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ABSTRACT

This paper describes two approaches for accomplishing interactive feature analysis by overcomplete mul-
tiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive
non-linear operator, can make more obvious unseen or barely seen features of mammography without re-
quiring additional radiation. Our results are compared with traditional image enhancement techniques by
measuring the local contrast of known mammographic features.

We design a filter bank representing a steerable dyadic wavelet transform that can be used for mul-
tiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis
performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROT) are enhanced by
Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can pro-
vide radiologists with an interactive capability to support localized processing of selected (suspicious) areas
(lesions).

Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing
local contrast enhancement. By improving the visualization of breast pathology we can improve chances of
early detection while requiring less time to evaluate mammograms for most patients.

Keywords : Multiresolution analysis , dyadic wavelet s , image enhancement , non-linear operators.

1. INTRODUCTION

Many cancers escape detection due to the density of surrounding breast tissue. For example, differences
in attenuation of the various soft tissue structures in the female breast are small, and it is necessary to
use low levels of X-ray energy to obtain high contrast in mammographic film. Since contrast between the
soft tissues of the breast is inherently low and because relatively minor changes in mammary structure can
signify the presence of a malignant breast tumor, the detection is more difficult in mammography than in
most other forms of radiography. The radiologist must search for malignancy in mammographic features
such as microcalcifications, dominate and stellate masses, as well as textures of fibrous tissues (fibroglandular
patterns).

Analyzing images along distinct orientations and resolutions is advantageous in many computational vi-
sion and image processing tasks. Filtering in a continuum of orientations [1] or other deformations [2, 3]
can be performed by combining outputs of a finite set of filters. Such a scheme can be employed for de-
composition/reconstruction as well: a pyramid implemented as a near-perfect reconstruction filter bank was
previously designed in [4] . We present a filter bank implementation of a discrete dyadic wavelet transform that
is constructed to make possible analysis along arbitrary orientations. We demonstrate the effectiveness of our
scheme for the enhancement of digital mammography.

We shall present a novel method for accomplishing an interactive paradigm for adaptive contrast en-
hancement [14, 15, 16, 17, 18]. We describe a method of image enhancement that uses Deslauriers-Dubuc
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interpolation wavelets [11, 13] on intervals to compute multiscale representations. Mammograms are then
reconstructed from transform coefficients modified at each level by local and global non-linear operators.

This can provide radiologists with an interactive capability for processing large digital mammograms
with selected ROT's enhanced and displayed on the screen. In this paper, we show preliminary results that
demonstrate the efficiency of such methods for digital mammography.

2. IMAGE ENHANCEMENT USING STEERABLE DYADIC WAVELETS

2.1 STEERABLE FILTERS

Freeman et al. [1] proposed an efficient scheme for computing arbitrary rotations of a two-dimensional
(2-D) function. A function rotated by an arbitrary angle was formulated as a linear combination of basis

functions. Using polar coordinates (r= /1j y2 and çL = arg(x, y)) we can write

M

F(r,-o) = (1)

where F(r, ç) is an original function, çb denotes an arbitrary rotation, {km(çbo)} is a set of interpolation
functions, {B(r, q — m)} S a set of basis functions, and {çLm} is a set of constants.

If F(r, çb) represents a frequency response, the result of filtering with a rotated frequency response F(r, —
co) can be computed simply by {km(cbo)} weighted linear combination of outputs from filters {B(r, çb —
When a large number of rotations of a template filter is required, the above scheme can lead to substantial
savings in both computational speed and memory consumption.

Not every function F(r, çb), however, can be expressed as a finite sum shown in Eq. 1. In fact [1], there is a
finite number of terms in Eq. 1 only when F(r, q) has a finite number of terms in the Fourier series expansion
in polar angle :

N

F(r,) = a(r)e, (2)

n=-N

where j stands for
In [1] functions having a finite number of terms in Eq. 2 were called "steerable" and the minimum number

of basis functions sufficient to "steer" F(r, çL) (i.e., the minimum number of terms in Eq. 1) was equal to the
number of nonzero coefficients in the Fourier series expansion of Eq. 2.

Solving for the interpolation functions in Eq. 1 with B(r,çb
—

c'm) — F(r, ç — q) yields the system [1]

1 1 1 . . . 1 k1(qo)
e30 e11 e32 . . . e3M

. = . . . . . (3)

e30 e31 e3N2 . . . eM kM(o)

The frequencies in the left-hand side vector of Eq. 3 correspond to the non-negative frequencies of Eq. 2. For
coefficients a = 0 the rows corresponding to each m are removed from the matrix formulation shown in Eq. 3.

2.2. A STEERABLE DYADIC WAVELET TRANSFORM

To design a steerable dyadic wavelet transform we imposed the additional constraint of polar separability
on the function F(r, ):

F(r,ç) = FR(r)F(q5). (4)

Using Eq. 4 and B(r, q — q) = F(r, — 4m) Eq. 1 then becomes

MF0) (5)
m=1
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The radial portion of function F(r, ç) is thus no longer a part of the steering constraint and can be designed
separately. Similar to the method described in [4] we first designed radial portions of our filters and then
applied any desired angular variation.

We selected a dyadic wavelet transform [5], with which we had previously obtained promising results for
mammographic feature enhancement [18] . Instead of using the dyadic wavelet transform ill its separable form
as originally proposed, we constructed a nonseparable 2-D dyadic wavelet transform. This was accomplished by
designing circularly symmetric filters from a filter bank implementation of a fast algorithm for computing a 1-D
discrete dyadic wavelet transform [5] . Figure 1 shows the filter bank implementation of the one-dimensional
discrete dyadic wavelet transform used for the design of the radial component.

Figure 1: Computational structure for a one-dimensional discrete dyadic wavelet transform used for computing

radial components (three levels shown).

To map a 1-D filter frequency response into a 2-D circularly symmetric frequency response and obtain a
real 2-D filter impulse response, the 1-D filter frequency response should be real. Thus, from the family of
filters proposed in [5] we choose

H(w) =
[cos()]2,

G() = _4[sin()] (6)

1-H(w)2Ic(w) =
G(w)

Mammographic features may occur in any orientation. Thus we desired our 2-D filters to be circularly sym-
metric over the entire frequency domain, and choose the 2-D frequency response to be

I F(WR) ifWR <FR(w,w) =
F() otherwise,

where WR /W + w and F(w) was one of the filters defined previously in Eq. 6.

Since it is difficult to estimate values of the 2-D frequency response for WR > r, we clipped the frequency
response in this region to the value of the 1-D frequency response at ir.

Thus, the frequency responses of the constructed 2-D filters in the radial direction matched the frequeicy
responses of their 1-D counterparts. Impulse responses, however, did not match (even for the continuous case
the circularly symmetric frequency response and the corresponding circularly symmetric impulse response are
not related in the radial direction by Fourier, but rather by the Hankel transform [6]). The impulse responses
of the resulting 2-D filters were not compactly supported, but the magnitudes of the coefficients decreased
quickly away from the maximum magnitude coefficient, making the impulse responses suitable for truncation
and windowing.

Figure 2 shows circularly symmetric magnitude frequency responses of 2-D filters HR(w, wy), GR(LJX, wy),
and KR(w,w).

For the angular portion of the frequency response we choose from the family of functions

G J cos() for n even
—

jcosTh() for nodd.
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Figure 2: Circularly symmetric magnitude frequency responses of filters HR(WX, wy), GR(WX,wa), and
IR(W, wy).

For large values of n, better angular resolution of the filter was possible. The minimum number of basis
functions required to steer the function G(çb) was equal to n+ 1. When solving Eq. 3 we choose {/im} equally
spaced between 0 and r.

Thus the filters were formulated by

H(w,w) = HR(WX,WY)

G(w,w) = GR(w,w)G(q), and

K(w,w) =

The frequency response of filters H(w, w) and K(w, w) were circularly symmetric, while the frequency
response of filter G(w, w) was a product of radial and angular portions. Figure 3 shows the magnitude
frequency responses of filter G(w,w) with n = 2 in Eq. 7 and {m}={O, , } in Eq. 5.

2.3. IMAGE ENHANCEMENT

To enhance an image, wavelet coefficients were modified by a nonlinear enhancement function [7]:

I x — (K — 1)T if x < —T

E(x) = Kx if xI T (8)

(x+(K—1)T ifx>T.
As in [4] we steer the filters G to a local dominant orientation at each scale and position. Coefficients are then
modified by computing the maximum oriented energy and Eq. 8. The filters are then steered back to their
original orientations, and reconstruction from the modified coefficients is then carried out.

We find the local dominant orientation from the outputs of quadrature filters (i.e., filters that are Hilbert
transform pairs). The Hilbert transform of Eq. 7 is

G — 5 —j sgn(cos(q)) cos(q) for n even
9—

1. I cosm(ç6)I for n odd,
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where
I 1 ifx>O

sgn(x) = _ if x < 0.

Functions G (cb) in Eq. 9 are not steerable. We approximated them with truncated Fourier series expan-
sion using only a few maximum-magnitude coefficients.

The oriented energy was defined by

En(o) = (Go)2 + (G)2, (10)

with GO being the output of the filter G(r, q —qo) and G° the output of its Hilbert transform.
To estimate the orientation that maximizes Eq. 10 in case of only a single local orientation, we follow [1]:

En(qo) is expanded into a Fourier trigonometric series

En(qo) = a0 + a2 cos(2çbo) + b2 sin(2qo) + ...

Then the orientation Omax and magnitude M = En(qo) were approximated by

argument(a2 +jb2)Umax =
2

M = /a+b.
Figure 4 shows an original mammographic image, the image filtered by a set of basis filters at different

scales, and the enhanced image. Eqs. 7 and 9 were used with n = 3, and Eqs. 8 with I( — 20, T = 0.2. \'Ve
observed that the oriented structure is made more visible in the enhanced image.

3. LOCAL FEATURE ANALYSIS VIA INTERVAL WAVELETS

3.1 FRAMEWORK

In this part of the paper, we investigated multiresolution representations of Dubuc-Delauriers interpolation
wavelets[11, 13].This representation was attractive because it overcame "edge effects" of traditional multires-
olution representations (based on perodization of a finite signal to a signal on a line; or simply adding zeros
to extend a signal on a line). The shape of the basis functions of this representation was symmetric or an-
tisymmetric, and allowed for perfect reconstruction . We have applied this representation to decompose an
arbitrary region of interest of a mammogram, so that a selected region may be analyzed independently.

In many applications, a signal has finite length, such that the signal lives on the interval [0, 1], or in the two
dimmensional case, an image. Cohen and Daubechies [8] and Jawerth and Sweldens [9] adapted multiresoluton
analysis on the line to "life on the interval" , where a sequence of successive approximation spaces on the interval
were constructed as: U3Ez L2[0, 1], flzi {0}. By defining Wj as an orthogonal complement of Vj
in Vji, Vj_i = Vj Wi, the space L2[0, 1] can be representd as a direct sum L2[0, 1] = W3.

3 . 1 .1 . Deslauriers-Dubuc interpolation

We considered multiresolution representations of the Deslauriers-Dubuc fundamental functions [1 1, 13] . Figure
6 shows the fundamental solution of Deslauriers-Dubuc interpolation and associated wavelets (D = 3).

Donoho [12] showed how to adapt the Deslauriers-Dubuc interpolating transform to "life on the interval".
Suppose that j,k is a scaling function on the line. The scaling functions on the interval can be derived

by: (1) within the interior of the interval, they are defined the same as on the real line

D<k<23—D—1

(2) on the edges of an interval, they are dialations of the boudary adjusted functions:

= 23/2qt(23x — k), 0 <k < D,
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Figure 4: Processiug results: (a) Au original mammographic image coritairiiug a mass arid the erihauced image
with borders well deflued. (b) The magnitude of filter coefficieuts for G(r,qS — q5o) at {qSo} {O, ir, (three
levels are shown).
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t__1 = 2''2i9ht(2ix _ 2j — k — 1), 0 ç k < D.

Thus for the spaces Vj[O, 1] we can define the functions:

. 1cbt
/zntervc/.k D<k<2—D—1

,

t right

in the same way, we can contruct the wavelets on the interval for the detail spaces Wj[O, 1]:

1'bit O�k<[D/2]
zmterv = I)j,k LD/2i 5; k < 2 — LD/2i

I /,ik.ciht 2i _ LD/2i � k <

In addition, Donoho {12} showed that if j is a non-negative integer satisfying 2 > 2D + 2 (defining non-
interacting boundaries), then there exists a collection offunctions and ,ylkterv such that every f E C[O, 1]
has a representation

2O—1 2—1
t

>:
iinterv i i interv

J = 8j,kj0,k + "j,kYj,k '
k=O i�io k=O

with a uniform convergence of partial sums j < j as j —f oo. For a detailed construction of cz and

?I' 2nkterv, please see reference [12].
For processing an arbitrary region within a mammogram, we used a scanline based method: First the rows

of a selected ItOl were scanned and processed, followed by the colunms. Figures 7(a) and (b) illustrates the
interactive selection of a ROT and processing steps.

3.2. ENHANCEMENT TECHNIQUES

To accomplish multiscale contrast enhancement, non-linear techniques for image enhancement were applied
to each multiresolution representation. For each basis, there were four components in the transform space:
horizontal, vertical, diagonal, and a DC component, represented by d ,d,d, s respectively, where i is the
level of a transform. Let s be the original mammogram, g be the function designed to emphasize features of
importance within a selected level i, and L be the number of levels in a transform. Then an enhanced image
may be constructed by

L
= (11)

In general, by defining a function g, we can denote specific enhancement schemes for modifying the coefficients
within distinct levels of scale-space.

3 .2 .1. Local enancement techniques

A problem for image enhancement in mammography is the ability to emphasize mammographic features while
reducing the enhancement of noise. Previously [14, 15, 16, 17], we presented a local enhancement technique
for digital mammography based on multiscale edges. In this study, enhancement was given by

I d(m,n), if e(m,n)<T2,
d(m,n)= . .

—

g2d(m,n), if et(m,n)>T2,
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where m and n denote coordinates in the spatial domain, e is the edge set corresponding to tranform space
component d , gt is a local gain, and T is a threshold at level i, gi and T2 are selected adaptively. The edge
set e of d is the local maxima of dl along the horizontal direction. For d and d, the direction is along the
vertical and diagonal orientations (45°) respectively. Specifically,

d2
if Id(m,n)I > Id(m + 1,n)I and

e(m, n) =
i(m, n)t,

d(m, )I > d(m_
n)J,

I 0, otherwise.

The processing of d and d is similar. By replacing d ,d and d in Equation (1) with corresponding modified
components d, d and d, we obtained an enhanced image ..

3.2.2. Multiscale histogram equlization

Histogram equalization of transform space images provides a global method to accomplish multiresolution
enhancement. Traditional histogram equlization was applied to each sub-band of coefficients in the transform
space (excluding the DC component) to obtain a globally enhanced mamogram.

3.2.3. Multiscale adaptive gain

In this approach, we suppressed pixel values ofvery small amplitude, and enhanced only those pixels larger than
a certain threshold T within each level of transform space. We designed the following function to accomplish
this non-linear operation [18]:

1(n) = a [sigm(c(y — b)) — sigm(—c(y + b))] , (12)

where
1

a— . .

sigm(c(1
— b)) — sigm(—c(1 + b))

0 < b < 1,

sigm(y) is defined by
. 1

sigm(y)= 1+e'

and, b and c control the threshold and rate of enhancement, respectively. It can be easily shown that f(y)
is continuous and monotonically increasing within the interval [—1, 1] (similar to histogram equalization).
Furthermore, a derivative of f(y) of any order exists and is continuous. Therefore, enhancement using 1(y)
will not introduce any new discontinuities (artifacts).

3.3. EXPERIMENTAL RESULTS AND DISCUSSION

Preliminary results have shown that the multiscale processing techniques described above can make unseen
or barely seen features of a mammogram more obvious without requiring additional radiation. Our study
suggests that the analyzing functions presented in this paper can improve the visualization of features of
importance to mammography and assist the radiologist in the early detection of breast cancer.

Mathematical models of phantoms were constructed to validate our enhancement techniques against false
positives arising from possible artifacts introduced by our enhancement methods and evaluate the contrast
improvement. Our models included features of regular and irregular shapes and sizes of interest in mam-
mographic imaging, such as microcalcifications, cylindrical and spicular objects, and conventional masses.
Techniques for "blending" a normal mammogram with the images of mathematical models were developed.
The purpose of these experiments was to test the performance of our processing techniques on inputs known "a
priori" using mammograms where the objects of interest were deliberately obscured by normal breast tissues.
The "imaging" justification for "blending" is readily apparent; a cancer is visible in a mammogram because of
its (slightly) higher X-ray attenuation which causes a lower radiation exposure on the film in the appropriate
region of a projected image.
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Figure 8 shows an example of a mammogram whereby the mathematical phantom shown in Figure 8(a)
has been blended into a clinically-proven, cancer-free mammogram. The image shown in Figure 8(b) was
constructed by adding the amplitude of the mathematical phantom image to a cancer free mammogram
followed by local smoothing of the combined image.

Before applying these techniques, a computer simulated phantom was developed to both characterize and
optimize each wavelet based enhancement algorithm [27]. Parameters included the levels of analysis, the
threshold (T) and gain (c) parameter value. The phantom study enable us to compute an enhancement factor
( EF) which was used to quantitatively measure each algorithms' performance. The EF was defined as the
ratio of output to input contrast noise ratio (CNR). The study found that computed EF values correlated well
with radiologist feature detection performance.

In addition, radiologists at Shands Hospital at the University of Florida validated that processing the
blended mammogram with our local enhancement techniques introduced no significant artifacts and preserved
the shapes of the known mammographic features (calcifications, dominant masses, and spicular lesions) con-
tamed in the original mathematical phantom.

Enhancement by multiscale edges provided a significant improvement in local contrast for each feature
included in the blended mammogram. A quantitative measure of contrast improvement can be defined by a
Contrast Improvement Index (CII), CII = where Cprocessed and COrjgjn are the contrast values for

a region of interest in the processed and original images, respectively.
In this paper we adopt a version of the optical definition of contrast introduced by Morrow et al. [23].

The contrast C of an object was defined by C = f, where f is the mean gray-level value of a particular
object in the image, called the foreground, and b is the mean gray-level value of a surrounding region called
the background. This definition of contrast has the advantage of being independent of the actual range of gray
levels in the image. We computed local masks to separate the foreground and background regions of each
feature included in the blended mammogram.

Figure 8(c) shows the result after processing the blended mammogram with adaptive histogram equaliza-
tion (AHE). Figure 8(d) was obtained after reconstructing the blended mammogram from interval wavelet
transform coefficients modified by multiscale adaptive gain processing (GAIN). Figure 8(e) shows the result
after processing the blended mammogram with unsharp masking (UNS). Figures 8(f) shows the result obtained
after reconstructing the blended mammogram from interval wavelet transform coefficients modified by multi-
scale edges (EDGE). Figure 9 shows enlarged areas containing each feature in the processed mammogram for
each method of contrast enhancement. The images in each row of Figure 9 were rescaled by the same linear
transformation.

Table 1 shows the contrast improvement index (CII) values for the original and enhanced mammographic
features shown in Figure 8. From the table we observed that the enhancement by GAIN and EDGE performed
significantly better than unsharp masking (UNS) and adaptive histogram equalization (AHE).

Figure 10 shows the improvement of local contrast accomplished by EDGE for a sample scan line profile
taken from cross sections of each feature. Note that in all cases contrast was improved while preserving the
overall shape of each feature profile.

By using representation of wavelets on the interval, it is possible to enhance arbitrary regions of interest
( ROl) within a mammogram. Figure 5(b) shows the enhancement of an arbitrary region of interest using
adaptive gain processing of interval wavelet interpolation. Figure 5(c) shows the enhancement of an arbitrary
region of interest using multiscale edges.

By constraining the enhancement to only an interest region, computation is greatly reduced (Table 2).

4. SUMMARY

In this study, methods for accomplishing adaptive contrast enhancement by multiscale representations have
been investigated. Contrast enhancement was applied to features of specific interest to mammography including
masses, spicules and microcalcifications. Multiresolution representations provided an adaptive mechanism for
the local emphasis of such features blended into digitized mammograms. In general, improvements in image
contrast based on multiscale processing were superior to those obtained using competitive algorithms of unsharp
masking and adaptive histogram equalization.

We constructed steerable filters to implement a steerable dyadic wavelet transform. The resulting filter
bank ties orientational analysis and multiresolution wavelet representations.

We accomplished image enhancement through nonlinear processing of wavelet coefficients at distinct scales
and orientations. We have shown our results in the context of digital mammography, however, these techniques
may be applied to other imaging modalities as well.
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Deslauriers-Dubuc interpolation representatiolls on an interval enabled us to enhance arbitrary regions of
interest (Fig. 5). This can provide radiologists an interactive capability for enhancing only suspicious regions
of a mammogram. It also reduces the computational cost compared to processing an entire mammogram.
These initial results are encouraging and suggest that wavelet based image processing algorithms could play
an important role in improving the imaging performance of digital mammography screening.
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(b)

Figure 7: (a) Selected ROT within a mammogram, (b) ROT is processed based on tensor product: each row is
processed first, followed by the processing of each column.

Table 1: CII for enhancement by unsharp masking (UNS), adaptive histogram equalization (AHE), and by
local enhancement of multiscale edges obtained from Deslauriers-Dubuc interpolation (EDGE), adaptive gain

processing of Deslauriers-Dubuc interpolation (GAIN).

Feature CIIUNS CIIAHE CIIGAIN CIIEDGE

Minute microcalcification cluster 1.3294 0.8442 7.7949 12.7298

Microcalcification cluster 3.6958 4.9759 10.9217 11.0783

Spicular lesion 2.0174 3.5714 12.5714 13.7596

Circular (arterial) calcification 2.1888 4.4601 8.0160 10.6941

Well-circumscribed mass 1.4857 31.1714 9.8286 11.3429

Table 2: Comparison of computation time. TEntiremammogram represents the time to process an whole mam-
mogram, while TROI represents the time to process only a selected ROT. The number of pixels within the ROT
shown in Figure 12 was 76267 (Program was executed on Sun Sparc station 10/30).

Computation time (in seconds) comparison
Matrix size (number of pixels) I TEntire_mammogram

of whole mammogram vs ROT

TROI I TEntire_mammogram/TROI

Ki2x512 748 135 5.54

I 1024x1024 5760 135 42.67
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Figure 6: (a) Refinement relation for Deslauries-Dubuc interpolation. (b) Interval wavelet plot, D = 3.

(a)

column
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(a)

.

Figure 8: (a) Mathematical phantom. (b) Mammogram M56 blended with phantom image. (c) Enhance-
ment by adaptive histogram equalizaiton. (d) Enhancement by adaptive gain processing of DD interpolation
coefficients. (e) Enhancement by traditional unsharp masking. (f) Enhancement by multiscale edges of DD
interpolation coefficients.
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Figure 9: Contrast enhancement of features in blended mammogram. Phantom mammographic features from
top to bottom: minute microcalcification cluster, microcalcification cluster, spicular lesion, circular (arterial)

calcification, and a well-circumscribed mass. (a) Original image. (b) Enhancement by unsharp masking.
(c) Enhancement by adaptive histogram equalization. (d) Enhancement by adaptive gain processing of DD
wavelet coefficients. (e) Local enhancement by multiscale edges of DD wavelet coefficients.

(d)

(c)

Legend:
— Original mammogram.

Local enhancement by

multiscale edges.

Figure 10: Sample scan lines displaying enhancement by the method of multiscale edges of DD wavelet co-

efficients: (a) minute microcalcification cluster, (b) microcalcification cluster, (c) spicular lesion, (d) circular
(arterial) calcification and (e) well-circumscribed mass.
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