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Quantum Thermodynamics [I] is a unified quantum theory that includes within 
a single uncontradictory nonstatistical structure the whole of Quantum Mechanics 
and Classical Equilibrium Thermodynamics, as well as a general description of 
nonequilibrium states, their entropy, and their irreversible motion towards 
stable equilibrium. Quantum Thermodynamics postulates that a system has access 
to a much broader set of states than contemplated in Quantum Mechanics. 
Specifically, for a system that is strictly uncorrelated from any other system, 
namely, a system for which Quantum Mechanics contemplates only states that are 
described by a state vector I~>, Quantum Thermodynamics postulates that in 
addition to the quantum mechanical states there exist many other states that 
cannot be described by a vector I~> but must be described by a self-adjoint, 
unit-trace, nonnegative-definite linear operator p that we call the state 
operator. 

In contrast with the density operators used in Statistical Mechanics to 
characterize either a heterogeneous ensemble of identical uncorrelated systems 
that are generally distributed over a range of different states, or a homogeneous 
ensemble of identical systems that are correlated with some other system such as 
a heat bath or a reservoir, we emphasize that the state operators in Quantum 
Thermodynamics are used to characterize a homogeneous ensemble of identical 
uncorrelated systems each of which is exactly in the same state as all the 
others. In other words, state operators p in Quantum Thermodynamics describe the 
uncorrelated states of a system, in the same sense as the state vectors I~> in 
Quantum Mechanics describe the uncorrelated states of a system. Clearly, all the 
states of Quantum Mechanics form a subset of the states contemplated in Quantum 
Thermodynamics, namely, the subset of idempotent states operators p such that 

Postulating the augmentation just cited of the set of conceivable states of 
an uncorrelated system allows a unification of mechanics and thermodynamics at 
the fundamental microscopic level [2]. Entropy emerges as a state property much 
in the same way in which energy is understood to be a state property. Energy is 
represented by the state functional TrHp where H is the Hamiltonian of the 
system. Entropy is represented by the state functional -kTrplnp where k is the 
Boltzmann constant [2]. Among all the different states p with a given value <E> 
of the energy, i.e., such that TrHp = <E>, the value of the entropy spans from 
zero for the idempotent quantum mechanical states to a maximum value for the 
classical thermodynamical state p = exp(-BH)/Trexp(-BH), where B is uniquely 
determined by <E>. State operators with values of the entropy between zero and 
the maximum value represent states that, in general, are nonequilibrium and are 
not contemplated either in Quantum Mechanics or in Classical Thermodynamics. 

Because the nonidempotent state operators represent nonmechanical states, 
the description of their time evolution cannot be derived from the laws of 
mechanics. Specifically, it cannot be derived from the unitary evolution 
generated by the Schroedinger equation dl¢>/dt = -iH]~>/~. Quantum 
Thermodynamics postulates that the time evolution of the state operator p is 
given in general by the solution of a general equation of motion [I] which for a 
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single material constituent has the form 

dp i I 
dt = - ~ [H,p] - ~ F(p) , (I) 

where the operator F(p) is given explicitly in [I] and can be visualized 
geometrically [3] as the projection of the gradient of the entropy functional 
-kTrplnp onto the hyperplane generated by the normalization functional Trp, the 
energy functional TrHp and, for a field with number operator N (with [N,H] = 0), 
the number'of-particle functional TrNp. 

The coefficient ~ in Equation I cannot be inferred other than from 
experiments on the relaxation of nonequilibrium states. Mathematically, all the 
general results that we summarize below unfold identically whether ~ is a 
universal constant, a constant that depends on the system, or any positive 
functional of p. At present, we have not found a way to estimate ~ on the basis 
of available experimental data. However, we have discussed specific implications 
of Equation I which should in principle be experimentally verifiable [4]. 

The operator F(p) has many interesting features. It reduces to the null 
operator whenever p2 = p, namely, for each quantum mechanical state. Equation I 
maintains idempotent any initially idempotent state operator and, therefore, all 
the unitary evolutions of mechanical states generated by the Schroedinger 
equation are also solutions of Equation I. Thus, we conclude that Quantum 
Thermodynamics contains the whole of Quantum Mechanics. But it is more general, 
because for the nonmechanical states, i.e., for p2 ~ p, F(p) does indeed 
contribute to the time evolution. The two terms in Equation I compete with each 
other in the sense that -i[H,p]/5 tends to "pull" p in a direction tangent to the 
local constant entropy hypersurface whereas -F(p)/~ tends to "pull" p in the 
local direction of steepest entropy ascent while maintaining it on a constant 
energy and constant number of particles hyperplane. 

The term -i[H,p]/~ maintains invariant the entropy functional by maintaining 
invariant each of the eigenvalues of the state operator p. If H is time- 
dependent, then this term describes an adiabatic exchange of energy between the 
system and some other external systems during which the two systems remain 
uncorrelated. The adiabatic rate of energy change, Tr(dH/dt)p, depends on the 
rate of change of the Hamiltonian operator H. Even if H is time-dependent, the 
term -F(p)/~ does not contribute to changing the value of the energy functional 
TrHp, but for most nonidempotent states it increases the value of the entropy 
functional -Trplnp. Interestingly, the rate of entropy increase is independent 
of the rate of change dH/dt of the Hamiltonian operator and, therefore, adiabatic 
energy exchanges can be made to approach reversibility, i.e., vanishing entropy 
production, in the limit of very fast changes of the Hamiltonian. 

The magnitude of the rate of entropy increase is a nonlinear function of p 
which goes to zero smoothly at many states, including the idempotent states, the 
equilibrium states, and the limit cycles. It is therefore interesting to note 
that if a state is very close to, say, an idempotent state, then the term -F(p)/~ 
may be so small compared to the term -i[H,p]/~ that its effect may be 
negligible for a long time, during which the evolution may seem dominated by the 
unitary term -i[H,p]/5. According to Equation I, however, all the idempotent 
states, the limit cycles, and the less-than-maximum-entropy equilibrium states 
are unstable in the sense of Lyapunov, 
them there is a trajectory that after 
carries the state to a finite distance. 
stable in the sense of Lyapunov 
p = exp(-BH)/Trexp(-BH), i.e., the 
thermodynamics. 

From the results just summarized it 
uncorrelated states of a system are 

i.e., arbitrarily close to each one of 
some finite time (perhaps very long) 

The only equilibrium states that are 
are the maximum entropy states 

equilibrium states of classical 

follows that if we postulate that the 
described by state operators p that are not 
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necessarily idempotent and evolve in time according to Equation I, then we obtain 
a quantum theory that when restricted to the idempotent state operators reduces 
to the whole of Quantum Mechanics, and when restricted to the maximum entropy 
state operators, which turn out to be the only stable equilibrium states -- a 
conclusion that is equivalent to the second law of thermodynamics [2], reduces to 
the whole of Equilibrium Thermodynamics. 

Moreover, the theory implies general conclusions on the nature of the 
nonequilibrium states and their irreversible, energy conserving but entropy 
increasing, motion towards stable equilibrium. A general state operator p can 
always be written as 

p = B exp(-~jfjXj), (2) 

where the self-adjoint linear operators XI, X 2 ..... Xj, ... form a fixed set 

spanning the real space of all self-adjoint linear operators, the coefficients 
f1' f2' "''' fj' ... are real numbers, and B is an idempotent, self-adjoint 

linear operator. In terms of this expression, the entropy functional 

S = -kTrplnp = k~jfjTrXjp = k~jfj<Xj> (3) 

so that 

kfj = ~S/~<Xj>I<Xi,j>, (4) 

and the coefficient f. can be interpreted as a generalized affinity associated 
i 

with the observable represented by operator X.. 
i 

The particular structure of the dissipative term -F(p)/~ in the equation of 
motion of Quantum Thermodynamics is such that its contribution to the rate of 
change dTrXjp/dt of the mean value of observable Xj can be written as 

-TrXjF(p)/~ = ~ifiLji(P),thus implying the existence of linear interrelations 

between the dissipative contribution to the rate of change of <X.> and the 
J 

generalized affinities fi" The coefficients Lji(p) may be interpreted as 

generalized conductivities. The explicit structure of the functionals Lji(P) is 

such that Lji(p) = Lij(P) and the symmetric matrix ELij(P)] is nonnegative 

definite. Thus, we conclude that the particular structure of the dissipative 
term in Equation I, when coupled with the general expression for nonequilibrium 
states given by Equation 2, implies a general result that we may identify with an 
extension of Onsager's reciprocity principle to all nonequilibrium states. We 
emphasize that this result follows directly with no further assumptions from the 
specific structure of the operator -F(p)/~, which implies the existence of an 
endogenous irreversible dynamical tendency of nonequilibrium states to follow the 
local direction of steepest entropy ascent. The complete dynamical behavior 
results from the competition between the endogenous irreversible tendency towards 
the direction of steepest entropy ascent, contributed by the term -F(p)/~ in the 
equation of motion, and the reversible Hamiltonian tendency towards a unitary 
evolution, contributed by the term -i[H,p]/~. 
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