respectively.

In the same-user mode, convincing the users to provide

the attacker with sufficient data for training customized clas-

sifiers is not easy, but still possible. Approaches similar to

gaming apps such as Math Trainer3 could be applied. Math-

based CAPTCHAs are possible web-based alternatives. Any

other web-based game application which segments the GUI

similar to a numerical keypad will do as well. Nonetheless,

in this paper we mainly follow the multiple-users approach.

4.3 Identification of PIN digits

One might argue that the attack should be evaluated against

the whole 4-digit PIN space. However, we believe that the

attack could still be practical when selecting from a limited

set of PINs since users do not select their PINs randomly [19].

It has been reported that around 27% of all possible 4-digit

PINs belong to a set of 20 PINs,4 including straightfor-

ward ones like “1111”, “1234”, or “2000”. Nevertheless, we

present the results of our analysis of the attack against the

entire search space for the two experiment modes discussed

above. We considered 10 classes of the entered digits (0–9)

from the data we collected on 4-digit PINs used in Sect. 4.1.

In the multiple-users mode, we trained, validated, and

tested our system with data from all 10 users. In the same-

user mode, we trained personalized classifiers for each user.

Unlike the test condition of Sect. 4.2, we did not have to

increase the number of rounds of PIN entry here since we

had enough samples for each digit per user. In the same-user

mode in this section, we used the average of the results of our

10 users. The average identification rates of different digits

for three different approaches are presented in Table 2.

The results in our multiple-users mode indicate that we

can infer the digits with a success probability of 70.75, 83.27,

and 94.03% in the first, second, and third attempts, respec-

tively. This means that for a 4-digit PIN and based on the

obtained sensor data, the attacker can guess the PIN from a

set of 34 = 81 possible PINs with a probability of success

of 0.92064 = 71.82%. A random attack, however, can only

3 http://play.google.com/store/apps/details?id=com.solirify.

mathgame.

4 http://datagenetics.com/blog/september32012/.

predict the 4-digit PIN with the probability of 0.81% in 81

attempts. By comparison, PINlogger.js achieves a dramati-

cally higher success rate than a random attacker.

Using a similar argument, in the same-user mode the suc-

cess probability of guessing the PIN in 81 attempts is 85.46%.

In the same setting, Cai and Chen report a success rate of 65%

using accelerometer and gyroscope data [20] and Simon and

Anderson’s [14] PIN Skimmer only achieves a 12% success

rate in 81 attempts using camera and microphone. Our results

in digit recognition in this paper are also better than what is

achieved in TouchSignatures [4]. In summary, PINlogger.js

performs better than all sensor-based digit-identifier attacks

in the literature.

4.4 Comparison with related work

Obtaining sensitive information about users such as PINs

based on mobile sensors has been actively explored by

researchers in the field [21,22]. In particular, there is a

number of research which uses mobile sensors through a

malicious app running in the background to extract PINs

entered on the soft keyboard of the mobile device. For exam-

ple, GyroPhone, by Michalevsky et al. [10], shows that

gyroscope data are sufficient to identify the speaker and even

parse speech to some extent. Other examples include Acces-

sory [13] by Owusu et al. and Tapprints by Miluzzo et al. [11].

They infer passwords on full alphabetical soft keyboards

based on accelerometer measurements. Touchlogger [8] is

another example by Cai and Chen [20] which shows the pos-

sibility of distinguishing user’s input on a mobile numpad

by using accelerometer and gyroscope. The same authors

demonstrate a similar attack in [9] on both numerical and

full keyboards. The only work which relies on in-browser

access to sensors to attack a numpad is our previous work,

TouchSignatures [4]. All of these works, however, aim for

the individual digits or characters of a keyboard, rather than

the entire PIN or password.

Another category of works directly targets user PINs. For

example, PIN skimmer by Simon and Anderson [14] is an

attack on a user’s numpad and PINs using the camera and

microphone on the smartphone. Spreitzer suggests another

PIN Skimming attack [15] and steals a user’s PIN based

on the measurements from the smartphone’s ambient light

sensor. Narain et al. introduce another attack [12] on smart-

phone numerical and alphabetical keyboards and the user’s

PINs and credit card numbers by using the smartphone micro-

phone. TapLogger by Xu et al. [16] is another attack on the

smartphone numpad which outputs the pressed digits and

PINs based on accelerometer and orientation sensor data.

Similarly, Aviv et al. introduce an accelerometer-based side

channel attack on the user’s PINs and patterns in [7]. We

choose to compare PINlogger.js with the works in this cat-
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Table 3 Comparison of PINlogger.js with related attacks on 4-digit PINs

Features work Sensor Access Training Identification rate

1st try (%) 2nd try (%) 5th try (%)

PIN Skimming [15] Light In-app Same-user NA 50 65

PIN Skimmer [14] Cam, Mic In-app Same-user NA 30 50

Keylogging by Mic [12] Mic, Gyr In-app Same-user 94 NA NA

TapLogger [16] Acc, Ori In-app Same-user 40 75 100

Acc side channel [7] Acc In-app Same-user 18 NA 43

PINlogger.js Motion, Ori In-browser Multiple-users 74 86 98

Same-user 79 93 99

egory since they have the same goal of revealing the user’s

PINs. Table 3 presents the results of our comparison.

As shown in Table 3, PINlogger.js is the only attack on

PINs which acquires the sensor data via JavaScript code.

In-browser JavaScript-based attacks impose even more secu-

rity threats to users since unlike in-app attacks, they do not

require any app installation and user permission to work.

Moreover, the attacker does not need to develop different

apps for different platforms such as Android, iOS, and Win-

dows. Once the attacker develops the JavaScript code, it can

be deployed to attack all mobile devices regardless of the

platform. Moreover, Touchlogger.js is the only works which

present the results of the attack for multiple-users modes. By

contrast, the results from other works are mainly based on

training the classifiers for individual users. In other words,

they assume the attacker is able to collect input training data

from the victim user before launching the PIN attack. We do

not have such an assumption as the training data are obtained

from all users in the experiment. In terms of accuracy, with the

exception of [12], PINlogger.js generally outperforms other

works with an identification rate of 74% in the first attempt.

This is a significant success rate (despite that the sampling

rate in-browser is much lower than that available in-app) and

confirms that the described attack imposes a serious threat to

the users’ security and privacy.

5 Why does this vulnerability exist?

Although reports of side channel attacks based on the in-

browser access to mobile sensors via JavaScript are relatively

recent, similar attacks via in-app access to mobile sensors

have been known for years. Yet the problem has not been

fixed. Here, we discuss the reasons why such a vulnerability

has remained unfixed for a long time.

5.1 Unmanaged sensors

In an attempt to explain multiple sensor-related in-app vul-

nerabilities, Xu et al. [16] argue that “the fundamental

problem is that sensing is unmanaged on existing smartphone

platforms”. There are multiple in-app side-channel attacks

that support this argument, as we discussed in the previous

section. Our work shows that the problem of in-app access to

“unmanaged sensors” is now spreading to in-browser access.

Here we present the “unmanaged” motion and orientation

sensor case which shows how the technical mismanagement

of these sensors causes serious user privacy consequences

when it comes to unregulated access to such sensors via

JavaScript.

W3C vs. Android According to W3C specifications [6],

the motion and orientation sensor streams are not raw sen-

sor data, but rather high-level data which are agnostic to the

underlying source of information. Common sources of infor-

mation include gyroscopes, compasses, and accelerometers.

In Tables 4 and 5, we present raw (low-level) and synthesized

(high-level) motion sensors supported by Android [1] along

with their descriptions and units, as well as their correspond-

ing W3C definitions [6].

As it can be seen from the tables, different terminologies

have been used for describing the same measurements in-

app and in-browser. For example, while in-app access uses

the raw sensor terminology, i.e., accelerometer, gyroscope,

magnetic field, the in-browser access uses synthesized sen-

sor terminology, i.e., motion and orientation [6]. This creates

confusion for users (as we will explain later) and developers

(as we experienced it ourselves). One of the W3C’s spec-

ifications on mobile sensors, “Generic Sensor API” [23],

dedicates a few sections to the issue of naming sensors, and

low-level and high-level sensors. It discusses how the termi-

nology for in-browser access has been high-level so far. It also

mentions that the low-level use cases are increasingly popular

among the developers. As stated in this specification: “The

distinction between high-level and low-level sensor types is

somewhat arbitrary and the line between the two is often

blurred”. And “Because the distinction is somewhat blurry,

extensions to this specification are encouraged to provide

domain-specific definitions of high-level and low-level sen-

sors for the given sensor types they are targeting”. We believe

that due to the rapid increase in mobile sensors, it is necessary

to come up with a consistent approach.
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Table 4 Motion sensors supported by Android and their corresponding W3C definitions

Android motion sensors Description Unit W3C def.

Accelerometer Acceleration force along 3 axes m/s2 Acceleration with gravity

Gravity Force of gravity along 3 axes m/s2 NA

Gyroscope Rate of rotation around 3 axes rad/s Rotation rate

Uncalibrated gyroscope Rate of rotation (no drift compensation), and rad/s NA

Estimated drift around 3 axes rad/s NA

Linear accelerometer Acceleration force excluding gravity along 3 axes m/s2 Acceleration

Rotation vector Rotation vector component along 3 axes Unitless NA

Step counter Number of user’s steps since last reboot Steps NA

Table 5 Position sensors supported by Android and their corresponding W3C definitions

Android position sensors Description Unit W3C def.

Game rotation vector Rotation vector component along 3 axes Unitless NA

Geomagnetic rotation vector Rotation vector component along 3 axes Unitless NA

Geomagnetic magnetic field Geomagnetic field strength along 3 axes µT NA

Uncalibrated magnetic field Geomagnetic field strength (no hard iron calibration) µT NA

And iron bias estimation along 3 axes µT NA

Orientation Angles around 3 axes Degrees Orientation

Proximity Distance from object cm NA

Orientation sensor was deprecated in Android 2.2 (API Level 8)

5.2 Unknown sensors

We believe another contributing factor is that users seem to

be less familiar with the relatively newer (and less adver-

tised) sensors such as motion and orientation, as opposed

to their immediate familiarity with well-established sensors

such as camera and GPS. For example, a user has asked this

question on a mobile forum: “. . . What benefits do having

a gyroscope, accelerometer, proximity sensor, digital com-

pass, and barometer offer the user? I understand it has to do

with the phone orientation but am unclear in their benefits.

Any explanation would be great! Thanks!”.5

We design and conduct user studies in this work in order

to investigate to what extent are these sensors and their risks

known to the users.

List of mobile sensors We prepared a list of different

mobile sensors by inspecting the official websites of the latest

iOS and Android products, and the specifications that W3C

and Android provide for developers. We also added some

extra sensors as common sensing mobile hardware which

are not covered before.

5 http://forums.androidcentral.com/verizon-galaxy-nexus/

171482-barometer-accelerometer-how-they-useful.html.

• iPhone 66: Touch ID, Barometer, Three-axis gyro, Accel-

erometer, Proximity sensor, Ambient light sensor.

• Nexus 6P7: Fingerprint sensor, Accelerometer, Gyro-

scope, Barometer, Proximity sensor, Ambient light sen-

sor, Hall sensor, Android Sensor hub.

• Android [1]: Accelerometer, Ambient temperature, Grav-

ity (software or hardware), Gyroscope, Light, Linear

Acceleration (software or hardware), Magnetic Field,

Orientation (software), Pressure, Proximity, Relative

humidity, Rotation vector (software or hardware), Tem-

perature.

• W3C8 [6]: Device orientation (software), Device motion

(software), Ambient light, Proximity, Ambient tempera-

ture, Humidity, Atmospheric Pressure.

• Extra sensors (common sensing hardware): Wireless

technologies (WiFi, Bluetooth, NFC), Camera, Micro-

phone, Touch screen, GPS.

Unless specified otherwise, all the listed sensors are hard-

ware sensors. We added the last category of the sensors

to this list since they indeed sense the device’s surround-

ing although in different ways. However, they are neither

6 http://apple.com/uk/iphone-6/specs/.

7 http://store.google.com/product/nexus_6p.

8 http://w3.org/2009/dap/.
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counted as sensors in mobile product descriptions, nor in

technical specifications. These sensors are often categorized

as OS resources [24], and hence, different security policies

apply to them.

5.3 User study

In this section, we aimed to observe the amount of knowledge

that mobile users have about mobile sensors. We prepared a

list of sensors based on what we explained above and asked

volunteer participants to rate the level of their familiarity with

each sensor. All of our experiments and user studies were

approved by Newcastle University’s ethical committee.

5.3.1 Participants

We recruited 60 participants to take part in this study via

different means including mailing lists, social network-

ing, vocational networks, and distributing flyers in different

places such as different schools in the university, colleges,

local shops, churches, and mosques. A sample of our call for

participation and participants’ demographics are available in

“Appendix 1”.

Among our participants, 28 self-identified themselves as

male and 32 as female, from 18 to 67 years old, with a median

age of 33.85. None of the participants were studying or work-

ing in the field of mobile sensor security. Our university

participants were from multiple degree programs and levels,

and the remaining participants worked in a different range

of fields. Moreover, our participants owned a wide range of

mobile devices and had been using a smartphone/tablet for

5.6 years on average. Our participants were from different

countries, and all could speak English. We interviewed our

participants at a university office and gave each an Amazon

voucher (worth £10) at the end for their participation. Details

of the interview template can be found in “Appendix 2”.

5.3.2 Study approach

For a list of 25 different sensors, we used a five-point scale

self-rated familiarity questionnaire as used in [25]: “I’ve

never heard of this”, “I’ve heard of this, but I don’t know

what this is”, “I know what this is, but I don’t know how this

works”, “I know generally how this works”, and “I know

very well how this works”. The list of sensors was randomly

ordered for each user to minimize bias. In addition, we needed

to observe the experiments to make sure users were answer-

ing the questions based on their own knowledge in order to

avoid the effect of processed answers. Full descriptions of all

studies are provided in “Appendix 2”.

5.3.3 Findings

Figure 5 summarizes the results of this study. This figure

shows the level of self-declared knowledge about different

mobile sensors. The question was: “To what extent do you

know each sensor on a mobile device?”. Sensors are ordered

based on the aggregate percentage of participants declaring

they know generally or very well how each sensor works.

This aggregate percentage is shown on the right-hand side.

In the case of equal aggregate percentage, the sensor with a

bigger share on being known very well by the participants

is shown earlier. Our participants were generally surprised

to hear about some sensors and impressed by the variety.

As one may expect, newer sensors tend to be less known

to the users in comparison with older ones. In particular,

our participants were generally not familiar with ambient

sensors. Although some of our participants knew the ambient

sensors in other contexts (e.g. thermostats used at home), they

could not recognize them in the context of a mobile device.

Low-level hardware sensors such as accelerometer and

gyroscope seem to be less known to the users in comparison

with high-level software ones such as motion, orientation,

and rotation. We suspect that this is partly due to the fact that

the high-level sensors are named after their functionalities

and can be more immediately related to user activities.

We also noticed that a few of the participants knew some of

the low-level sensors by name but they could not link them

to their functionality. For example, one of our participants

who knew almost all of the listed sensors (except hall sensor

and sensor hub) stated that: “When I want to buy a mobile

[phone], I do a lot of search, that is why I have heard of all

of these sensors. But, I know that I do not use them (like

accelerometer and gyroscope)”.

On the other hand, as the functionalities of mobile devices

grow, vendors quite naturally turn to promote the software

capabilities of their products, instead of introducing the hard-

ware. For example, many mobile devices are recognized for

their gesture recognition features by the users; however, the

same users might not know how these devices provide such a

feature. For instance, one of the participants commented on

a feature on her smartphone called “Smart Stay”9 as follows:

“I have another sensor on my phone: Smart Stay. I know how

it works, but I don’t know which sensors it uses”.

6 User studies on risk perception of mobile sensors

In this section, we study the participants’ risk perception of

mobile sensors. There have been several studies on risk per-

ception addressing different aspects of mobile technology.

9 http://samsung.com/us/support/answer/ANS00035658/234302/

SCH-R950TSAUSC.
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Fig. 5 Level of self-declared knowledge about different mobile sensors

Some works discuss the risks that users perceive on smart-

phone authentication methods such as PINs and patterns [26],

TouchID and Android face unlock [27], and implicit authen-

tication [28]. Other works focus on the privacy risks of certain

sensors such as GPS [29]. Raji et al. [30] show users’ con-

cerns (on disclosure of selected behaviours and contexts)

about a specific sensor-enabled device called AutoSense10.

To the best of our knowledge, the research presented in this

paper is the first that studies the user risk perception for a

10 http://sites.google.com/site/autosenseproject/.

comprehensive list of mobile sensors (25 in total). We limit

our study to the level of perceived risks users associate with

their PINs being discovered by each sensor. The reasons we

chose PINs are that first, finding one’s PIN is a clear and

intuitive security risk, and second, we can put the perceived

risk levels in context with respect to the actual risk levels for

a number of sensors as described in Table 3.

6.1 Methodology

For this study, we divide our 60 participants into two groups

and studied the two group separately using two differ-
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ent approaches: within-subject and between-subject. In the

within-subject study, we interviewed 30 participants for all

parts of the study. In contrast, in the between-subject study,

we interviewed a new group of 30 participants, and we later

compared the results with the previous group. By these two

approaches, we aim to measure differences (after informing

users on descriptions of sensors) within a participant and

between participants, respectively.

6.1.1 Within-subject study

In this approach, we asked 30 participants to rate the level

of risk they perceive for each sensor in regard to revealing

their PINs in two phases. In phase one, we gave the same

sensor list (randomized for each user). We described a spe-

cific scenario in which a game app which has access to all

these sensors is open in the background and the user is work-

ing on his online banking app, entering a PIN. We used a

self-rated questionnaire with five-point scale answers follow-

ing the same terminology as used in [30]: “Not concerned”,

“A little concerned”, “Moderately concerned”, “Concerned”,

and “Extremely concerned”. During this phase, we asked the

users to rely on the information that they already had about

each sensor (see “Appendix 2” for details).

In the second phase, first we provided the participants with

a short description of each sensor and let them know that

they can ask further questions until they feel confident that

they understand the functionality of all sensors. Participants

could use a dictionary on their device to look at the words

that were less familiar to them. Afterwards, we asked the

participants to fill in another copy of the same questionnaire

on risk perceptions (details in “Appendix 2”). Participants

could keep the sensor description paper during this phase to

refer to it in the case they forgot the description of certain

sensors.

6.1.2 Between-subject study

In this study, first we gave the description of the sensors to our

second group of 30 participants, and similar to previous study,

we gave them enough time to familiarize themselves with the

sensors and to ask as many questions as they wanted until they

felt confident about each sensor. Then, we presented the par-

ticipants with the questionnaire on risk perceptions (details

in “Appendix 2”). Similar to our previous study, participants

could keep the sensor description paper while filling in this

questionnaire.

6.2 Intuitive risk perception

The results of our within-subject study are presented in Fig. 6.

These results present the users’ perceived risk for different

mobile sensors for the same group of users before (top bars)

and after (bottom bars) being presented with descriptions of

sensors. The results of our between-subject study are pre-

sented in Fig. 7. Note that this figure represents the risk

perception of group one of our participants before know-

ing the sensors descriptions, and group two of participants

after knowing the sensors descriptions. For both figures, the

question was: “To what extent are you concerned about each

sensor’s risk to your PIN?”, sensors are ordered based on the

aggregate percentage of participants declaring they are either

concerned or extremely concerned about each sensor before

seeing the descriptions. This aggregate percentage is the first

value presented on the right-hand side. In the case of equal

aggregate percentage, the sensor with a bigger share on being

perceived extremely concerned by the participants is shown

earlier.

We make the following observations from the results of

the experiment.

Touch Screen Although our participants rated touch screen

as one of the most risky sensors in relation to a PIN discovery

scenario, still about half of our participants were either mod-

erately concerned, a little concerned, or not concerned at all.

Through our conversations with the users, we received some

interesting comments, e.g. “Why any of these sensors should

be dangerous on an app while I have officially installed it

from a legal place such as Google Play?”, and “As long as

the app with these sensors is in the background, I have no

concern at all”. It seems that a more general risk model in

relation to mobile devices is affecting the users’ perception

in regard to the presented PIN discovery threat. This fact can

be a topic of research on its own and is out of the scope of

this paper.

Communicational Sensors One category of the sensors

which users are relatively more concerned about includes

WiFi, Bluetooth, and NFC. For example, one of the partici-

pants commented that: “I am not concerned with physical

[motion, orientation, accelerometer, etc.]/ environmental

[light, pressure, etc.] sensors, but network ones. Hackers

might be able to transfer my information and PIN”. These

sensors appearing more risky to the users are understandable

since we asked them to what extent they were concerned

about each sensor in regard to the PIN discovery.

Identity-Related Sensors Another category which has been

rated more risky than others contains those sensors which can

capture something related to the user’s identity, i.e. finger-

print, TouchID, GPS, camera, and microphone. Despite that

we described a PIN-related scenario, our participants were

still concerned about these sensors. This was also pointed out

by a few participants through the comments. For example,

a user stated: “. . ., however, GPS might reveal the location

along with the user input PIN that has a risk to reveal who (and

where) that PIN belongs to. Also the fingerprint/TouchID

might recognize and record the biometrics with the user’s

PIN”. Some of these sensors such as GPS, fingerprint, and
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Fig. 6 Users’ perceived risk for different mobile sensors for within-subject approach

TouchID, however, cannot cause the disclosure of PINs on

their own. Hence, the concern does not entirely match the

actual risk. Similar to the discussion on touch screen, we

believe that a more general risk model on mobile technology

influences the users to perceive risk on specific threats such

as the one we presented to them.
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Fig. 7 Users’ perceived risk for different mobile sensors for between-subject approach

Environmental Sensors The level of concern on ambi-

ent sensors (humidity, light, pressure, and temperature) is

generally low and stays low after the users are provided

with the description of the sensors (see Fig. 6). In many

cases, our users expressed that they were concerned about

these sensors simply because they did not know them: “[now
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that I know these sensors,] I am quite certain that move-

ment/environmental sensors would not affect the security

of personal id/passwords, etc.”. In fact, researchers have

reported that it is possible to infer the user’s PIN using

the ambient light sensor data [15], although, to our knowl-

edge, exploits of other environmental sensors have not been

reported in the literature.

Movement Sensors On the sensors related to the movement

and the position of the phone (accelerometer, gyroscope,

motion, orientation, and rotation), the users display varying

levels of the risk perceptions. In some cases, they are slightly

more concerned, but in others they are less concerned once

they know the functionality. Some of our users stated that

since they did not know these sensors, they were not con-

cerned at all, but others were more concerned when they

were faced with new sensors. Overall, knowing or not know-

ing these sensors has not affected the perceived risk level

significantly, and they were rated generally low in both cases.

Motion and Orientation Sensors The sensors which we

used in our attack, namely orientation, rotation, and motion,

have not been generally scored high for their risk in reveal-

ing PINs. Users do not seem to be able to relate the risk of

these sensors to the disclosure of their PINs, despite that they

seem to have an average general understanding about how

they work. On hardware sensors such as accelerometer and

gyroscope, the risk perception seems to be even lower. A few

comments include: “In my everyday life, I don’t even think

about these [movement] sensors and their security. There

is nothing on the news about their risk”, and “I have never

been thinking about these [movement] sensors and I have not

heard about their risk”. On the other hand, some of the par-

ticipants expressed more concerns for sensors that they were

familiar with, as one wrote, “You always hear about privacy

stuff for example on Facebook when you put your location

or pictures”. Similarly, it seems that having a previous risk

model is a factor that might explain the correlation between

the user’s knowledge and their perceived risk.

7 Discussions

7.1 General knowledge versus risk perception

Figures 5 and 6 suggest that there may be a correlation

between the relative level of knowledge users have about sen-

sors and the relative level of risk they perceive from them.

We confirm our observation of correlation using Spearman’s

rank-order correlation measure. As shown in Table 6, we

present the Spearman’s correlation between the comparative

knowledge and the perceived risk about different sensors for

different participants’ data set: group one before being pre-

sented with the sensor descriptions, group one after sensor

description, group two after sensor descriptions, and finally

Table 6 Spearman’s correlation between the comparative knowledge

and the perceived risk about different sensors

Participants’ data set Status Spearman’s correlation

Group 1 Before sensor desc. 0.61

Group 1 After sensor desc. 0.61

Group 2 After sensor desc. 0.48

Groups 1 and 2 After sensor desc. 0.58

groups one and two after being presented with the sensor

descriptions.

For each participants’ data set, the sensors are separately

ranked based on the level that the users are familiar with

them, similar to Fig. 5. Accordingly, the levels of concern

are ranked too. The Spearman’s correlation equation has been

applied on these ranks for each group separately.

For example, the Spearman’s correlation between the

comparative knowledge (median: “I know what this is, but

I don’t know how this works”, IQR11: “I’ve never heard of

this”–“I know very well how this works”) and the perceived

risk about different sensors for group one (median: “Not con-

cerned”, IQR: “Not concerned”–“A little concerned”) before

knowing the sensor descriptions is r = 0.61 (p < 0.05).

As it can be seen, these results support that the more

the users know about these sensors, the more concern they

express about the risk of the sensors revealing PINs. We

acknowledge that other methods of ranking the results, e.g.

using median, produce slightly different final rankings. How-

ever, given the high confidence level of the above test, we

expect the correlation to be supported if other methods of

ranking are used.

Assuming that customer demand drives better security

designs, the above correlation may explain why sensors that

are newer to the market have not been considered as OS

resources and consequently have not been subject to similar

strict access control policies.

7.2 Perceived risk versus the actual risk

We are specifically interested in the users’ relative risk per-

ception of sensors in revealing their PINs in comparison with

the actual relative risk level of these sensors. We list the

results reported in the literature in Table 3 for the follow-

ing sensors: light, camera, microphone, gyroscope, motion,

and orientation. Figure 6 shows that users generally have

expressed more concern about sensors such as camera and

microphone than accelerometer, gyroscope, orientation, and

motion. This does not match the actual risk levels since the

latter sensors allow PIN recovery with higher accuracy as

we have shown in Sect. 4. When asked after filling the ques-

11 Interquartile range.
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tionnaire, most participants could not come up with realistic

attack scenarios using camera and microphone. For micro-

phone, some users thought they might say the PIN out loud.

For camera, a few of our participants thought face recognition

might be used to recover the PIN; hence, they rated camera’s

risk to their PINs high. One user thought the camera might

capture the reflection of the entered PIN in her glasses.

Among our participants, one mentioned but described

doubt about motion, orientation, accelerometer, and gyro-

scope being able to record the shakes of the mobile phone

while entering a PIN after they saw the sensor descriptions:

“I feel those positional sensors might be able to reveal some-

thing about my activities, for example if I open my banking

app or enter my PIN. But it is extremely hard for different

users, and when working with different hands and positions”.

This participant expressed only “a little concern” about them,

stating that: “. . ., and by little concern, I mean extremely lit-

tle concern”. One of our participants was completely familiar

with these attacks and in fact had read some related papers.

This user was “extremely concerned”. Other users who rated

these sensors risky in general said they were generally con-

cerned about different sensors. One commented: “I can not

think of any particular situation in which these sensors can

steal my PIN, but the hackers can do everything these days”.

7.3 Possible solutions

In this section, we discuss the current academic and industrial

countermeasures to mitigate sensor-based attacks.

7.3.1 Academic approach

Different solutions to address the in-app access attacks have

been suggested in the literature, e.g. restricting the sensor

to one app, reducing the sampling rate, temporal pause of

the sensor on sensitive entries such as keyboard, rearranging

keyboard for password entrance, asking for explicit permis-

sion from the user, ranking apps based on their similarities

to malware, and obfuscating anomalies in sensor data [7,10–

16,31,32]. However, after many years of research on showing

the serious security risks of sensors such as accelerometer and

gyroscope, none of the major mobile platforms have revised

their in-app access policy.

We believe that the risks of unmanaged sensors on mobile

phones, specially through JavaScript code, are not known

very well yet. More specifically, many OS-/app-level solu-

tions such as asking for permissions at the installation time or

malware detection approaches would not work in the context

of a web attack. In our previous work [4], we suggested to

apply the same security policies as those for camera, micro-

phone, and GPS for the motion and orientation sensors. Our

suggestion was to set a multi-layer access control system on

the OS and browser levels. However, the usability and effec-

tiveness of this solution are arguable. First, asking too many

permissions from the user for different sensors might not be

usable. Furthermore, for some basic use cases such as gesture

recognition to clear a web form, or adjusting the screen from

portrait to landscape, it might not make sense to ask for user

permission for every website. Second, with the increase in

the number of sensors accessible through mobile browsers,

this approach might not be effective due to the classic prob-

lem of sidestepping the security procedure by users when it

is too much of a burden [33]. As stated by one of our par-

ticipants: “I don’t mind these sensors being risky anyway. I

don’t even review the permission list. I have no other choice

to be able to use the app”. Moreover, as we have shown in

Sect. 5, users generally do not understand the implications of

these sensors on discovering their PINs, for example, even

though they know how these sensors work. Hence, such an

approach might not be effective in practice.

7.3.2 Industrial approach

W3C Device Orientation Event Specification. There is

no Security and Privacy section in the latest official W3C

Working Draft Document on Device Orientation Event [6].

However, at the time of writing this paper, a new version

of the W3C specification is being drafted, which includes a

new section on security and privacy issues related to mobile

sensors,12 as suggested by us in [4]. The authors working

on the revision of the W3C specification point out the prob-

lem of fingerprinting mobile devices [31], and touch action

recovery [4] through these sensors, and suggest the following

mitigations:

• “Do not fire events when the page where they were reg-

istered on is not visible or has been backgrounded.”

• “Fire events only on the top-level browsing context or

same-origin nested iframes.”

• “Limit the frequency of events (typically 60 Hz seems to

be sufficient).”

We believe that these measures may be too restrictive in

blocking useful functionalities. For example, imagine a user

consciously running a web program in the browser to monitor

his daily physical activities such as walking and running. This

program needs to continue to have access to the motion and

orientation sensor data when the user is working on another

tab or minimizes the browser. One might argue that such a

program should be available as an app instead; hence, the use

case is not valid. However, it is expected that the boundary

between installed apps and embedded JavaScript programs

in the browser will gradually diminish [34].

12 http://w3c.github.io/deviceorientation/spec-source-orientation.

html.
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Mobile browsers As we showed in [4], browsers and

mobile operating systems behave differently on providing

access to sensors. Some allow access only on the active web-

page and any embedded iframes (although with different

origins), some allow access to other tabs, when browser is

minimized, or even when the phone is locked. Hence, there

is not a consistent approach across all browsers and mobile

platforms. Reducing the frequency rate has been applied to

all well-known browsers at the moment [4]. For instance,

Chrome reduced the sensor readings from 200 to 60 Hz due

to security concerns.13 However, our attack shows that secu-

rity risks are still present even at lower frequencies. iOS and

Android limit the maximum frequency rate of some sensors

such as Gyroscope to 100 and 200 Hz, respectively. It is

expected that these frequencies will increase on mobile OSs

in the near future and in-browser access is no exception. In

fact, current mobile gyroscopes support much higher sam-

pling frequencies, e.g. up to 800 Hz by STMicroelectronics

(on Apple products) and up to 8000 Hz by InvenSense (on

the Google Nexus range) [10]. With higher frequencies avail-

able, attacks such as ours can perform better in the future if

adequate security countermeasures are not applied.

Following our report of the issue to Mozilla, starting

from version 46 (released in April 2016), Firefox restricts

JavaScript access to motion and orientation sensors to only

top-level documents and same-origin iframes.14 In the lat-

est Apple Security Updates for iOS 9.3 (released in March

2016), Safari took a similar countermeasure by “suspending

the availability of this [motion and orientation] data when the

web view is hidden”.15 However, we believe the implemented

countermeasures should only serve as a temporary fix rather

than the ultimate solution. In particular, we are concerned

that it has the drawback of prohibiting potentially useful web

applications in the future. For example, a web page running a

fitness program has a legitimate reason to access the motion

sensors even when the web page view is hidden. However,

this is no longer possible in the new versions of Firefox and

Safari. Our concern is confirmed by members in the Google

Chromium team,16 who also believe that the issue remains

unresolved.

7.4 Biometric sensors

As we explained in Sect. 5.2, there exist around 25 different

sensors on mobile platforms. They include communicational

sensors such as WiFi, environmental sensors such as ambient

light, movement sensors such as motion and orientation, and

biometric sensors such as Fingerprint. Here we specifically

13 http://bugs.chromium.org/p/chromium/issues/detail?id=421691.

14 http://mozilla.org/en-US/security/advisories/mfsa2016-43/.

15 http://support.apple.com/en-gb/HT206166.

16 http://bugs.chromium.org/p/chromium/issues/detail?id=523320.

discuss biometric sensors since they are highly related to the

individuals’ identity.

After decades of working on password, it seems that peo-

ple still cannot remember strong passwords. Biometrics have

been offered to users as an effective authentication mecha-

nism. Examples include TouchID and Fingerprint sensors on

iOS and Android devices, respectively. But the biometric-

based authentication is not limited to mobile devices only. For

example, when paying with iPhone contactlessly, you need

to rest your finger on TouchID and hold your iPhone in close

proximity to the contactless reader until the task is finished.

Furthermore, since many banks have already moved their ser-

vices to mobile platforms, they benefit from the biometrics

sensors available on mobile devices, say for implementing 2-

factor authentication. As an example, in addition to user name

and passwords, HSBC authenticates their customers through

TouchID17 and voice ID.18 Another example is Smile to Pay

facial recognition app19 where deep learning is applied to

overcome the difficulty of face authentication when the face

photograph is not in the normal form. Recently Yahoo has

also introduced its ear-based smartphone identification sys-

tem.20

On the other hand, our findings show that mobile users

are relatively concerned with identity-related or biometric

sensors. However, we discussed that these sensors are not

necessarily the most risky ones to PINs in practice. As we

mentioned earlier, we believe that this might be the influence

of a more general risk model that the users have on mobile

technology. We believe that this is an important research topic

and requires further studies.

7.5 Limitations

We consider this work a pilot study that explores user risk

perception on a comprehensive list of mobile sensors. We

envisage the following future work to address these limita-

tions and expand this work:

• More Participants We performed our user studies on a set

of users who were recruited from a wide range of back-

grounds. Yet the number of the participants is limited. A

larger set of participants will improve the confidence in

the results. With a large and diverse set of participants,

we can also study the effect of demographic factors on

perceived risk.

17 http://us.hsbc.com/1/2/home/personal-banking/pib/mobile/

touchid.

18 http://hsbc.co.uk/1/2/contact-and-support/banking-made-easy/

voice-id.

19 http://brandchannel.com/2015/03/16/alibaba-demos-smile-to-pay

-facial-recognition-app/.

20 http://bbc.co.uk/news/technology-32498222.
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• Other Risks We studied the perceived risk on PINs as a

serious and immediate risk to users’ security. The study

can be expanded by studying users’ risk perception on

other issues such as attackers discovering phone call tim-

ing, physical activities, or shopping habits.

• Other Types of Access When interviewing our partici-

pants, we presented them with a scenario involving a

game app which is installed on their smartphone. This

only covers the in-app access to sensors. However, peo-

ple might express different risk levels for other types of

access, e.g. in-browser access. This needs further inves-

tigation.

• Issues with Training Users We decided to provide our

participants with a short description of each sensor’s

functionality (details in “Appendix 2”, part 3). Further-

more, the participants were given the chance to ask as

many questions as they wanted to fully understand the

functionality of each sensor. This might not be the most

effective way to inform users about sensors since some

descriptions might seem too technical (and hence not

fully understandable) to some users. How to inform users

in an effective way is a complex topic of research which

can be explored in the future.

8 Conclusion

In this paper, we introduced PINlogger.js, a web-based pro-

gram which reveals users’ PINs by recording the mobile

device’s orientation and motion sensor data through JavaScript

code. Access to mobile sensor data via JavaScript is limited to

only a few sensors at the moment. This will probably expand

in the future, specially with the rapid development of sensor-

enabled devices in the Internet of things (IoT).

We also showed that users do not generally perceive a

high risk about such sensors being able to steal their PINs.

Furthermore, we showed that people are not even gener-

ally knowledgeable about these sensors on mobile devices.

Accordingly, we discussed the complexity of designing a

usable and secure solution to prevent the proposed attacks.

Hence, designing a general mechanism for secure and usable

sensor data management remains a crucial open problem for

future research.

Many of the suggested academic solutions either have

not been applied by the industry as a practical solution, or

have failed. Given the results in our user studies, design-

ing a practical solution for this problem does not seem to

be straightforward. A combination of different approaches

might help researchers devise a usable and secure solution.

Having control on granting access before opening a web-

site and during working with it, in combination with a smart

notification feature in the browser would probably achieve

a balance between security and usability. Users should also

have control on reviewing, updating and deleting these data,

if stored by the website or shared with a third party after-

wards. Solutions such as Taintroid [35], a tracking app for

monitoring sources of sensitive data on a mobile which has

been applied for GPS in [29], could be helpful. After all, it

seems that an extensive study is required towards designing

a permission framework which is usable and secure at the

same time. Such research is a very important usable security

and privacy topic to be explored further in the future.
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Appendix 1: Call for participation flyer and partic-

ipant demographics

In this section, we present the participants demographics in

details and the flyers that we used for call for participation

of our user studies (Fig. 8; Table 7).

Appendix 2: Interview script

Hi. Thanks very much for contributing to our study. In this

interview, we will ask you to fill in a few questionnaires

about mobile sensors such as GPS, camera, light, motion,

and orientation. You are encouraged to think out loud as you

go through, and please feel free to provide any comments

during the interview. There is no right or wrong answer, and

our purpose is to evaluate the mobile sensors, not you. Every-

thing about this interview is anonymous. Please provide some

information about yourself in Table 8.

Part one

A list of multiple mobile sensors is presented below. To what

extent do you know each sensor on a mobile device? Please

rate them in the table (Table 9 was used).
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Fig. 8 Sample of flyer distributed for participant recruitment

Table 7 Participants’ self-reported demographics in the two studies, (y) indicates the years of owning a smartphone

Sex Age Job/Background Mobile (y) Sex Age Job/Background Mobile (y)

f 23 Civil Eng. Nokia (0) f 27 Teacher HTC(3)

f 28 Customer Support HTC (2) m 30 Services iPhone (4)

f 22 Media Sony (3) m 26 Computer Samsung (7)

m 43 IT iPhone (9) m 30 Teacher Blackberry (7)

f 27 Media iPhone (9) m 52 Nanotechnology Nokia (0)

m 18 Mathematics Samsung (3) m 41 Nanotechnology HTC (10)

f 30 Management iPhone (7) m 47 Lecturer Samsung (2)

m 22 Medical iPhone (10) f 39 Physics iPhone (4)

f 27 Human Mgmt. Huawei (9) f 31 Biology Samsung (10)

f 21 Literature Samsung (4) m 39 Student iPhone (6)

m 35 Media Samsung (6) f 30 Civil Eng. iPhone (5)

f 20 Languages Samsung (3) m 20 Student Samsung (4)

f 59 Services iPhone (3) f 52 Admin Samsung (3)

m 40 IT LG (7) f 30 Admin Samsung (5)

m 21 Biomedical Samsung (4) f 58 Admin iPhone (12)

f 22 Biomedical OnePlus (6) f 44 Admin Samsung (3)

m 30 Civil Eng. Samsung (3) f 27 Student Motorola (5)

m 29 Geodesy Samsung (7) f 47 Services iPhone (5)

m 28 Medical Sony (5) m 67 Teacher Nokia (0)

f 38 Computer Samsung (5) m 23 Student Nexus (5)

f 30 Animation iPhone (9) m 46 Cable Maker iPhone (5)

f 56 Business Mgmt. iPhone (11) m 35 Services Samsung (5)

f 29 Admin Samsung (5) f 39 Admin iPhone(5)

f 30 Admin Samsung (6) f 24 Student Gionee (3)

m 47 Driving Instructor Sony (11) f 34 Education iPhone (4)

f 28 Admin Motorola (7) m 32 Student OnePlus (6)

m 40 Education LG (5) f 37 Researcher Honor (3)

m 32 Computer iPhone (6) m 33 Industrial Mgmt. iPhone(12)

f 25 Law HTC (3) f 33 Mathematics Samsung (3)

m 30 Student Nexus (5) m 27 Student iPhone (18)

Part two

Imagine that you own a smartphone which is equipped

with all these sensors. Consider this scenario: you have

opened a game app which can have access to all mobile

sensors. You leave the game app open in the background,

and open your banking app which requires you to enter your

PIN.
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Table 8 Demography

Age

Gender

Profession/ background (optional)

1st language (optional)

Mobile device

Duration of owning a smartphone/tablet

Do you think any of these sensors can help the game app

discover your entered PIN? To what extent are you concerned

about each sensor’s risk to your PIN? Please rate them in the

table (Table 10 was used). In this section, please only rely on

the knowledge you already have about the sensors, and if you

do not know some of them, describe your feeling of security

about them.

Part three

Let us explain each sensor here:

• GPS: identifies the real-world geographic location.

• Camera, Microphone: capture pictures/videos and voice,

respectively.

• Fingerprint, TouchID: scans the fingerprint.

• Touch Screen: enables the user to interact directly with

the display by physically touching it.

• WiFi: is a wireless technology that allows the device to

connect to a network.

• Bluetooth: is a wireless technology for exchanging data

over short distances.

• Near-Field Communication (NFC): is a wireless technol-

ogy for exchanging data over shorter distances (less than

10 cm) for purposes such as contactless payment.

• Proximity: measures the distance of objects from the

touch screen.

• Ambient Light: measures the light level in the environ-

ment of the device.

• Ambient Pressure (Barometer), Ambient Humidity, and

Ambient Temperature: measure the air pressure, humid-

Table 9 This form was used for part one

Sensor I’ve never I’ve heard I know what I know I know

heard of this of this but I this is but I generally very well

don’t know don’t know how this how this

what this is how this works works works

Bluetooth

Gyroscope

GPS

Sensor Hub

Ambient Temperature

Accelerometer

Magnetic Field

Motion

Fingerprint

Orientation

Proximity

Ambient Pressure

Hall Sensor

Rotation

Touch Screen

Camera

TouchID

Barometer

Gravity

Microphone

Ambient Humidity

WiFi

Ambient Light

NFC

Device Temperature
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Table 10 This form was used for parts two and three

Risk to PIN

Not A little Moderately Extremely

Sensor Concerned Concerned Concerned Concerned Concerned

Bluetooth

Gyroscope

GPS

Sensor Hub

Ambient Temperature

Accelerometer

Magnetic Field

Motion

Fingerprint

Orientation

Proximity

Ambient Pressure

Hall Sensor

Rotation

Touch Screen

Camera

TouchID

Barometer

Gravity

Microphone

Ambient Humidity

WiFi

Ambient Light

NFC

Device Temperature

ity, and temperature in the environment of the device,

respectively.

• Device Temperature: measures the temperature of the

device.

• Gravity: measures the force of gravity.

• Magnetic Field: reports the ambient magnetic field inten-

sity around the device.

• Hall sensor: produces voltage based on the magnetic

field.

• Accelerometer: measures the acceleration of the device

movement or vibration.

• Rotation: reports how much and in what direction the

device is rotated.

• Gyroscope: estimates the rotation rate of the device.

• Motion: measures the acceleration and the rotation of the

device.

• Orientation: reports the physical angle that the device is

held in.

• Sensor Hub: is an activity recognition sensor and its pur-

pose is to monitor the device’s movement.

Please feel free to ask us about any of these sensors for more

information.

Now that you have more knowledge about the sensors, let

us describe the same scenario here again. Imagine that you

own a smartphone which is equipped with all these sensors.

You have opened a game app which can have access to all

mobile sensors. You leave the game app open in the back-

ground, and open your banking app which requires you to

enter your PIN.

Do you think any of these sensors can help the game app to

discover your entered PIN? To what extent are you concerned

about each sensor’s risk to your PIN? Please rate them in

the table (Table 10 was used). In this part, please make sure

that you know the functionality of all the sensors. If you are

unsure, please have another look at the descriptions, or ask

us about them.

Thanks very much for taking part in this study. Please

leave any extra comment here.

An Amazon voucher and a business card are in this

envelope. Please contact us if you have any questions
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about this interview, or are interested in the results of this

study.
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