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ABSTRACT

We consider systems that use PCA-based detectors obtained
from a comprehensive view of the network’s traffic to identify
anomalies in backbone networks. To assess these detectors’
susceptibility to adversaries wishing to evade detection, we
present and evaluate short-term and long-term data poison-
ing schemes that trade-off between poisoning duration and
the volume of traffic injected for poisoning. Stealthy Boil-

ing Frog attacks significantly reduce chaff volume, while only
moderately increasing poisoning duration. ROC curves pro-
vide a comprehensive analysis of PCA-based detection on
contaminated data, and show that even small attacks can
undermine this otherwise successful anomaly detector.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations; C.4 [Performance of Systems]: Modeling
Techniques; I.2.6 [Artificial Intelligence]: Learning

General Terms

Measurement, Performance, Security

Keywords

Network Traffic Analysis, Principal Components Analysis,
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1. INTRODUCTION
We explore vulnerabilities associated with using techni-

ques based on Statistical Machine Learning (SML): specif-
ically how adversaries can subvert the learning process [1].
Since SML is an increasingly popular tool for analyzing and
improving network design and performance, it is important
to understand the security of SML within the context of
Internet measurement. In particular, SML plays an impor-
tant role in dynamic network anomography [7]: the prob-
lem of inferring network-level Origin-Destination (OD) flow
anomalies from aggregate network measurements. Network
anomography techniques aggregate network measurements
and employ various SML techniques [7] to diagnose network
traffic anomalies. One popular technique [2] is based on
Principal Components Analysis (PCA).

Consider a network with N links and F OD flows, which
represent traffic over T time intervals. Given X, the T ×
F traffic matrix (TM) containing the time-series of all OD
flows, a detector can simply flag flow f as anomalous at time
t if Xt,f is large. However, the observed network link traffic

represents the superposition of OD flows: the T × N link
TM Y containing the traffic time-series of all links equals
XA⊤, where A is the N × F routing matrix. Performing
OD-flow anomaly detection given only Y is more difficult.
PCA is one proposed method that works directly with Y.
PCA identifies the principal components of the link TM; i.e.,
the eigenvectors of its covariance matrix. The first K ≪
N (typically 3 − 4) components model normal traffic: the
normal subspace spanned by these vectors captures most of
the variance between link TM rows. Second, we choose a
threshold Qβ > 0. Link traffic that is more than Qβ from
the normal subspace is flagged as anomalous.

We previously showed that an adversary can generate OD
traffic flow patterns that mislead this network anomography
technique and lead it to miss anomalous traffic flows [5, 6].
We demonstrated data poisoning schemes that increase the
variance along the links of a target flow during the training
phase of the algorithm by strategically injecting additional
high variance traffic along the flow; we refer to this adversar-
ial traffic as chaff. The adversary subsequently launches a
large-scale Denial of Service (DoS) attack that evades detec-
tion along the same flow. The attacker’s goal is to increase
the false negative rate (FNR; the percentage of anomalies
that are undetected) of PCA to evade detection. The chaff
is of low average volume, so poisoning is hard to detect.

Ringberg et al. showed that routing outages can pollute
the normal subspace [4]; a kind of non-adversarial distur-
bance to the subspace. We expand on this work by quanti-
fying PCA’s sensitivity to adversarial contamination. Ad-
versarial contamination can be much more subtle than inci-
dental outages since attackers can adapt their attacks based
on current network traffic levels.

2. RESULTS
As in our previous work [6], we train the PCA detector

on an initial link TM and the learned principal components
(PCs) are subsequently used for anomaly detection. Each
week the detector relearns the PCs; i.e., the PCs used in any
week m are those learned in week m − 1. During data poi-
soning, the attacker poisons flow f by adding chaff of volume
ct to Xt,f , flow f at time t. Once satisfied with the amount
of poisoning, the attacker launches a DoS attack along flow
f corresponding to a large flow volume at one time. Follow-
ing the validation methods of [2], we evaluate the efficacy of
data poisoning by testing the poisoned detector on link data
of known normality/abnormality. We validate PCA and our
poisoning methods on data from the Internet2’s Abilene net-
work of 12 PoPs and 15 inter-PoP connections (comprising
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Week−Long Attacks: ROC Curves
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Figure 1: ROC curves for PCA under Week-Long at-

tacks that increase the volume of traffic by the indi-

cated percent. The curves are obtained by averaging

the curves from poisoning each flow separately.
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Figure 2: Boiling Frog attacks using the Add-More-

If-Bigger chaff method for four geometric growth

rates R: the volume of traffic from week m − 1 to

week m increases by a factor R due to poisoning.

144 OD-flows and 54 links) [7]. Here we present results for
the Add-More-If-Bigger chaff selection scheme, which uses
ct = (max {0,Yt,S − α})θ where S is the ingress link of the
target flow f , α is the attacker’s estimate of the flow’s mean,
and θ controls the mean and variance of the chaff. We con-
sider a semi-informed attacker capable of obtaining local in-
formation about the ingress link S from network monitoring
resources such as MRTG [3].

Our contributions in this work are twofold. First, we con-
duct a broader study of the impact of data poisoning on
the performance of the PCA detector. Like the FNR, the
detector’s false positive rate (FPR; the percentage of nor-
mal traffic flagged as anomalous) is also affected by data
contamination. Indeed our Receiver Operating Character-
istic (ROC) curves in Figure 1 show that by increasing the
traffic volume as little as 10%, poisoning undermines the
detector’s ability to successfully detect anomalies (high true
positive rate (TPR)) without an intolerably high FPR. Fur-
ther, when the increase in traffic volume due to chaff ex-
ceeds 20%, the PCA detector approaches the performance
of a random detector.

Second, we show a new stealthy form of data poisoning
that trades off the duration of poisoning with the volume
of chaff. SML techniques are vulnerable because they often
need to be retrained to capture evolving trends in changing
data. In previous usage scenarios [2], the PCA detector is
retrained regularly (e.g., weekly), allowing attackers to poi-
son PCA slowly over long periods of time. By perturbing the
principal components gradually, the attacker decreases the
chance that the poisoning activity itself is detected. We de-
sign such an attack strategy, called a Boiling Frog attack. In
the previous Week-Long attacks, the attacker must increase
the volume on every link of the target flow by an average of
18% to increase the DoS’s chance of successful evasion from
detection from 4% to 50%. Under the Boiling Frog attack
the same result can be achieved with a modest 5% volume
increase from week-to-week over a 3 week period. Figure 2

shows the FNRs resulting from Boiling Frog attacks of in-
creasing durations for each of four geometric growth rates
in the amount of poison traffic used per week.

Future work will include investigation of globally informed

poisoning methods, which will provide a standard with which
to compare our locally informed and uninformed poisoning
methods. We are also investigating several variants of ro-
bust PCA from the field of Robust Statistics as potential
defenses against variance injection attacks.
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