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Steep gravity-capillary waves are studied experimentally in a channel. The range of cyclic 
frequencies investigated is 6.94-9.80 Hz; namely, the high-frequency portion of the 
regime of internal resonances according to the weakly nonlinear theory (Wilton’s ripples). 
These wave trains are stable according to the nonlinear Schrodinger equation. The 
experimental wave trains are generated by large, sinusoidal oscillations of the wavemaker. A 
comparison is made between the measured wave fields and the (symmetric) numerical 
solutions of Schwartz and Vanden-Broeck [J. Fluid Mech. 95, 119 ( 1979)], Chen and Saffman 
[Stud. Appl. Math. 60, 183 (1979); 62, 95 (1980)], and Huh (Ph.D. dissertation, 
University of Michigan, 1991). The waves are shown to be of slightly varying asymmetry as 
they propagate downstream. Their symmetric parts, isolated by determining the phase 
which provides the smallest mean-square antisymmetric part, compare favorably with the 
“gravity-type” wave solutions determined by numerical computations. The 
antisymmetric part of the wave profile is always less than 30% of the peak-to-peak height of 
the symmetric part. As nonlinearity is increased, the amplitudes of the short-wave 
undulations in the trough of the primary wave increase; however, there are no significant 
changes in these short-wave frequencies. The lowest frequency primary-wave experiments, 
which generate the highest frequency short-wave undulations, exhibit more rapid viscous 
decay of these high-frequency waves than do the higher-frequency primary wave experiments. 

I. INTRODUCTION 

Since the advent of multiple-scales perturbation tech- 
niques as well as averaged-Lagrangian techniques to inves- 
tigate weakly nonlinear resonant interactions of waves, 
there has been significant progress in understanding weakly 
nonlinear gravity-capillary (GC) waves. For a relatively 
complete literature review, see Perlin and Hammack.’ 
Numerical investigations of strongly nonlinear, inviscid 
GC waves with assumed symmetry about the crest 
and/or trough have been conducted by Schwartz and 
Vanden-Broeck,2 Chen and Saffman,3-5 and more recently 
by Huh.6 Schwartz and Vanden-Broeck investigated 
two-dimensional waves using a boundary-integral formu- 
lation/Newton iteration and found multiple solutions that 
exhibit multipeaked crests and troughs. Concurrently, 
Chen and Saffman also investigated permanent form GC 
waves on deep water. They reexamined the weakly nonlin- 
ear problem of Wilton’s ripples3 and demonstrated that 
they are a special case of a general bifurcation. In a follow- 
up investigation4 they examined finite-amplitude waves us- 
ing the Stokes expansion with Newton iteration. In a sub- 
sequent investigation5 they addressed the problem in three 
dimensions. Huh reproduced previous two-dimensional re- 
sults using a spectral boundary-integral formulation and 
was able to show numerically that certain of these results 
are unstable. That is, they used the periodicity condition to 
obtain highly accurate solutions and then removed the 
temporal periodicity constraint. 

Experimental investigations include those of Schooley’ 
who investigated wind-generated, multidimpled 9.8 Hz 
waves; however, the authors are unaware of any systematic 

experimental studies of waves in the internal resonance 
regime, the subject of the present effort. 

Herein, steep GC waves are generated mechanically in 
a channel and the results are compared to the aforemen- 
tioned computations. To retain two-dimensionality of the 
wave field in the experiments, the wavemaker stroke is 
limited. An understanding of these small-scale waves is 
required to more accurately predict surface roughness 
which significantly impacts, for example, radar backscatter 
from sea surfaces. The purpose of this research is to com- 
pare numerical predictions with experimental results. In 
Sec. II, the numerical method used by Schwartz and 
Vanden-Broeck is discussed and pertinent results from the 
references cited above are presented. In Sec. III, there is a 
discussion of the laboratory facility as well as data analysis 
techniques. Section IV presents the results of the compar- 
ison between theory and experiments, while Sec. V offers 
conclusions. 

II. NUMERICAL SOLUTIONS 

A condensed version of the numerical treatment of the 
exact, two-dimensional water wave problem including sur- 
face tension and gravity as afforded by Schwartz and 
Vanden-Broeck is presented. Following their analysis, two- 
dimensionality and an infinite depth fluid which is inviscid, 
incompressible, and of constant density is assumed. Fur- 
ther, the assumption of irrotational flow is required. The 
waves are assumed of permanent form and symmetric 
about a vertical axis at both the crest and trough. Thus, 
computations are only carried out for half of the wave- 
form. Under these assumptions, a complex physical coor- 
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dinate, z=x+iy, a complex potential, f(z) =4+itj, and a 
complex velocity, q=df /dz=u--iv, are defined. In coor- 
dinates moving at the constant phase speed, c, the kine- 
matic condition is identically satisfied while the dynamic 
condition on the free surface is 

r 

1 T 1 
p* +gv+,,=, c2, (1) 

where g is the acceleration of gravity, T is the surface 
tension, p is the mass density, and R is the surface radius of 
curvature with positive defined with center in the fluid. 
Three dimensionless parameters are chosen as follows: the 
dimensionless surface-tension parameter (following 
Wilton’s original work), K = ( k2T) / (pg) ; the dimension- 
less wave-speed parameter, ,u = (k/g) c2; and a dimension- 
less measure of wave steepness, E= b(O) --y(tr/k)]/ 
[ (2n) /k], whose choice is unclear for multicrested steep 
waves. Here k is the wave number; K= l/n represents the 
nth-harmonic resonance for the weakly nonlinear theory. 
Using the first two dimensionless parameters, Eq. ( 1) be- 
comes 

1 K 1 

@+y^+R=p (2) 

where the circumflexes denote dimensionless variables. 
Next the flow is separated into a unifor9 part and a wave 
part using the transformation~=~-1’2 f+% Periodicity is 
imposed using the mapping f = $+i$=ip”2 log c, where 
[=reie and r= 1 is the surface. Schwartz and ‘Vanden- 
Broeck, after exploiting the assumed symmetry of the 
permanent-form wave, expressed the surface condition in 
terms of the unknown function, z^=ag( 0)) y^( 0)], as 

$;(p2;YZ- 1) +;( FS2) =o, (3) 

where the primes denote differentiation with respect to 8. 
They chose to fix (K,E) and vary ,u. A Newton-Raphson 
technique was used to solve the set of nonlinear algebraic 
equations obtained by finite ditferencing (3). 

Multiple solutions are found. That is, for given values 
of (K,E), several numerical solutions are found with differ- 
ent values of the speed parameter p. Their Fig. 8 is repro- 
duced here as Fig. 1 for reference. As nondimensionalized 
by Schwartz and Vanden-Broeck, the wavelength was 2a, 
and since it was assumed symmetric about r, only half of 
the waveforms need be shown. The ordinate is y. Figure 1 
shows the four solutions calculated for rr=O.33. Reference 
will be made to waves of this general type. Waveforms of 
type-3 were termed “gravity dominant” (or gravity-type) 
because, in the limiting case of no high-frequency pertur- 
bations, the waveform has wide troughs and narrow crests 
as does a steep gravity wave, while waveforms of type-l 
were termed’ ‘tcapillary dominant” (or capillary-type) be- 
cause of their wide crests and narrow troughs. 

As mentioned previously, Chen and Sat&an4 also cal- 
culated wave profiles for steep, two-dimensional GC waves 
(using a different technique). Their Fig. 10 is included as 
Fig. 2 as waves of these general forms are found experi- 
mentally. Clearly, as primary-wave steepness increases, 
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FIG. 1. Numerically computed wave profiles of Schwartz and Vanden- 
Broeck for ~=0.33. (Courtesy of J. Fluid Mech.) 

shorter waves form along the entire primary wave, and 
eventually become steeper in the primary-wave trough, less 
steep in the primary-wave crest. (Presumably, one can ar- 
gue that the shorter waves are stretched by the primary 
wave in the crest region and compressed in the trough 
region due to the effects of the long-wave current on the 
shorter waves.) Also, note that for the steepest case, bub- 
bles are pinched off in the crests as predicted by the exact 
theory of Crapper* for a single capillary wave. A discussion 
of these nonlinear waveforms is given in Sec. IV. 

III. LABORATORY FACILITY AND DATA ANALYSIS 

The laboratory facility consists of five subsystems: 
wave tank; wavemaker and attendant electronics; wave- 
maker signal generation and data acquisition system; wave 
gauges and attendant electronics; and water treatment sys- 
tem. Glass walls, separated 30.5 cm, form a 130 cm chan- 
nel downstream of the wavemaker. The water depth is 
approximately 15 cm (deep water according to the linear 
wave theory for the frequencies reported). The wavemaker 
consists of an Unholtz-Dickie electrodynamic shaker 
Model 20 with a model TAlOO-20 amplifier; an aluminum 
right-angle-wedge wave paddle; and a feedback displace- 
ment transducer, Kaman model KD2300-10CU. The pad- 
dle dimensions are 2.71 cm vertical by 1.32 cm horizontal 
with a downstream face angled 26” from the vertical. Un- 
der static conditions, the wave paddle is immersed about 
1.35 cm. The command signal (shaker digital-to-analog 
signal) is generated at 3000 Hz and data acquisition is 
accomplished using a Mac IIfx computer enhanced by Na- 
tional Instruments’ LabVIEW software and data acquisi- 
tion hardware packages. Capacitance-type wave probes are 
used with an outside diameter of only 0.5 mm to minimize 
its disturbance. (Dynamic calibration of the wave probes 
demonstrated a resolution of -0.03 mm.) Prior to digiti- 
zation, output as well as input signals are filtered using two 
Krohn-Hite model 3342 analog filters with a cutoff fre- 
quency of 250 Hz. These signals are monitored to ensure 
that the actual signal is essentially the same as the desired 
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FIG. 2. Profiles as found by Chen and Saffman for varying steepnesses with ~=0.19. (Courtesy of Stud. Appl. Math.) 

signal. The water treatment system includes a 5 mm par- 
ticulate prefilter, double deionization tanks, a carbon ad- 
sorption phase, and a 0.2 mm particulate final filter. The 
wave tank and paddle are scrubbed meticulously before 
and after each use with ethyl alcohol. Static surface-tension 
measurements using a CSC-DuNoiiy tensiometer are made 
routinely and agree with those of clean water at room tem- 
perature; however, it is well known that the presence of 
surface-active agents does not necessarily cause a signifi- 
cant change in static surface-tension measurements. Thus, 
the presence of these contaminants cannot be entirely ruled 
out. 

Following low-pass filtering at 250 Hz, wave gauge 
data are digitized at 500 Hz with a record length of 213 
samples which generate time series with a resolution of 
0.061 Hz. Approximately 10 mV of broadband noise con- 
taminates the record, and is manifested in the high- 

frequency regime once the transfer function is applied due 
to the increase in the transfer function with frequency. 
[The transfer function is determined dynamically by at- 
taching the wave probe to the shaker and making a 
frequency-by-frequency comparison of output displace- 
ment (from the displacement-feedback transducer) and 
wave-probe voltage.] To circumvent the noise- 
contamination problem, the following technique is used. 
Upon demonstrating temporal periodicity of the wave field 
at a particular spatial location (which is the case for all the 
experiments presented), the output-frequency signal to the 
shaker is altered slightly from the desired frequency, for 
each set of experiments, so that an integral number of data 
points exist for each period of the generated wave. Then, 
the time series is divided into an integral number of waves 
with a partial wave discounted. This set, consisting of an 
integral number of waves plus their corresponding broad- 
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TABLE I. Summary of time-averaging parameters. 

Experimental Dimensionless Number of 
frequency surface points per 

(Hz) tension, K wave, N 

9.80 l/2 51 

[y 
SYm 

(j)l =Yw+Y(-A 
M 

Integral 2 ’ 

number of 
i= l,N, 

Y(j) -Y( -3 
waves per 7 

record 
[Yantisyrn W 1 M= 2 

160 where 
8.93 l/2.5 56 146 

8.33 l/3 60 136 
I 
M*i+N, if (M&i) <l 

1 
7.94 l/3.5 

7.58 l/4 

7.25 l/4.5 

63 130 

66 124 
hj= M&i, 

69 118 I 

if l<W*i)<N , i=l,N. (4) 

M&i----N, if (M=!=i)>N I 
6.94 l/5 72 113 

The mean-square difference between the measured profile 
and the symmetric part calculated above for each of N 
values of M is computed as follows: 

band noise, is averaged to obtain one averaged-wave pe- 
riod. This technique reduces broadband noise in a periodic 
signal at all frequencies except the superharmonics. These 
remaining frequencies have insufficient amplitudes to con- 
taminate the waveform in a visible manner (even after the 
transfer function is applied as discussed below) for the 
signal-to-noise ratios present in the experiments. Test cases 
demonstrated that the method works well for signal-to- 
noise ratios as low as 10, which is less than the lowest ratio 
in the experiments. Further supporting evidence of the suc- 
cess of this method is seen in the experiments, especially 
with small ka values. (For example, see Fig. 7. The small- 
est ka value in the experiments, ka =0.013, has a measured 
waveform with no spurious, high-frequency undulations 
present.) 

The time series is reconstructed by using the averaged 
waveform repeatedly as required until 2t3 data points are 
obtained. This time series is then Fourier transformed, the 
transfer function of the wave probe is applied with a high- 
frequency cutoff of 55 Hz, and the resulting amplitude 
spectrum is inverse Fourier transformed to obtain the final 
profiles of surface elevation versus time. As the mean has 
been subtracted, y=O is the mean water level. Table I pre- 
sents a summary of the parameters used in the time- 
averaging procedure for each experimental frequency pre- 
sented in Sec. IV. (Because of the large number of waves in 
each time series, neglect of a partial wave even without 
windowing, does not affect the results appreciably, espe- 
cially since the higher frequencies are filtered.) An alter- 
nate approach is to use the data directly from the wave 
probe without the transfer function and the cutoff fre- 
quency. Since the attenuation of the wave probe is essen- 
tially a low-pass filter (to approximately 50 to 60 Hz), this 
alternate approach yields nearly identical data for the first 
six to eight harmonics throughout the range of frequencies 
reported. 

The decomposition of a waveform into its symmetric 
and antisymmetric parts is described next. It is used in Sec. 
IV. The number of points per wave, N, is presented in 
Table I. If y(i) is defined as the fluid-surface elevation at 
the ith point in a time series one wave period (N points) in 
duration, and M is the point for which the symmetric and 
antisymmetric parts are computed, then 

eM=ijil b,,,,(j) -~symU) 12. 

The data point with the smallest mean-square difference 
between the original waveform and the computed symmet- 
ric part, EM, is chosen as the data point of symmetry. 

IV. RESULTS 

The objectives of the experiments are an increased un- 
derstanding of steep GC waves and a comparison to nu- 
merical predictions. There are, however, two fundamental 
differences between the experiments and the computations. 
The experiments are periodic in time and spatially varying 
while the numerics are assumed periodic in space. Nothing 
is done to rectify this difference. Also, viscous effects are 
present in the physical experiments. 

In the seven sets of experiments, surface profiles are 
recorded three, four, and five wavelengths (where the 
wavelength il is computed from periodic linear theory) 
downstream of the wavemaker, except for the 9.80 Hz ex- 
periments which are recorded at four, ‘five, and six wave- 
lengths downstream. In addition, none of the experiments 
are three dimensional (i.e., the wavemaker-stroke ampli- 
tude, s, is limited such that the wave field is two dimen- 
sional). The wavemaker is oscillated at the corresponding 
experiment’s single frequency, only. 

A. The 9.80 Hz experiments 

In Fig. 3, waveforms are presented for five values of 
wavemaker-stroke steepness (defined as the product of the 
wave number k and the stroke amplitude s) at three down- 
stream locations for the 9.80 Hz experiments correspond- 
ing to K= l/2. On each time series, the wave steepness 
[defined as the product of the wave number k and the 
amplitude a, with a defined as (~~~~--y,~,)/2] is shown. 
Also shown, in the second and third rows of this figure, are 
the symmetric and antisymmetric parts of the largest 
wavemaker-steepness, 9.80 Hz experiment which is dis- 
cussed below. For each plot, the abscissas are wave eleva- 
tion in mm and the ordinates are time in msec. The wave- 
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FIG. 3. Wave profiles from the 9.80 Hz experiments are shown for three downstream locations as a function of wavemaker steepness. In addition, the 
wave profiles from the largest wavemaker steepness are shown decomposed into their symmetric and antisymmetric parts. 
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forms are presented with the maximum elevations as the 
(arbitrary) starting points. One period of each waveform is 
shown. 

It is immediately apparent in Fig. 3 that the primary 
wave and its second harmonic are phase locked, and, that 
the waveform is asymmetric in time as well as in space. 
The asymmetry is discussed below. The phasing between 
the first and second harmonic remains approximately con- 
stant such that, at larger ka, the primary crest and primary 
trough both occur with a secondary crest. As the 
wavemaker-stroke steepness ks is increased (a measure of 
nonlinearity of the system), so is the magnitude of the 
second harmonic. Also, note the similarity between the 
profiles of ks=O. 146 and 0.170. Although the stroke of the 
paddle is restricted to maintain two-dimensionality (as de- 
termined by a visual check) and the filter cutoff frequency 
of 55 Hz precludes the measurement of profiles with very 
steep slopes, the waves are in the strong& nonlinear regime 
(i.e., the waves are not simply a superposition of linear 
waves that exchange energy through resonant interaction 
at the second order). As further evidence of the strongly 
nonlinear nature of these experiments, note that the 
elapsed time between successive troughs in the first exper- 
iment is 37 msec. If the second harmonic was a free linear 
wave train, this time would be 51 msec. Note, further, that 
the elapsed time between successive troughs does not in- 
crease as the steepness decreases downstream (due to vis- 
cosity) nor as the steepness decreases due to a decrease in 
wavemaker stroke; however, a decreasing second-harmonic 
magnitude (relative to the primary harmonic) is measured 
as ks is decreased. One further note is that the waveforms 
for ks=O.O77 show reasonable qualitative agreement with 
the results of McGoldrick (Fig. 9>.9 

Using the definition of “type number” as given by 
Schwartz and Vanden-Broeck2 as indicative of the number 
of dimples or inflection points on a half-waveform, it is 
seen that most of the 9.80 Hz waves are type-2 (or so- 
called “gravity-type”) profiles with a second-harmonic 
crest very evident in the trough of the primary harmonic. 
Nearest the wavemaker, the two most nonlinear experi- 
ments have additional dimples on the crests of the primary 
and secondary waves. With the exception of the smallest 
wavemaker-stroke steepness, all profiles exhibit the type-2 
waveform. In fact, all waveforms seen here exhibit gravity- 
type profiles. 

Another feature of the steepest waveforms shown in 
Fig. 3, which is similar to the very steep waves shown in 
Fig. 2, is the increase in short-wave amplitude in the 
primary-wave trough which is accompanied by a narrow- 
ing of the two troughs to either side of the second- 
harmonic crest (which precedes bubble encapsulation in 
the numerical solutions). These second-harmonic waves 
are thus shaped like capillary waves. Physically, one may 
argue as do Schwartz and Vanden-Broeck that the short- 
wave train (second harmonic) is riding on a primary wave 
(first harmonic) which the short wave “sees” as a current. 
Thus, there is a stretching of the short wave on the crest of 
the primary wave where the short wave is traveling on a 
following current and a steepening of the short wave in the 

trough of the primary wave where the short wave is trav- 
eling on an opposing current. This argument has been ad- 
vanced by others in connection with long-wave/short-wave 
interaction, for example, see Phillips. lo Regarding bubble 
encapsulation as predicted by Crapper’s exact (two- 
dimensional) solution and the numerical solutions dis- 
cussed, experimental results suggest that for waves gener- 
ated mechanically in a wide channel, three-dimensional 
instabilities preclude bubble formation. (Recall that the 
wavemaker stroke is limited such that only two- 
dimensional wave fields result. In results not reported, in- 
creased stroke generates three-dimensional wave fields with 
reduced wave steepnesses.) This is aside from whether vis- 
cous effects preclude their formation or whether a narrow 

channel (on the order of less than a wavelength) would 
facilitate their formation. Narrow channels are known to 

cause interesting effects. l1 
Although the amplitude of the higher-frequency wave 

is increased, and a narrowing of its troughs is accompanied 
by a widening of its crest, there is no noticeable change in 
its frequency. This is in contradiction to the theory as is 
seen from Fig. 2 where the undulations are more concen- 
trated in a shorter, primary-wave trough. 

Another interesting feature seen in the numerically 
computed waveforms and discussed by Schwartz and 
Vanden-Broeck is the inclination with respect to the verti- 
cal of the troughs of the short waves (other than the one 
located at midtrough of the primary wave) which eventu- 
ally encapsulate bubbles. This is shown clearly in the steep- 
est profile of Fig. 2. Evidence of this is not seen in the 
experimental data. Possible reasons include insufficient 
steepness (precluded by evolution to three dimensions and 
thus not investigated), the data analysis technique, distur- 
bances due to the use of in situ wave probes, and, of course, 
that physically it does not occur. 

Aside from the ks=O.170 experiment, the upstream 
face of the primary wave has a smaller slope, on average, 
than does the downstream face. This is seen readily in the 
ks=O.O38 experiment; however, it is in accordance with all 

of the experiments presented. One explanation of the dif- 
ference between upstream-face slope and downstream-face 
slope is that there is a finite time required during which 
fluid drains from the wave probe as the water surface falls, 
thus causing a reduced slope in the measurement of the 
upstream face. This effect is not present as the surface rises. 
Recent measurements in our laboratory have shown that 
this is not the case and that the asymmetry exists in both 
time and space. (An optical technique has been developed 
which enables measurement of a time series of spatial pro- 
files. This technique, as well as spatial surface profiles will 
be the subject of a future paper. At the time the present 
work was conducted, the instrumentation required to make 
these measurements was unavailable to us.) Spatial images, 
as well as time series of surface elevation at a given location 
(which correspond to the wave-probe time series pre- 
sented), show that the forward face is steeper than the 
leeward face. In fact, the agreement between the wave- 
probe generated time series and the optical-system gener- 
ated time series is remarkable. 
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Finally, it is remarked that the wave steepness ka may numerical experiment as given by Schwartz and 

actually increase as viscosity dampens the wave in the Vanden-Broeck2 and shown in their Fig. 3 is 88%. The 

downstream direction. This is shown, for example, in the physical experiment is approaching the limiting case; how- 

ks=O. 170 experiment. At five wavelengths downstream, ever, the troughs are not close to bubble encapsulation. 

the wave steepness is larger than it is at four wavelengths This indicates that, perhaps, viscous effects also contribute 

downstream. The second harmonic, however, has dimin- to the lack of Crapper-like profiles. Additional wavemaker 

ished in size in the downstream direction. Thus, as dis- stroke causes the wave field to become three dimensional, 

cussed by the numericists, wave steepness is not a good and so the notion that three-dimensional instabilities pre- 

descriptor for these nonlinear, multipeaked waveforms. clude bubble encapsulation is reinforced. 

To investigate the asymmetry in the wave profiles, the 
waveform is decomposed into its symmetric and antisym- 
metric parts as described in Sec. III. The purpose of this 
decomposition is to compare the symmetric part of the 
experimentally measured profile with the computed wave- 
forms, assumed symmetric at the outset, and to determine 
the cause of the asymmetry. In Fig. 3, the results of this 
decomposition is shown for the largest wavemaker stroke 
of the 9.80 Hz experiment. The symmetry point with the 
least mean-square antisymmetric part is within 2% of a 
temporal period from the midpoint between the global 
maximum of the waveform. This is shown by the difference 
between the initial point of the waveform and the initial 
points of the symmetric and antisymmetric profiles. In all 
three columns, the symmetric part is qualitatively similar 
to the type-2 waves as discussed previously. It is hoped that 
the antisymmetric part is also a recognizable waveform, 
perhaps one of the numerical solutions with a different 
phase than that of the symmetric part. That is, does a 
nonlinear superposition of wave trains exist with differing 
phase speeds which thus produce the varying asymmetry? 
The answer to this question is no; however, some observa- 
tions are made regarding the antisymmetric part of the 
waveforms. One additional attempt is made to investigate 
the antisymmetric part by repeating the above decomposi- 
tion on it. This produces reasonable waveforms that are 
comparable to the various numerical solutions; however, 
these waveforms are not of permanent form as they prop- 
agate downstream. Thus, this latter decomposition is aban- 
doned. 

B. The 8.93 Hz experiments 

The results of the 8.93 Hz experiments presented in 
Fig. 4, represent experiments with a noninteger value of n 
( =2.5). That is, this is an example for which there is no 
Wilton’s ripple at exact resonance (i.e., there can be no 
resonance unless detuning is included in the weakly non- 
linear analysis). As is seen from the experiment with the 
least nonlinearity, the waveform is of the “gravity-type” 
(i.e., a longer trough and steeper crest). The waveforms 
shown for the larger wavemaker-stroke steepnesses are ei- 
ther type-2/type-4 or type-5/type-3 depending on the re- 
quirement one places on the size of a perturbation which is 
to be included. For different wave-generation steepnesses, 
the waveforms measured at the same downstream locations 
are the same type. As will be seen in the remainder of the 
experiments, the number of undulations present on the pri- 
mary wave is the number predicted by the weakly nonlin- 
ear theory or that number increased by two. In the cases of 
the other noninteger 12 values, 7.94 and 7.25 Hz, the larger 
adjacent iz values are seen to occur. For the 8.93 Hz ex- 
periments, both adjacent it values are seen to occur. As 
with the 9.80 Hz experiments, it is seen that the two (larg- 
est) short-wave troughs in the trough of the primary wave 
are unequal in magnitude with no apparent pattern. The 
upstream face of the primary wave is less steep than is its 
downstream face, consistent with the 9.80 Hz experiments. 

The use of antisymmetric waveforms is an artifice. It is 
used in an attempt to explain the asymmetry of the non- 
linear wave trains. Although apparently not proven for GC 
waves, it is reasonable to expect a wave of permanent form 
to possess symmetry. The experimental wave trains are not 
symmetric, but are recognizably similar downstream. The 
9.80 Hz decomposition shown in Fig. 3 reinforces that the 
general, overall shape of the profiles agree with the com- 
putations. Although possibly fortuitous, the antisymmetric 
profiles at x=41 and 6il are the same shape, with the 
frequency of the latter twice the frequency of the former. 
The amplitude of the latter is significantly less than the 
former, with all of the amplitudes of the antisymmetric 
profiles less than about 20% of the associated profiles. The 
antisymmetric profile located at x = 5il is not similar to the 
others. 

In the symmetric part of the steepest waveform of Fig. 
3, the ratio of the peak-to-peak height of the higher har- 
monic to the waveform peak-to-peak height is 81%. This 
same ratio scaled from the limiting case for the K= l/2 

As the amplitude of the short wave in the trough of the 
primary wave increases (with increasing ks), the frequency 
of the short wave apparently does not, nor is its frequency 
altered as viscosity decreases its amplitude downstream. 
For the steepest waveform shown, it is seen that there is no 
inclination of the short-wave troughs with respect to the 
vertical. The decomposition of the steepest waveform into 
symmetric and antisymmetric parts shows an interesting 
feature. At three and five wavelengths downstream, the 
symmetric parts are similar in shape; however, the shape of 
the profile at four wavelengths downstream is essentially of 
type-3 form [as shown in Fig. 1 for the 8.33 Hz (K= l/3) 
waves]. In the 8.33 Hz experiments, it will be seen that 
waves are of type-3/type-5 form. As 8.93 Hz lies between 
9.80 Hz (type-2 profiles) and 8.33 Hz (type-3/type-5 pro- 
files), it is not surprising that both forms appear. The sur- 
prising feature is the rapid change in form as there is only 
one wavelength separating the measurements. The anti- 
symmetric waveforms show a decrease in frequency down- 
stream with a frequency of the fifth, fourth, and third har- 
monics. Also, the symmetry point with the least mean- 
square antisymmetric part is within 23% of a temporal 
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FIG. 4. Wave profiles from the 8.93 Hz experiments are shown for three downstream locations as a function of wavemaker steepness. In addition, the 
wave profiles from the largest wavemaker steepness are shown decomposed into their symmetric and antisymmetric parts. 
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period from the midpoint between the global maximum of 
the waveform, the largest difference in any of the experi- 
ments. 

C. The 8.33, 7.94, 7.58, 7.25, and 6.94 Hz experiments 

Figure 5 presents the experiments for a wavemaker 
frequency of 8.33 Hz corresponding to K= l/3. According 
to weakly nonlinear theory, this is third-harmonic reso- 
nance. Referring to Fig. 1, it is seen that the experimental 
waveforms shown in Fig. 5 are essentially all of type- 
5/type-3 form. That is, two large crests are apparent in the 
trough region of the primary wave and one or three (de- 
pending on the magnitude criterion used) in the crest of 
the primary wave. The primary-wave forms are gravity- 
type profiles. Also, note that the lowest trough is usually 
not centered in the waveforms, except when the symmetric 
part is taken. Asymmetry is present in all of the waveforms 
and varies downstream, although the form of each wave 
remains identifiable. An important discovery made by 
Huh6 is that gravity-type solutions (type-2 for the 9.80 Hz 
wave train and type-3 for the 8.33 Hz wave train) are 
stable when time-marching techniques are used. Unfortu- 
nately, each wave type for ~=0.50 and 0.33 was found to 
be numerically stable for a sufficiently small wave steep- 
ness. The experiments suggest that gravity-type waveforms 
are stable, which does not violate Huh’s findings. Figure 5 
shows clearly that as nonlinearity is increased, so is the 
magnitude of the waves in the trough of the primary wave 
(i.e., the remnants of the third harmonic). As with the 
9.80 and 8.93 Hz experiments, these data show an increase 
in frequency of the waves in the primary trough as com- 
pared to their linear-theory frequencies; however, the fre- 
quencies are essentially constant from profile to profile. 
There is an increase in amplitude of these waves with an 
increase in ks. Also in agreement with the 9.80 and 8.93 Hz 
data, there are no inclines of the high-frequency troughs 
with respect to the vertical and the upstream face of the 
primary wave is less steep than is the downstream face. 

The symmetric parts of the waveforms shown in Fig. 5 
are consistent with profiles of the type-3 form and are 
beautifully shaped. The antisymmetric parts show wave 
trains of approximately uniform frequency and varying 
amplitude. (The remaining four sets of experiments show 
the same behavior for the antisymmetric part of the wave- 
forms.) There are five crests and five troughs in each of the 
antisymmetric profiles which correspond to the type-5 pro- 
files. Other than representing the asymmetry of the mea- 
sured waveforms, little insight is gleaned from the antisym- 
metric parts. 

In Fig. 6, wave profiles for the 7.94 Hz (~=1/3.5) 

experiments are presented. Profiles are waves of type- 
6/type-4 form, except for the smallest values. The 
symmetric-part waveforms, three and four wavelengths 
downstream, also show a type-6 or a type-4 wave. Five 
wavelengths downstream, the wave is of type-4 shape. As 
with the 8.93 Hz experiments, the symmetric part of the 
profile measured four wavelengths downstream shows a 
reversal of the short waveform present at the midpoint of 
the profile. Here, the midpoint position is occupied by a 

trough at three wavelengths and is occupied by a crest at 
four wavelengths. Five wavelengths downstream, the sym- 
metric primary-wave trough exhibits neither a high- 
frequency crest nor a high-frequency trough. The antisym- 
metric parts show waves with a fourth-harmonic 
frequency. 

Experiments were conducted with 7.58 Hz (~=1/4) 

wavemaker frequencies. (Wave profiles are not presented.) 
The primary waves were of the gravity-type and exhibit 
type-6/type-4 forms. Downstream, the waveforms were 
damped versions of their upstream counterparts. Asymme- 
try was evident, again. The decompositions of the largest 
wavemaker-stroke steepness showed type-6 profiles in the 
symmetric parts and phase-locked “wave trains” with fre- 
quencies of the fourth harmonic in the antisymmetric 
parts. 

Also, 7.25 Hz (K= l/4.5) experiments were con- 
ducted. (Wave profiles are not presented.) These data in- 
cluded the waveform with the largest value of ka, 0.288. 
The profiles exhibited type-7/type-5 shape. Three and four 
wavelengths downstream, the antisymmetric profiles’ fre- 
quencies were equivalent to seventh harmonics and had 
varying amplitude. Five wavelengths downstream, the an- 
tisymmetric part’s frequency was that of the sixth har- 
monic. In every experiment, the wave steepness measured 
five wavelengths downstream exceeded the wave steepness 
at four wavelengths downstream. This corresponds to a 
decrease in the amplitude of the short-wave undulations on 
the primary wave. Apparently, as energy is dissipated by 
viscosity in the downstream direction, the short-wave en- 
ergy was damped first; however, the wave steepness actu- 
ally increases. Although this is seen in other experiments, 
as already noted, it was most apparent in these experi- 
ments. 

Surface elevations for the 6.94 Hz (~=1/5) experi- 
ments are shown in Fig. 7. Type-7 waves are present for the 
steeper waveforms. An important feature, which is seen in 
these data, is the rapid (viscous) decay of the short waves. 
One may argue that this is due to the frequency of these 
waves. The frequency of the fifth and seventh harmonics 
are 34.70 and 48.58 Hz, respectively. The actual frequen- 
cies measured directly from the data are greater than 42 
Hz and so are the highest frequency waves measured. 
Therefore, it is not surprising that their decay should be 
the most rapid. On the other hand, the primary wave for 
this case is the lowest frequency wave investigated and, as 
such, should exhibit the slowest decay rate. As the com- 
puted wave profiles are permanent, nonlinear forms prop- 
agating on an inviscid fluid, it is not clear which of these 
two possibilities is the proper view for the physical exper- 
iments. It appears that the former possibility is what oc- 
curs. This is in agreement with resonant interaction theory 
(weakly nonlinear theory) as regards triads with viscosity 
present (e.g., see Perlin et al. I2 for a discussion). The other 
aspects of the waveforms in Fig. 7 are similar to those 
already discussed. 

In the symmetric part of the steepest waveform of Fig. 
7 (~=1/5), the ratio of the peak-to-peak height of the 
short wave centered in the primary-wave trough to the 
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profile peak-to-peak height is 19%. This same ratio scaled due to insufficient steepnesses of the experimental wave 
from the limiting case for the K=O. 19 as given by Chen and 
Saffman4 and shown in Fig. 2 is 40% while for the next 

trains. Likewise, as viscosity damps the amplitude of the 
trough waves as they progress downstream, their frequency 

steepest profile the ratio is 36%. The physical experiment is unaltered, although they eventually disappear due to 
is not close to the limiting case. viscosity prior to the primary wave disappearance. 

V. CONCLUSIONS 

Several important similarities and differences are seen 
between GC wave computations and measured waveforms 
which evolve from large, single-frequency sinusoidal oscil- 
lations of a paddle that sits astride a uniform-depth chan- 
nel. All experimental wave profiles are of the gravity-type 
form with varying degrees of asymmetry. That is, in the 
absence of the short waves, the primary wave has a broader 
trough than crest. Therefore, the experimental results 
(symmetric part) are in general agreement ,with the results 
of Schwartz and Vanden-Broeck and Chen and Saffman. In 
addition, they do not contradict the results of Huh who has 
investigated numerical stability. Specifying nonsinusoidal 
analog signals to the wave paddle in an attempt to generate 
other waveforms, such as those determined numerically, 

As shown in Fig. I, rapid viscous decay of the undu- 
lations in the primary-wave trough of the 6.94 Hz experi- 
ments occurs, not the entire waveform decay as is seen in 
the higher-frequency experiinents, Figs. 3-6. As discussed 
previously, this is in agreement with the resonant interac- 
tion theory. That is, although the wave is a nonlinear en- 
tity, its viscous decay is consistent with the idea of a su- 
perposition of waves of different frequencies, with each 
wave decaying in a manner consistent with its frequency. 

Finally, it is noted that the antisymmetric part of the 
waveform is difficult to explain. Their steepnesses are ap- 
proximately lo%-30% of the steepnesses of the symmetric 
profiles. Except for the 9.80 and 8.93 Hz experiments, the 
antisymmetric parts of the profile are “wave trains” with 
varying amplitude and essentially constant frequency for 
each primary-wave frequency. 

will be a future effort. 
Another feature that is seen throughout the experi- 
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