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Stealing-reality 

attacks attempt to 

steal social network 

and behavioral 

information through 

data collection and 

inference techniques, 

making them more 

dangerous than other 

types of identity 

theft.

scienti�c, �nancial, and popular discourse. 

With the growing emphasis on personal-

ization, personal recommendation systems, 

and social networking, there is a growing 

interest in understanding personal and so-

cial behavior patterns. This trend is mani-

fested in the increased demand for data 

scientists and data-mining experts, which 

derives from the increasing number of social 

data-driven start-up companies as well as 

the social-inference-related research spon-

sored by commercial entities and various 

nongovernmental organizations (NGOs).

This article explores a “what if” scenario. 

That is, history has shown that whenever 

something exhibits a tangible value, some-

one will try to steal it for pro�t. Along this 

line of thought—based on current trends in 

the data ecosystem coupled with the emer-

gence of advanced tools for social and  

behavioral pattern detection and inference— 

we ask the following: What will happen 

when criminals become data scientists?

We conjecture that the world will increas-

ingly see malware-integrating tools and 

mechanisms from network science as well as 

attacks that directly target human-network 

information as a goal rather than a means. 

Paraphrasing Marshall McLuhan’s “the me-

dium is the message,”1 we have reached the 

stage where “the network is the message.”

Speci�cally, a new type of information  

security threat involves a class of malware, 

the goal of which is not to corrupt and 

take control of the machines it infects or 

steal explicit information stored on them 

(such as credit card information and per-

sonal records). Rather, the goal is to steal 

social network and behavioral information 

through data collection and network science  

W
e live in the age of social computing. Social networks are everywhere, 

exponentially increasing in volume, and changing how we do busi-

ness and how we understand ourselves and the world around us. The challenges 

and opportunities inherent in the social-oriented ecosystem have overtaken 

FPO
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inference techniques. We call this a 

stealing-reality attack.

After exploring this new kind of at-

tack, we analyze how it could be car-

ried out. We show the optimal strategy 

for attackers interested in learning a 

social network and its hidden underly-

ing social principles. Remarkably, our 

analysis shows that, in many cases, 

such an optimal strategy should follow 

an extremely slow spreading pattern. 

Counterintuitively, such attacks gener-

ate far greater damage in the long term 

compared to attacks that spread more 

aggressively. In addition, such attacks 

will likely avoid detection by many of 

today’s network security mechanisms, 

which tend to focus on detecting net-

work traffic anomalies, such as a  

traf�c-volume increase. We demon-

strate this discovery using several real-

world social networks datasets.

Stealing Reality  
Threat Model
In our discussion, we refer to reality 

information as inferred information 

about personal and social behavior. 

This includes three elements:

•	 information about individuals, which 

we refer to as node information (in-

cluding any parameter on a node that 

can be learned from available data, 

such as occupation, income level, 

health state, or personality type);

•	 dyadic information, which includes 

information on relationships and 

other parameters connecting two 

nodes (we call this edge informa-

tion); and

•	 network-level information, or infor-

mation on groups of nodes, com-

munities, and general network prop-

erties and information.

The full network information also in-

cludes all data on nodes and edges. 

We do not refer here to explicitly 

stated information that can be found 

in (and stolen from) existing data-

bases, such as names, social security, 

or credit card numbers. Whereas re-

ality mining is the legitimate collec-

tion and analysis of such informa-

tion, reality stealing is the illegitimate 

accrual of it. (See the “Related Work 

in Reality Mining” for previous re-

search in this area.)

Motivation for Attackers

Secondary markets for the resale of 

stolen identities already exist, such as 

www.infochimps.com or black mar-

ket sites and chat rooms for the resale 

of other illegal datasets.2 It is reason-

able to assume that an email address 

of a social hub would be worth more 

T
he social sciences have been undergoing a digital rev-
olution, heralded by the emerging �eld of computa-

tional social science, which combines the leading tech-
niques from network science1–3 with new machine learning 
and pattern recognition tools specialized for the under-
standing of people’s behavior and social interactions.4,5 
David Lazer and his colleagues described the potential of 
computational social science to increase our knowledge of 
individuals, groups, and societies, with an unprecedented 
breadth, depth, and scale.6 The pervasiveness of mobile 
phones has made them ubiquitous social sensors of loca-
tion, proximity, and communications.

The phrase “reality mining” describes the collection of 
sensor data pertaining to human social behavior.7 Using 
call records, cellular-tower IDs, and Bluetooth proximity 
logs collected via mobile phones at the individual level, the 
subjects’ social network can be accurately detected as well 
as patterns in their daily activities.4,7 Mobile phone records 
from telecommunications companies have proven valuable 
for uncovering human-level insights. For example, research-
ers have used cell-tower location information to character-
ize human mobility.8 Nathan Eagle, Michael Macy, and Rob 
Claxton found that the diversity of individuals’ relation-
ships is strongly correlated with the economic development 
of communities.9 Expanding on an earlier work,7 Anmol 
Madan and his colleagues showed how to use mobile social 
sensing to help measure and predict individuals’ health sta-
tus based on mobility and communication patterns.10

Companies such as Sense Networks are already putting 
such tools to use in the commercial world to understand 
customer churn, enhance targeted advertisements, and 

offer improved personalization and other services. The 
technical advancements in mobile phone platforms and the 
availability of mobile software development kits (SDKs) are 
making it easier than ever to collect reality-mining data.
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to an advertiser than that of a social  

leaf, or that a person meeting a stu-

dent pro�le might be priced differ-

ently than a person meeting a cor-

porate executive pro�le. Stolen reality 

information could be used for several 

malicious goals:

•	 selling to the highest bidder (legit-

imate bidders, advertisers, and so 

on or in the black market to other 

attackers),

•	bootstrapping other attacks (as 

part of a complex advanced persis-

tent threats [APT] attack3,4), and

•	business espionage (for example, 

to analyze a competitor’s customer 

base, pro�le high-yielding custom-

ers for targeted marketing,5 or pro-

duce high-quality predictions6).

Companies are already operating 

in this area, collecting email and de-

mographic information with the in-

tent to sell it. Methods for social net-

work analysis and trends recognition 

have already been published in many 

leading venues.7 Why should attack-

ers work hard when they can use  

automatic agents to collect the same 

data and possibly much higher- 

quality information?

Dangers of  

Reality-Stealing Attacks

Users can modify their communication 

network topologies and networked- 

device identi�ers with the click of 

a button. In the event of a secu-

rity breach, users can also change 

their passwords, usernames, and 

credit cards numbers; easily replace 

their email and other online ac-

counts; and quickly warn their con-

tacts. However, it is much harder to 

change one’s social network, person-

to-person relationships, friendships, 

or family ties. If a chronic health 

condition is uncovered through such 

an attack, there is no going back.  

Victims of a behavioral-pattern theft 

cannot change their behaviors and 

life patterns. This type of informa-

tion, once out, would be dif�cult to 

contain.

A second component accentuating 

this danger is that real-life informa-

tion can be deduced from seemingly 

safe data, such as accelerometer and 

location information, which users al-

ready freely allow many mobile appli-

cations to access.

Because we believe this is a con-

crete threat, our research goal is to 

analyze potential attacks from the 

attackers’ perspective to better un-

derstand them and develop proper 

defenses.

Past Attacks on  

Real-World Information

To help understand the risk of attacks 

on inferred real-world information, 

we reviewed prior attacks on explicit 

data. In 2008, real identity informa-

tion of millions of Korean citizens 

was stolen in a series of malicious at-

tacks and posted for sale. In 2007, 

the Israel Ministry of Interior’s data-

base, which contained information 

on every Israeli citizen, was leaked 

and posted on the Web.8 In the US, 

a court is ruling whether a database 

from a bankrupt gay-dating site for 

teenagers can be sold to raise money 

to help repay its creditors; the site  

includes the personal information of 

more than a million teenage boys.9

In all these cases, once the informa-

tion is out, there is no way to get it 

back, and the damage might be felt 

for an extended period. In a recent 

Wall Street Journal interview, former 

Google CEO Eric Schmidt referred to 

the possibility that people in the fu-

ture might choose to legally change 

their name to detach themselves from 

embarrassing “reality” information 

publicly exposed in social networking 

sites. This demonstrates the sensitivity  

and challenges in recovering from 

leaked real-life information, whether 

by youthful carelessness or malicious 

extraction through an attack.10

Many existing viruses and worms 

use primitive forms of social engi-

neering,11 which attempt to gain the 

trust of their next victims and then 

convince them to click on a link or 

install an application. For example, 

Happy99 was one of the �rst viruses 

to attach itself to outgoing emails, 

thus increasing the chances of the re-

cipient opening an attachment to a 

seemingly legitimate message from 

an acquaintance. (More information 

concerning security and privacy leak-

age in social networks is available 

elsewhere.12,13)

Social Attack Model
We model a social network as an un-

directed graph G(V, E). A stealing-

reality attacker’s �rst goal is to inject 

a single malware agent into one of the 

network’s nodes. Upon such injec-

tion, the agent starts to learn about 

this node (and its interactions with 

its neighbors). Periodically, the agent 

tries to copy itself into one of the 

original node’s neighbors. The prob-

ability that an agent will try to copy 

itself to a neighboring node at any 

given time step determines the ag-

gressiveness of the attack, ρ. Namely, 

aggressive agents have higher ρ val-

ues (and hence take less time between 

each two spreading attempts). Less 

aggressive agents are less likely to try 

and spread at any given time and gen-

erally will wait longer between try-

ing to copy themselves to one of the 

neighbors of their current host.

As the information about the net-

work becomes worthy of an attack, 

the attacker’s motivation is stealing 

as many properties related to the net-

work’s social topology as possible. 

We denote the percentage of vertices-

related information acquired at time 
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t as LV(t) and the percentage of edge-

related information acquired at time t 

is as LE(t).

The duration of the stealing-reality  

attack’s learning process refers to 

the time it takes the attacking agent 

to identify with high probability the 

properties of a node’s behaviors or 

of some of its social interactions. We 

model this process using a standard 

Gompertz function in the parametric 

form of y t aebe
ct

( )=  (for some parame-

ters a, b, and c). This model is �exible 

enough to �t various social-learning 

mechanisms, while providing the fol-

lowing important features:

•	The longer such an agent operates, 

the more precise its conclusions 

will be. We call this the sigmoidal 

advancement.

•	The rate at which information is 

gathered is smallest at the start and 

end of the learning process.

•	 For any value of T, the amount of 

information gathered in the �rst T 

timesteps is greater than the amount 

of information gathered at the last T 

timesteps. We call this the asymme-

try of the asymptotes.

Previous research demonstrated the 

applicability of the Gompertz func-

tion for the purpose of modeling the 

evolution of locally learning the pref-

erences and behavior patterns of us-

ers.14 The authors attempted to pre-

dict which applications mobile users 

would install on their phones using 

an ongoing learning process. This 

experiment showed that this process 

can be best modeled using the func-

tion 1 - e-x. Because we know that 

1 - t ≤ e-t (achieving tight results for 

most t < 1), we can clearly see that 

1− ≈
− −

−

e e
x e

x

, which is an instance of 

the Gompertz function (for a = 1, b = 

c = -1).

Users and administrators are more 

likely to detect an aggressive spreading  

pattern, resulting in the subsequent 

blocking of the attack. On the other 

hand, attacks that spread slowly 

might evade detection for a longer pe-

riod of time, but the amount of data 

they gather would be limited. To pre-

dict the detection probability of the 

attack at time t, we use Richard’s 

curve15—a generalized logistic func-

tion often used for modeling the de-

tection of security attacks:

 

 
p t

e
t M

detect ( ) =

+( )− −( )

1

1

1

ρ ρ
σ

where ρ is the attack aggressiveness, 

σ is a normalizing constant for the 

detection mechanism, and M denotes 

the normalizing constant for the sys-

tem’s initial state.

Let Iu(t) be the infection indica-

tor of u at time t, Tu be the initial in-

fection time of u, and p(u, t) be the 

Gompertz function. De�ning
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V
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1
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Social Learnability
We defined a mathematical mea-

sure that predicts an attacker’s abil-

ity to steal or acquire a given social 

network—what we call a network’s 

social learnability. This measure re-

�ects both the information contained 

in the network and the broader con-

text from which the network was de-

rived. Using this measure, we can sort 

real-world social networks according 

to their complexity (which is known) 

and even group two different social 

networks that were generated by the 

same group of people. The optimal 

learning process with respect to this 

new measure in many cases involves 

nonaggressive attacks.

Information Complexity  

of Social Networks

A network’s Kolmogorov complex-

ity represents the basic amount of 

information contained in a social 

network.16 For example, a military 

organization’s network has many 

homogeneous links and hierarchi-

cal structures. We would expect it 

to require a much shorter minimal 

description than, say, the social net-

work of the residents of a metropol-

itan suburb. In the latter, we would 

expect to see a highly heterogeneous 

network, consisting of many types of 

relationships such as work relation-

ships, physical proximity, family ties, 

and other intricate types of social re-

lationships and group af�liations.

Let KE denote a network’s Kol-

mogorov complexity, or the minimal 

number of bits required to “code” the 

network in such a way that it could 

later be completely restored.

Social Entropy  

of Social Networks

Every social-reality network belongs 

to one or more social families, each of 

which has its own consistency (or ver-

satility). Some families might contain 

a great variety of possible networks, 

each having roughly a similar prob-

ability to occur, while another might 

consist of a limited number of pos-

sible networks. Each network’s com-

plexity, however, does not necessarily 

correlates with its entropy. For exam-

ple, families of low variety might in 

fact be highly complicated networks, 

while other families might contain 

a great variety of relatively simple 

networks.

Let us de�ne 𝒢n to contain n ran-

dom instances of networks of |V| 

nodes that belong to the same social 
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family as G. Let Xn be a discrete ran-

dom variable with possibility values

x x x
V V1 2

2
1
2

1, ,..., (| |(| | ))−{ }
(corresponding to all possible graphs 

over |V| nodes), taken according to 

the distribution of 𝒢n. The normal-

ized social entropy of the network G 

would therefore be calculated by di-

viding the entropy of the variable Xn 

by the maximal entropy for graphs of 

|V| nodes:

λ
ζn
n

V

G
H X

( )
( )

log | |


2

where ζ|V | denotes the number of dis-

tinct nonisomorphic simple graphs 

of |V| nodes. l(G) is then de�ned as 

limn→∞ λn(G).

Stealing a Network’s  

Social Essence

Reed’s law asserts that the utility of 

large networks (and particularly so-

cial networks) can scale exponen-

tially with the size of the network. 

This is because the number of pos-

sible subgroups of network partici-

pants is exponential in N (where N is 

the number of participants), stretch-

ing far beyond the N2 utilization of 

Metcalfe’s law that was used to repre-

sent the value of telecommunication 

networks.

Extending this notion, we assert 

that a strong value emerges from 

learning the 2I social principles be-

hind a network, where I is the infor-

mation encapsulated in a network. 

Assuming that at time t an attacker 

has stolen |E|LE(t) edges, then tak-

ing KE as the maximal amount of in-

formation that can be coded in the 

network G, we normalize it by the 

fraction of edges acquired thus far. 

Because KE is measured in bits, the 

appropriate normalization should 

maintain this scale. Multiplying by 

λ(G), the normalized social entropy 

of the network G, the network infor-

mation can be written as follows:

I G K
E t

E
E

E
= ⋅λ ( )

log ( | | ( ))

log | |
2

2

Λ

After normalizing by the network’s 

overall social essence (LE = 1), we 

achieve the following measurement 

for the social essence of the subnet-

work acquired:

 
 
 
 

Λ

Λ

s

G K
E t

E

G K
t

E

E

E

( )

( )
log (| | ( ))

log | |

( )
=

=

⋅ ⋅

⋅

2

2

2

2

2

λ

λ

λ(( )
log ( )

log | |
G K

t

E
E

E
⋅ ⋅

2

2

Λ

which yields

 
Λ ΛS Et t

G KE

E

( ) ( )

( )

log | |

=

⋅λ

2

KE represents the network complex-

ity, whereas λ(G) represents the com-

plexity of the network’s social family.

At this point, we assert that our 

social-learnability measure is a valu-

able property for measuring network 

attacks. For this, we demonstrate the 

values of this measure for several real-

world networks. Figure 1 presents an 

analysis of the networks derived from  

the Social Evolution experiment,17 

the Reality Mining network,18 and the 

Friends and Family experiment.19 

We can easily see the logic behind 

the predictions received using the 

social-learnability measure concern-

ing the difficulty of learning each  

network.

Speci�cally, we determined the So-

cial Evolution network is harder to 

steal than the Reality Mining net-

work, but it is easier to steal than 

the Friends and Family networks. 

Whereas the Reality Mining experi-

ment tracked people within a rela-

tively static work environment, the 

Social Evolution experiment took 

place at Massachusetts Institute of 

Technology undergraduate dorms, 

involving students with (apparently) 

much more complicated mobility and 

interactions patterns. The Friends and 

Family dataset involved even more 

complicated interactions because it 

includes a heterogeneous community 

of couples, increasing the amount of 

information encapsulated within the  

network.

In addition, the social-learnability 

measure places the two Friends and 

Family networks directly on top of 

each other, despite the fact that the two 

networks contain signi�cantly differ-

ent information in terms of volume, 

meaning, and network information. 

Still, because the two networks essen-

tially represent the same social group  

of people, their social-learnability  

measure has a similar value.

Figure 2 demonstrates the impor-

tance of a network’s social entropy, 

analyzing the Reality Mining network 

for various possible values of social 

entropy. We approximated the value 

for the network’s Kolmogorov com-

plexity using an LZW compression.

Figure 3 demonstrates the progress 

of the network-essence-stealing pro-

cess for various network-complexity 

values. As the amount of information 

contained in a network increases—

that is, the network represents more 

complicated social structures—the 

network becomes much more dif�-

cult to acquire.

Experimental Results
We evaluated our model on data de-

rived from a real-world cluster of mo-

bile phone users drawn from the call 

records of a major city within a devel-

oped western country. The data con-

sists of approximately 200,000 nodes 

and 800,000 edges. Figure 4 shows 

the attack efficiency (namely, the 

maximal amount of network infor-

mation acquired) as a function of its 

aggressiveness—that is, the attack’s  
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infection rate. The two curves repre-

sent the amount of information (re-

lated edges and vertices) that can be 

obtained as a function of the aggres-

siveness value ρ. Although a local 

optimum exists for an aggressive-

ness value of little less than ρ = 0.5 

(namely, a relatively aggressive at-

tack), it is preceded by a global opti-

mum achieved by a much more subtle 

attack, for an aggressiveness value of 

ρ = 0.04.

To further validate our analytic 

model for predicting the success of 

stealing-reality attacks, we simulated 

attacks for random subnetworks of 

our real-world 200,000-node mo-

bile network using various attack-

aggressiveness values. We used nu-

merous sets of values for the attack 

properties, and for each, we empiri-

cally measured the overall expected 

amount of information stolen by 

the attack. Although the actual per-

centage of stolen information var-

ied signi�cantly between the vari-

ous simulations, demonstrating the 

in�uence of changes made to the  

attack’s properties, many displayed 

the same interesting phenomenon: a 

global optimum for the attack’s per-

formance located around a low value 

of ρ. Figure 5 presents some of these 

scenarios.

To further validate our theoretical 

attack model, we used a small-scale 

real-world social network we ob-

tained from the Friends and Family 

study containing data derived from a 

multitude of mobile mounted sensors 

(including call logs, accelerometers, 

Bluetooth, and WiFi interactions).  

Figure 1. Reality-stealing process. We used three values of social entropy (a) λ(G) = 1, (b) λ(G) = 0.1, and (c) λ(G) = 0.02, for four 
networks: the Random Hall network,17 Reality Mining network,18 Friends and Family self-reporting network, and Friends and 
Family Bluetooth network.19 Using this example, we can see that the Reality Mining network is easier to steal than the Random 
Hall network, which in turn is easier to steal than the Friends and Family networks.
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Using this data, we con�rmed our 

assumptions concerning the learn-

ing process.14 Our research currently 

focuses on the empirical implementa-

tion and measurement of the model 

we presented here.

The new concept of stealing-

reality attacks might provide 

an explanation for observed evidence 

in the process of investigating recent 

advanced persistent threats (APT) at-

tacks as well as suggest that such at-

tacks might have occurred in the past 

and gone undetected. Such attacks 

are dif�cult to detect because most 

existing network monitoring meth-

ods focus on detecting other, nois-

ier attack attempts. Systems such 

as the Network Telescope20 are de-

signed to detect activity in IP seg-

ments that are supposed to contain 

no such activities. Other widely used 

methods rely on detecting anomalies 

in network activity,21,22 for which 

a considerable amount of data is  

required.

As a result, a nonaggressive attack 

might avoid detection. Finally, the at-

tack is sensitive to the accuracy of the 

selection of the optimal aggressive-

ness value (Figure 4), which further 

hints at the usefulness of the attack 

for entities such as global hacking or-

ganizations or national defense agen-

cies that have the resources needed to 

gather the information required for 

such accurate estimation.
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