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A b s t r a c t .  Families of kernels that are useful in a variety of early vi- 
sion algorithms may be obtained by rotating and scaling in a continuum a 
'template' kernel. These multi-scale multi-orientation family may be approx- 
imated by linear interpolation of a discrete finite set of appropriate 'basis' 
kernels. A scheme for generating such a basis together with the appropriate 
interpolation weights is described. Unlike previous schemes by Perona, and 
Simoncelli et al. it is guaranteed to generate the most parsimonious one. 
Additionally, it is shown how to exploit two symmetries in edge-detection 
kernels for reducing storage and computational costs and generating simul- 
taneously endstop- and junction-tuned filters for free. 

1 Introduct ion  

Points, lines, edges, textures, motions are present in almost all images of everyday's 
world. These elementary visual structures often encode a great proportion of the infor- 
mation contained in the image, moreover they can be characterized using a small set 
of parameters that are locally defined: position, orientation, characteristic size or scale, 
phase, curvature, velocity. It is threrefore resonable to start visual computations with 
measurements of these parameters. The earliest stage of visual processing, common for 
all the classical early vision modules, could consist of a collection of operators that calcu- 
late one or more dominant orientations, curvatures, scales, velocities at each point of the 
image or, alternatively, assign an 'energy', or 'probability', value to points of a position- 
orientation-phase-scale-etc, space. Ridges and local maxima of this energy would mark 
special interest loci such as edges and junctions. The idea that biological visual systems 
might analyze images along dimensions such as orientation and scale dates back to work 
by Hubel and Wiesel [19, 18] in the 1960's. In the computational vision literature the idea 
of analyzing images along multiple orientations appears at the beginning of the seventies 
with the Binford-Horn linefiuder [17, 3] and later work by Granlund [14]. 

A computational framework that may be used to performs this proto-visual analy- 
sis is the convolution of the image with kernels of various shapes, orientations, phases, 
elongation, scale. This approach is attractive because it is simple to describe, imple- 
ment and analyze. It has been proposed and demonstrated for a variety of early vision 
tasks [23, 22, 5, 1, 6, 15, 40, 30, 28, 31, 10, 26, 4, 41, 20, 21, 11, 36, 2]. Various 'general' 
computational justifications have been proposed for basing visual processing on the out- 
put of a rich set of linar filters: (a) Koenderink has argued that a structure of this type is 
an adequate substrate for local geometrical computations [24] on the image brightness, 
(b) Adelson and Bergen [2] have derived it from the 'first principle' that the visual system 
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computes  derivatives of  the image along the dimensions of wavelength, parallax, position, 
t ime, (c) a third point of view is the one of 'matched filtering': where the kernels are 
synthesized to match  the visual events that  one looks for. 

The  kernels tha t  have been proposed in the computat ional  literature have typically 
been chosen according to one or more of three classes of criteria: (a) 'generic opt imal i ty '  
(e.g. opt imal  sampling of space-frequency space), (b) ' task opt imal i ty '  (e.g. signal to 
noise ratio, localization of edges) (c) emulation of biological mechanisms. While there is 
no general consensus in the literature on precise kernel shapes, there is convergence on 
kernels roughly shaped like either Gabor  functions, or derivatives or differences of  either 
round or elongated Gaussian functions - all these functions have the advantage tha t  they 
can be specified and computed easily. A good rule of the thumb in the ~hoice of kernels 
for early vision tasks is that  they should have good localization in space and frequency, 
and should be roughly tuned to the visual events that  one wants to analyze. 

Since points, edges, lines, textures, motions can exist at all possible positions, orien- 
tations, scales of resolution, curvatures one would like to be able to use families of filters 
tha t  are tuned to all orientations, scales and positions. Therefore once a particular con- 
volution kernel has been chosen one would like to convolve the image with deformations 
(rotations, scalings, stretchings, bendings etc.) of this ' template ' .  In  reality one can afford 
only a finite (and small) number  of  filtering operations, hence the common practice of  
' sampl ing '  the set of orientations, scales, positions, curvatures, phases 3. This operation 
has the strong drawback of introducing anisotropies and algorithmic difficulties in the 
computat ional  implementations.  It  would be preferable to keep thinking in terms of a 
continuum, of angles for example, and be able to localize the orientation of an edge with 
the m a x i m u m  accuracy allowed by the filter one has chosen. 

This  aim may  sometimes be achieved by means of interpolation: one convolves the 
image with a small set of kernels, say at a number of discrete orientations, and obtains the 
result of the convolution at any orientation by taking linear combinations of the results. 
Since convolution is a linear operation the interpolation problem may  be formulated 
in terms of the kernels (for the sake of simplicity the case of rotations in the plane is 
discuased here): Given a kernel F : R 2 -~ C z, define the family of ' ro ta ted '  copies of F as: 
F0 = F o R0, 8 E $1, where $z is the circle and/~e is a rotation. Sometimes it is possible 
to express Fe as 

n 

Fo(x)  = v0 e s l ,vx  e R (1) 
i=l 

3 Motion flow computation using spatiotemporal filters has been proposed by Adelson and 
Bergen [1] as a model of human vision and has been demonstrated by Heeger [15] (his 
implementation had 12 discrete spati~temporal orientations and 3 scales of resolution). 
Work on texture with multiple-resolution multiple-orientation kernels is due to Knuttson 
and Granlund [23] (4 scales, 4 orientations, 2 phases), Turner [40] (4 scales, 4 orientations, 
2 phases), Fogel and Sagi [10] (4 scales, 4 orientations, 2 phases), Malik and Perona [26] (11 
scales, 6 orientations, 1 phase) and Bovik et al. [4] (n scales, m orientations, 1 phases). Work 
on stereo by Kass [22] (12 filters, scales, orientations and phases unspecified) and Jones and 
Malik [20, 21] (see also the two articles in this book) (6 scales, 2-6 orientations, 2 phases). 
Work on curved line grouping by Parent and Zucker [31] (1 scale, 8 orientations, lphase) and 
Malik and Gigus [25] (9 curvatures, 1 scale, 18 orientations, 2 phases). Work on brightness 
edge detection by Binford and Horn [17, 3] (24 orientations), Canny [6] (1-2 scales, oo-6 orien- 
tations, 1 phase), Morrone,Owens and Burr [30, 28] (1-3 scales, 2-4 orientations, c~ phases), 
unpublished work on edge and illusory contour detection by Heitger, Rosenthaler, Kfibler and 
yon der Heydt (6 orientations, 1 scale, 2 phases). Image compression by Zhong and Mallat [41] 
(4 scales, 2 orientations, 1 phase). 



Fig. 1. 

a finite linear combination of functions Gi : R 2 ~ C 1. It must be noted that, at least for 
positions and phases, the mechanism for realizing this in a systematic way is well under- 
stood: in the case of positions the sampling theorem gives conditions and an interpolation 
technique for calculating the value of the filtered image at any point in a continuum; in 
the case of phases a pair of filters in quadrature can be used for calculating the response 
at any phase [1, 29]. Rotation, scalings and other deformations are less well understood. 

An example of 'rotating' families of kernels that have a finite representation is well 
known: the first derivative along an arbitrary direction of a round (ax = ay) Ganssian 
may be obtained by linear combination of the X- and Y-derivatives of the same. The 
common implementations of the Canny edge detector [6] are based on this principle. 
Unfortunately the kernel obtained this way has poor orientation selectivity and therefore 
it is unsuited for edge detection if one wants to recover edge-junctions (see in Fig. 2 the 
comparison with a detector that uses narrow orientation-selective filters). Freeman and 
Adelson have recently proposed [11, 12] to construct orientation-selective kernels that 
can be exactly rotated by interpolation (they call this property "steerability") and have 
shown that higher order derivatives of round Gaussians, indeed all polynomials multiplied 
by a radially symmetric function are steerable. They have also shown that functions that 
may be written as finite sums of polar-separable kernels with sinusoidal 0 component are 
also steerable. These functions may be designed to have higher orientation selectivity and 
can be used for contour detection and signal processing [11]. However, one must be aware 
of the fact that for most kernels F of interest a finite decomposition of F0 as in Eq. (1) 
cannot be found. For example the elongated kernels used in edge detection by [35, 36] 
(see Fig. 2 top right) do not have a finite decomposition as in Eq. (1). 

Perona [32, 33] has proposed an approximation technique that, given an F0, allows 

one to generate a function G~ n] which is sufficiently similar to F0 and that is steerable, i.e. 
can be expressed as a finite sum of n terms as in (1). This technique is guaranteed to find 
the most parsimonious steerable approximation to a given kernel Fs, i.e. given a tolerable 

amount 6 of error it computes an approximating G~ n] that has minimum number n of 
components and is within a distance 6 from F0. Perona [32, 33] and Simoncelli et al. [9] 
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Fig .  2. Example of the use of orientation-selective filtering on a continuum of orientations (see 
Perona and Malik [35, 36]). Fig. 1 (Left) Original image. Fig. 1 (Right) A T-junction (64x64 
pixel detail from a region roughly at the centre of the original image). The kernel of the filter 
for the edge-detector is elongated to have high orientation selectivity; it is depicted in Fig. 3. 
(Top-left) Modulus R(x, y, 0) of the output of the complex-valued filter (polar plot shown for 8x8 
pixels in the region of the T-junction). (Top-right) The local maxima of JR(x, y, 0)] with respect 
to 0. Notice that in the region of the junction one finds two local maxima in 0 corresponding 
to the orientation of the edges. Searching for local maxima in (x,y) in a direction ortogonal to 
the maximizing 8's one can find the edges (Bottom left) with high accuracy (error around 1 
degree in orientation and 0.1 pixels in position). (Bottom right) Comparison with the output of 
a Canny detector using the same kernel width (a in pixel units). 

have proposed non-opt imal  extensions to the case of jo int  rota t ion and scaling. 

In this paper  the general case of compact  deformations is reviewed in section 2. Some 

results of functional  analysis are recalled to formulate the decomposit ion technique in all 

generality. The  case of rotat ions is briefly recalled in section 3 to introduce some nota t ion 

which is used la ter  in the paper.  In section 4 it is shown how to generate a steerable and 

scalable family. Experimental  results and implementa t ion  issues are presented and dis- 

cussed. Finally,  in section 5 some basic symmetr ies  of edge-detection kernels are s tudied 

and their  use described in (a) reducing calculations and storage, and (b) implement ing 
filters useful for junct ion analysis at no extra  cost. 



2 D e f o r m a b l e  f u n c t i o n s  

In order to solve the approximation problem one needs of course to define the 'qual- 

i ty '  of the approximation G~ n] ~ F0. There are two reasonable choices: (a) a distance 

D(Fo,G~ hI) in the space 112 • S 1 where F0 is defined; (b) if F0 is the kernel of some 
filter one is interested in the worst-case error in the 'output '  space: the maximum dis- 

tance d((Fo, f}, (G~ nl, f ) )  over all unit-norm f defined on It 2. The symbols An and di n 
will indicate the 'optimal '  distances, i.e. the minimum possible approximation errors us- 
ing n components. These quantities may be defined using the distances indflced by the 
L2-norm: 

Def in i t ion .  

= i n f  IIF0 - @]ll 2• 

8n(Fo)=inf sup II(Fo-@l,y),,lls, 
a M II/11=I 

The existence of the optimal finite-sum approximation of the kernel Fe(x) as decribed 
in the introduction is not peculiar to the case of rotations. This is true in more general 
circumstances: this section collects a few facts of functional analysis that show that one 
can compute finite optimal approximations to continuous families of kernels whenever 
certain 'compactness' conditions are met. 

Consider a parametrized family of kernels F(x;  9) where x ~ X now indicates a generic 
vector of variables in a set X and 0 E T a vector of parameters in a set T. (The notation 
is changed slightly from the previous section.) Consider the sets A and B of continuous 
functions from X and T to the complex numbers, call a(x) and b(0) the generic elements 
of these two sets. Consider the operator L : A - -~  B defined by F as: 

(La(.))(0) = (F(.; 0), a(.))a (2) 

A first theorem says that if the kernel F has bounded norm then the associated 
operator L is compact (see [7] pag. 316): 

T h e o r e m  1. Let X and T be locally compact Hausdorff spaces and F E L2(X • T). Then 
L is well defined and is a compact operator. 

Such a kernel is commonly called a Hilbert-Schmidt kernel. 

A second result tells us that if a linear operator is compact, then it has a discrete 
spectrum (see [8] pag. 323): 

T h e o r e m  2. Let L be a compact operator on (complex) normed spaces, then the spectrum 
S of L is at most denumerable. 

A third result says that if L is continuous and operates on Hilbert spaces then the 
compactness property transfers to the adjoint of L (see [8] pag. 329): 

T h e o r e m  3. Let L be a compact operator on Hilbert spaces, then the adjoint L* is com- 
pact. 



Trivially, the composition of two compact operators is compact, so the operators LL* 
and L*L are compact and have a discrete spectrum as guaranteed by theorem 2. The 
singular value decomposition (SVD) of the operator L can therefore be computed as the 
collection of triples (~i, ai, bl), i = O, ... where the gl constitute the spectra of both LL* 
and L*L and the ai and bi are the corresponding eigenvectors. 

The last result can now be enunciated (see [37] Chap.IV,Theorem 2.2): 

T h e o r e m 4 .  Let L : A ~ B be a linear compact operator between two Hilbert spaces. Let 
al, hi, al be the singular value decomposition of L, where the al are in decreasing order of 
magnitude. Then 

I. An optimal n-dimensional approximation to L is L,~ = ~i~=1 o'iaib i 

2. The approximation errors are dni L) = an+l, and A2n(L) = EN=n+, a~ 

As a result we know that when our original template kernel F(x)  and the chosen family 
of deformations R(O) define a Hilbert-Schmidt kernel F(x; 0) = (F  o R(9))(x) then it is 
possible to compute a finite discrete approximation as for the case of 2D rotations. 

Are the families of kernels F(x; 0) of interest in vision Hilbert-Schmidt kernels? In the 
cases of interest for vision applications the 'template' kernel F i x  ) typically has a finite 
norm, i.e. it belongs to L2(X) (all kernels used in vision are bounded compact-support 
kernels such as Gaussian derivatives, Gabors etc.). However, this is not a sufficient con- 
dition for the family F(x;  0) = F o R(0)(x) obtained composing F(x)  with deformations 
RiO ) (rotations, scalings) to be a Hilbert-Schmidt kernel: the norm of Fix;  0) could be 
unbounded (e.g. if the deformation is a scaling in the unbounded interval (0, co)). A suf- 
ficient condition for the associated family F(x; 0) to be a Hilbert-Schmidt kernel is that 
the inverse of the Jacobian of the transformation R, IJR1-1 belongs to L2(T) (see [34]). 

A typical condition in which this arises is when the transformation R is unitary, e.g. 
a rotation, translation, or an appropriately normalized scaling, and the set T is bounded. 
In that case the norm of I]JRI1-1 is equal to the measure of T. The following sections in 
this paper will illustrate the power of these results by applying them to the decomposition 
of rotating rotating and scaled kernels. 

A useful subclass of kernels F for which the finite orthonormal approximation can 
be in part explicitly computed is obtained by composing a template function with trans- 
formations To belonging to a compact group. This situation arises in the case of n- 
dimensional rotations and is useful for edge detection in tomographic data and spa- 
tiotemporal filtering. It is discussed in [32, 33, 34]. 

3 R o t a t i o n  

To make the paper self-contained the formula for generating a steerable approximation 

is recalled here. The F[o n] which is the best n-dimensional approximation of Fo is defined 
as follows: 
Def in i t ion .  Call F~ n] the n-terms sum: 

iO) (3) 
4=1 

with ~i, al and bi defined in the following way: let h(v) be the (discrete) Fourier transform 
of the function h(O ) defined by: 
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Fig. 3. The decomposition (ai, b~, ai) of a complex kernel used for brightness-edge detection [36]. 
(Left) The template function (gans-3) is shown rotated counterclockwise by 120 ~ Its real part 
(above) is the second derivative along the vertical (Y) axis of a Gussian with a= : ay ratio of 
1:3. The imaginary part (below) is the Itilbert transform of the real part along the Y axis. The 
singular values a~ (not shown here - see [34]) decay exponentially: a~+~ ~ 0.75ai. (Right) The 
functions a~ (sfnc.i) are shown for i = 0. . .  8. The real part is above; the imaginary part below. 
The functions b~(O) are complex exponentials (see text) with associated frequencies t,i = i. 

t 
h(O) = ]m2 r , (x)Fs,=o(x)dx (4) 

and let t~i be the frequencies on which ]t(•) is defined, ordered in such a way that it(vl) > 

h(t,j) if i _< j .  Call g _< oo the number of nonzero terms h(z~). Finally, define the 
quantities: 

,7~ = ~(vi)l/~ (5) 

b,(o) = eJ ~~'~ (6) 

(7) 

See Fig. 3 and [32, 33, 34] for details and a derivation of these formulae. 

4 R o t a t i o n  a n d  s c a l e  

A number of filter-based early vision and signal processing algorithms analyze the image 
at multiple scales of resolution. Although most of the algorithms are defined on, and 
would take advantage of, the availability of a continuum of scales only a discrete and 
small set of scales is usually employed due to the computational costs involved with 
filtering and storing images. The problem of multi-scale filtering is somewhat analogue 
to the multi-orientation filtering problem: given a template function F(x)  and defined 
Fr as Fa(x) --- r ~ E (0,oo) one would like to be able to write F~ as a 
(small) linear combination: 

F~(x) = ~ s,(~)a~(x) ~ e (0, ~ )  (S) 
i 

Unfortunately the domain of definition of s is not bounded (it is the real line) and 
therefore the kernel F~(x) is not ttilbert-Schmidt (it has infinite norm). As a consequence 

the spectrum of the LL* and L ' L  operators is continuus and no discrete approximation 
may be computed. 
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One has therefore to renounce to the idea of generating a continuum of scales spanning 
the whole positive line. This is not a great loss: the range of scales of interest is never the 
entire real line. An interval of scales (~1,a2), with 0 < ~rl < a2 < cr is a very realistic 
scenario; if one takes the human visual system as an example, the range of frequencies 
to which it is most sensitive goes from approximatly 2 to 16 cycles per degree of visual 
angle i.e. a range of 3 octaves. In this case the interval of scales is compact and one can 
apply the results of section 2 and calculate the SVD and therefore an L2-optimal finite 
approximation. 

In this section the optimal scheme for doing so is proposed. The problem of simul- 
taneously steering and scaling a given kernel F(x)  generating a family F($,0)(x) wich 
has a finite approximation will be tackled. Previous non-optimal schemes are due to 
Perona [32, 33] and Simoncelli et al. [9, 12]. 

4.1 Po la r - sepa rab l e  decompos i t i on  

Observe first that the functions ai defined in eq.(7) are polar-separable. In fact x may 
be written in polar coordinates as x = ]lxllR~(x)U where u is some fixed unit vector (e.g. 
the 1st coordinate axis versor) and r is the angle between x and u and R~(x) is a 
rotation by r Substituting the definition of F0 in (7) we get: 

a,(x) = a~ "1 .~, r([]xllRe+c~(x)(U))ei2~V'~ = 

= a:~*e-J2"~,r [ F(llxllRc(u))eJ2"~'r162 
J$~ 

so that (3) may be also written as : 

N 

rdx) = ~ ~,c,(llxll)ei~'~,r162162 (9) 
i----1 

= o'i JS/1 F(llx[lRc(u))eJ2"V'r162 (10) Ci(HXH) 

4.2 Scal ing is a 1D p r o b l e m  

The scaling operation only affects the radial components c~ and does not affect the 
angular components. The problem of scaling the kernels al, and therefore Fs through its 
decomposition, is then the problem of finding a finite (approximate) decomposition of 
continuously scaled versions of functions c(p): 

c~(p) = ~ sk(a)rk(p) ~ E (~rl, ~2) (11) 
k 

If the scale interval (or1, a2) and the function c are such that the operator L associated 
to F is compact then we can obtain the optimal finite decomposition via the singular 
value decomposition. The conditions for compactness of L are easily met in the cases of 
practical importance: it is sufficient that the interval (el,  a2)is  bounded and that the 
norm of c(p) is bounded (p E R+). 

Even if these conditions are met, the calculations usually cannot be performed analyt- 
ically. One can employ a numerical routine (see e.g. [38]) and for each ci (below indicated 
as c i) obtain an SVD expansion of the form: 
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Fig.4 .  (Right)The plots of ci(p), the radial part of the singular functions a~ (err. eq. 9). The 
0 part is always a complex exponential. The original kernel is the same as in fig. 3. (Left) The 
0th, 4th and 8th components co, c4 and cs represented in two dimensions. 

i i i 
c~(p) = E 7tsk(~ (12) 

k 

As discussed before (Theorem 4) one can calculate the approximation error from the 
sequence of the singular values 7~. Finally, substituting (12) into (10) the scale-orientation 
expansion takes the form (see Fig. 6): 

N n i  

F,,q(x) = E ~  E ~4(o)4([Ixll) (13) 
i = l  k = l  

Filtering an image I with a deformable kernel built this way proceeds as follows: 

first the image is filtered with kernels a~(x) = exp(-j2ru~r i = 0, . . . ,  N, 
k = 0 , . . . ,  nl, the outputs  I~ of this operation can be combined as 

Ie:(x) E -l o, b,(O) " '  ' ' ' " ~  Ek=l 7kSk(O)I~(x) to yeld the result. 

4.3 Polar-separable decomposition, experimental results 

An orientation-scale decomposition was performed on the kernel of  Fig. 3 (second deriva- 
tive of a Gaussian and its Hilbert transform, ox : u~ = 3 : 1). The  decomposit ion recalled 
in sec. 3 and shown in Fig. 3 was taken as a starting point. The corresponding functions 
ci(p) of eq. (9) are shown in Fig. 4. 

The interval of  scales chosen was (ax,o2) s.t. o l  : o2 = 1 : 8, an interval which is 
ample enough for a wide range of visual tasks. 

The range of  scales was discretized in 128 samples for comput ing numerically the 
singular value decomposition i i i (7k, sk, rk) of c~(p). The computed weights 7~ are plotted 

on a logarithmic scale in Fig. 5 (Top). The ' X '  axis corresponds to the k index, each 

curve is indexed by i, i = 0 , . . . ,  8. One can see that  for all the ci the error decreases 
exponentially at approximately the same rate. The components r~(p) and s~(o), i = 4, 
k = 0 , . . . ,  3 are shown in the two plots at the bo t tom of Fig. 5. 
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Fig.  5. Scale-decomposition of the radial component of the functions a~. The interval of scales 

a is a E (0.125, 1.00). See also Fig. 6. (Top-left) The weights 7~ of each polar functions' decom- 

position (i = 0 , . . . ,  8 , k along the x axis). The decay of the weights is exponential in k; 5 to 8 

components are needed to achieve 1% error (e.g 5 for the 0th, 7 for the 4th and 8 for the 8th 

shown in fig 4). (Bottom) The first four radial (left) and scale (right) components of the 5th 

singular function: r~(p) and s~(a), k = 0 . . . . .  3 (see Eq. (12)). (Top-right) The real parts of the 

first four scale-components of the 5th singular function as: cos(2~rv40)s~(p) with k = 0 . . . .  ,3 

(see Eq. (13)). 

In figure Fig. 6 reconstructions of  the kernel based on a 1% error decomposit ion 

are shown for various scales and angles. A m a x i m u m  of 1% error was imposed on the 

original steerable decomposition,  and again on the scale decomposit ion of  each single ai. 
The measured error was 2.5% independently from angle and scale. The total number of 

filters required to implement a 3-octave 1% (nominal,  2.5% real) approximation error of 

the 3:1 Gaussian pair is 16 (rotation) t imes 8 (scale) = 128. If 10% approximation error 

is allowed the number of filters decreases by approximately a factor 4 to 32. 
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Fig. 6. The kernel at different scales and orientations: the scales are (left to right) 0.125, 0.33, 
0.77, 1.00. The orientations are (left to right) 30 ~ 66 ~ 122 ~ 155 ~ The kernels shown here were 
obtained from the scale-angle decomposition shown in the previous figures. 

5 Kernel symmetries and junction analysis 

The Hilbert-pair kernels used by [27, 11, 36] for edge detection have a number of inter- 
esting symmetries that  may be exploited to reduce the computational  and storage costs 

by a factor of two. Moreover, these symmetries may be used to reconstruct the response 
of two assiociated kernels, endstopped and one-sided, that  are useful for the analysis of 

edge junctions. The kernels of figure 7, are used here as specific examples. 
An illustration of the use of these kernels for the analysis of edges and junctions is 

proposed in Fig. 8 where response maxima w.r. to orientation ~ as in Fig. 2 are shown 
for a different image, a synthetic T-junction (Fig.7, right). The kernels employed for 

this demonstration have shape as in Fig. 7 and are derived from an elongated Gaussian 

function of variances ~r~ = 1.2 pixels and ax : a~ = 3 : 1. 

From equation (10) one can see that the coefficients ci(p) (where p = Ilxl]) are, for 
each value of p, the Fourier coefficients of F0(x) along a circular path of radius p and 
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Fig. 7. Three complex-valued kernels used in edge and junction analysis (the real parts are 
shown above and imaginary parts below). The first one (2-sided) is 'tuned' to edges that are 
combinations of steps and lines (see [36]) - it is the same as in Fig. 3 top left, shown at an 
orientation of 0~ the second kernel one (endstopped) is tuned to edge endings and 'crisscross' 
junctions [13, 16, 39]: it is equivalent to a 1st derivative of the 2-sided kernel along its axis 
direction; the third one (1-sided) may be used to analyze arbitrary junctions. All three kernels 
may be obtained at any orientation by combining suitably the 'basis' kernels ai shown in Fig. 3. 

center in the origin. The circular path begins and ends at the positive side of the X axis. 
Consider now such a path for the 2-sided kernel of Fig. 7: observe that for every p we 
have at least two symmetries. 

For the real part: 

(E) the function is even-symmetric, 

( / /+ )  a translation of the function by lr returns the same function (i.e. it is r-periodic). 

For the imaginary part: 

(O)  the function is odd-symmetric, 

( H - )  a translation of the function by Ir returns the function multiplied by - 1 .  

These symmetries imply corresponding properties in the discrete Fourier transform 
(DFT) of the functions: symmetry (E) implies a DFT with zero coefficients for the sinu- 

soidal components; symmetry (O) a DFT with zero cosinusoidal components; symmetry 
( / /+)  implies that the odd-frequency components are zero; symmetry ( / / - )  that the 
even-frequency components are zero. 

As a consequence, the DFT of the real part of the 2-sided kernel is only made up 
of even-frequency cosine components, while the imaginary part is only made up of odd- 
frequency sinus components. If the complex-exponential, rather than the sinus-cosine, 
notation is used, as in eq. (7) and (10), this implies that the odd-frequency coefficients 
only depend on the imaginary part of the kernel, while the even-frequency components de- 
pend on the real part. The negative-frequency components ~iai are equal to the positive- 
frequency components for even frequencies and to the opposite for odd-frequencies. The 
negative-frequency components therefore do not need to be computed and stored thus 

saving a factor 2 of storage and computations. Equation (3) may therefore be re-written 
as follows (for convenience of notation suppose that the number of components n is odd: 
n=2b+l~ and that  the n frequencies v~ involved are the ones from -b to b): 
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Fig. 8. Demonstration of the use of the kernels shown in Fig. 7 for the analysis of orientation 
and position of edges and junctions. For each pixel in s 16z16 neighbourhood of the T-junction 
in Fig. 7 (right) the local maxima in orientation of the modulus of corresponding filter responses 

are shown. A - 2-s|ded: (equivalent to Fig. 2 top-right) Within a distance of approximately 
2 - 2.5~ v from an isolated edge this kernel gives an accurate estimate of edge orientation. Near 
the junction there is a distortion in the estimate of orientation; notice that the needles indicating 
the orientation of the horizontal edge bend clockwise by approximately 15 ~ within a distance of 
approx. 1.5ux from the junction. The periodicity of the maxima is 180 ~ making it difficult to 
take a local decision about the identity of the junction (L, T, X). B - 1-slded: Notice the good 
estimate of orientation near the junction; from the disposition of the local maxima it is possible 
to identify the junction as a T-junction. The estimate of edge orientation near an isolated edge is 
worse than with the 2-sided kernel since the 1-sided kernel has a 360 ~ symmetry. C - endstop:  
The response along an 'isolated' edge (far from the junction) is null along the orientation of 
the edge, while the response in the region of the junction has maxima along the directions of 
the intervening edges. D - ends top  along 1-sided maxima:  Response of the endstop kernel 
along the orientations of maximal response of the 1-sided kernel. Notice that there is significant 
response only in the region of the junction. The junction may be localized at the position with 
maximal total endstop response. 
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n b b 

F(t-  = = = + 0 4 )  2s)a 
i = 1  u = - b  u = 0  

where the indexing is now by frequency: a~ and a~ denote the ai and ai associated to 
the frequency y = vl, and av=0 = �89 i =arg(ui = 0). 

Consider now the endstopped kernel (Fig. 7, middle): the same symmetries are found 
in a different combination: the real part has symmetries (E) and ( / / - )  while the imaginary 
part has symmeries (O) and (/7+). A kernel of this form may be clearly obtained from 
the coefficients of the 2-sided kernel exchanging the basis finctions: sinusoids for the even 
frequencies and cosinusoids for the odd frequencies (equivalent to taking the Hilbert 
transform of the 2-sided kernel along the circular concentric paths): 

b 

= + (15) 
b'----0 

The endstopped kernel shown in Fig. 7 has been obtained following this procedure from 
the decomposition (ai, al, bi) of the 2-sided kernel in the same figure. 

A kernel of the form 1-sided can now be obtained by summing the 2-sided and end- 
stopped kernels previously constructed. It is the one shown in Fig. 7, right side. The 
corresponding reconstruction equation is: 

b 

(16) (ls)ev'J = 
Y~0 

6 C o n c l u s i o n s  

A technique has been presented for implementing families of deformable kernels for early 
vision applications. A given family of kernels obtained by deforming continuously a tem- 
plate kernel is approximated by interpolating a finite discrete set of kernels. The technique 
may be applied if and only if the family of kernels involved satisfy a compactness con- 
dition. This improves upon previous work by Freeman and Adelson on steerable filters 
and Perona and Simoncelli et al. on scalable filters in that (a) it is formulated with max- 
imum generality to the case of any compact deformation, or, equivalently any compact 
family of kernels, and (b) it provides a design technique which is guaranteed to find the 
most parsimonious discrete approximation. It has also been shown how to build edge- 
terminator- and junction-tuned kernels out of a same family of 'basis' function. 

Unlike common techniques used in early vision where the set of orientations is dis- 
cretized, here the kernel and the response of the corresponding filter may be computed 
in a continuum for any value of the deformation parameters, with no anisotropies. The 
approximation error is computable a priori and it is constant with respect to the defor- 
mation parameter. This allows one, for example, to recover edges with great spatial and 
angular accuracy. 
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