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Steerable Wavelet Machines (SWM): Learning
Moving Frames for Texture Classification

Adrien Depeursinge, Zsuzsanna Püspöki, John Paul Ward, and Michael Unser

Abstract—We present texture operators encoding class-
specific local organizations of image directions (LOID) in a
rotation-invariant fashion. The LOIDs are key for visual un-
derstanding, and are at the origin of the success of the popular
approaches such as local binary patterns (LBP) and the scale-
invariant feature transform (SIFT). Whereas LBPs and SIFT yield
handcrafted image representations, we propose to learn data-
specific representations of the LOIDs in a rotation-invariant
fashion. The image operators are based on steerable circular
harmonic wavelets (CHW), offering a rich and yet compact
initial representation for characterizing natural textures. The
joint location and orientation required to encode the LOIDs is
preserved by using moving frames (MF) texture representations
built from locally-steered image gradients that are invariant to
rigid motions. In a second step, we use support vector machines
to learn a multi-class shaping matrix for the initial CHW rep-
resentation, yielding data-driven MFs called steerable wavelet
machines (SWM). The SWM forward function is composed of
linear operations (i.e., convolution and weighted combinations)
interleaved with non-linear steermax operations. We experimen-
tally demonstrate the effectiveness of the proposed operators
for classifying natural textures. Our scheme outperforms recent
approaches on several test suites of the Outex and CUReT
databases.

Index Terms—Texture classification, feature learning, mov-
ing frames, support vector machines, steerability, rotation-
invariance, illumination-invariance, wavelet analysis.

I. INTRODUCTION

ONe major difference between texture and object recog-
nition in natural images relates to the ability of vision

systems to characterize local versus global scene layouts.
Most natural textures do not follow global image layouts
and can only be described in terms of arrangements and
repetitions of local pattern ensembles or primitives [1].
These primitives can be characterized in terms of the local
organization of image directions (LOIDs). The latter are
key for visual understanding [2] and texture segregation [3]
(see Figure 1). LOIDs have been leveraged in the literature
to define [4] and discriminate texture classes [5–10]. They
capture the joint information between positions and ori-
entations in images. It is the difference in this coupling
that makes images f1 and f2 in Figure 4 visually distinct
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a) b)

Fig. 1. Importance of the LOIDs in preattentive texture segregation [3].
a) X -shaped micropatterns (right) are easily separated from L-shaped
ones (center), whereas T -shaped micropatterns (left) are found to be closer
to L-shaped ones. The LOIDs can be distinguished by counting the number
of endpoints of the primitives. b) texture associated with lung fibrosis in a
CT scan. The LOIDs are characterized by junctions of collagen filaments.

while both images have the same global density of small
horizontal and vertical bars.

The wealth of local texture patterns (i.e., the LOIDs) is
tightly related to the size of the observation window when
the texture function f (x), x ∈R

2 is digitized on a discrete
lattice indexed by k ∈ Z

2. In an extreme case, an image
region composed of one pixel cannot form geometrical
structures. Families of local image operators gi (x) can be
designed to characterize the LOID subtypes (e.g., edge or
learned filters). Obtaining scalar texture measures often
involves aggregating (e.g., averaging) the outputs of local
image operators gi ( f (x−m)) applied to f (x) at the position
m ∈ R

2 over an observation window M [11]. The latter
raises two major challenges. First, the responses of the
integrated operators becomes diffuse over M , which hinders
the spatial precision of texture segmentation approaches.
Second, the effect of integration becomes even more de-
structive when unidirectional operators are jointly used
to characterize the local organization of image directions
(LOID) [10, 12] (e.g., curvelets [13], co-occurrences [14],
directional filterbanks [15, 16]). When separately integrated,
the responses of unidirectional individual operators are
not local anymore and their joint responses become only
sensitive to the global density of image directions in M . For
instance, the joint responses of image gradients g1,2( f (x)) =(∣∣∣ ∂ f (x)

∂x1

∣∣∣ ,
∣∣∣ ∂ f (x)

∂x2

∣∣∣
)

are not able to discriminate between the

two textures classes f1(x) and f2(x) shown in Figure 4 when
integrated over the full image domain M .

An even bigger challenge is to design texture operators
that can characterize the LOIDs in a rotation-invariant
fashion [5, 7]. The latter is required to recognize image
structures independently from both their local orientations
and the global orientation of the image (see Figure 1).
Examples of such structures are collagen meshes, vascular,
bronchial or dendritic trees in biomedical images, river
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deltas or urban areas in satellite images, complex biomed-
ical tissue structures or crystals in petrographic analysis.

The above-mentioned imaging modalities yield images
with normalized pixel sizes defined in physical units. The
setting is therefore fundamentally different from photo-
graphic imagery resulting from scene captures obtained
with varying viewpoints [17–19]. Since the spatial units are
fixed, it is not desirable to enforce any form of scale in-
variance which truly entails the risk of regrouping patterns
of different nature. More importantly, the scale is itself
a powerful discriminative property. In this context, it is
required to design texture operators that are invariant to the
family of Euclidean transforms (also called rigid motions).

More generally, the rigid-motion invariant characteriza-
tion of the joint location and orientation structure of texture
(i.e., the LOIDs) can be efficiently carried out using moving
frames (MF) representations [8]. The key idea of MFs is to
locally adapt a coordinate frame directly to a curve (e.g.,
using the tangent as the first unit vector of the frame),
rather than using extrinsic coordinates (see Figure 4). Im-
age representations obtained from MFs can therefore be
designed to be invariant to Euclidean transformations [20].
Moreover, deriving the local orientation of the frame tends
to preserve the joint information between positions and
orientations even when the operators are integrated (e.g.,
averaged) over an image domain M .

MFs have been used in computer vision to characterize
the differential geometry of curves in Faugeras [20], and
more specifically, to describe the perceptual organization
of texture flows in Zucker et al. [8]. They were also referred
to as “gauge coordinates” in [21]. They have been implictely
used to characterize the LOIDs by popular approaches such
as local binary patterns (LBP), maximum response of ori-
ented filterbanks, and the scale-invariant feature transform
(SIFT). LBPs [5] and their extensions [22–29] are specifically
encoding the LOIDs in a rotation-invariant fashion with
uniform circular pixel sequences. Extensions were proposed
to include richer pixel dependencies based on local dif-
ferences [22] and medians [29]. The maximum-response
filterbank 8 (MR8) used the largest response of filters
over various orientation only to locally normalize image
directions [16]. Local discrete histogram of gradients (HOG)
are used to encode the LOIDs in SIFT with approximate
rotation-invariance [9, 17]. More recently, local continuous
rotation-invariant HOGs were proposed by Liu et al. based
on circular harmonic representations [10]. However, all
of the above-mentioned methods are yielding handcrafted
image descriptors that are not tailored to the specific image
recognition task in hand. On the other hand, classical deep
learning and dictionary learning approaches do not enforce
the characterization of the LOIDs. They require learning
similar kernel profiles at multiple orientations using data
augmentation [30]. The scattering transform (ScatNet [12,
31]) is based on deep convolutional networks that are
specifically designed to preserve the structure of the roto-
translation group, but it does not yield data driven image
representations.

In this work, we propose to bridge the gap between hand-

crafted MF-based features and learned representations with
steerable wavelet machines (SWM). The cornerstone of our
approach is to learn MF representations from locally steered
linear combinations of circular harmonic wavelets (CHW)
using support vector machines (SVM). CHWs are naturally
encoding the LOIDs in terms of circular harmonics [32].
They provide continuous rotation-invariant versions of both
LBPs [33] and HOGs [10]. Moreover, CHWs are encoding the
LOIDs in a multi-resolution hierarchy and stand out as the
canonical basis of steerable wavelet frames [34], providing
ideally-suited initial representations for learning signal-
adapted steerable wavelets. Based on the latter property,
data-driven steerable wavelets are constructed from learned
linear combinations of CHWs. Optimally discriminant fea-
tures are constructed from the responses of the set of
locally-oriented learned wavelets, yielding data-driven MF
representations encoding the LOIDs with invariance to rigid
motions.

The remainder of the paper is organized as follows.
The SWM architecture is detailed in Section II-B. The
mathematical foundations, construction and properties of
steerable CHWs are detailed in Sections II-A, II-C, II-D
and II-E. The construction steps of steerable CHW frames
are (i) define a bandlimited isotropic mother wavelet that
forms a frame on L2

(
R

2
)

and (ii) apply the multi-order com-
plex Riesz transform on it. Step (i) fixes the spatial supports
(frequency bands) on top of which class-specific steerable
wavelets can be learned from linear combinations of CHWs.
The fundamentals of MFs are recalled in Section II-G.
The learning of class-specifc MFs from shaped original
CHW frames using SVMs is described in Section II-H.
The behavior of SWMs and their ability to classify natural
textures is evaluated and discussed in Sections III and IV,
respectively.

II. MATERIAL AND METHODS

A. Notation

A point in the spatial domain R
2 is represented by the

vector variable x , and by ω in the Fourier domain. A 2-
D function f is represented by f (x) with x ∈ R

2, and by
fpol(r,θ) with r ∈R

+, θ ∈ [0,2π), in the Cartesian and polar
coordinate systems, respectively. In the Fourier domain, we
use the notations f̂ (ω), with ω ∈R

2 and f̂pol(ρ,ϕ) with ρ ∈

R
+, ϕ ∈ [0,2π). The Fourier transform of an L1

(
R

2
)

function
f is computed according to

f̂ (ω) =
∫

R2
f (x)e−j〈x ,ω〉dx . (1)

The average of f (x) over the image domain M is noted
f (x) = 1

m(M)

∫
M f (x)dx , where m(M) is the measure of M .

B. Steerable Wavelet Machines

The architecture of SWMs is detailed in Figure 2. An
image fi is mapped to feature maps ti ,x with a forward
pass through the SWM layers. fi is first convolved with the
family of CHWs φ(n). The resulting coefficients are mapped
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Fig. 2. Global architecture of SWMs. An input image fi is mapped to
output feature maps ti ,x with a forward pass through the SWM layers.
The forward function is composed of linear operations (i.e., convolution
and weighted combinations) interleaved by non-linear steermax operations
denoted with circular arrows and angle maps Θφ,ψ.

to an initial gradient-based MF representation with a non-
linear steermax operation based on the angle map Θφ(1)

(denoted with circular arrows in Figure 2, see Eq. (18)).
Class-wise templates ψ(c) are constructed from learned
linear combinations u(c) of CHWs in the gradient-based
MF representation. A final steermax operation based on
the learned angle maps Θψ(c) (following Eq. (23)) yields the
final feature representation ti ,x . These feature maps can be
further used by either a segmentation model, or aggregated
over a region M and used by a classifier (e.g., SVMs, k-
nearest neighbors).

C. Isotropic Wavelet Frames

The construction of our steerable wavelet frames is
initialized with a tight wavelet frame of R

2, described
by a mother wavelet φ whose translations and dilations
generate the basis functions. The collection of isotropic
bandpass filters φ controls the spatial support of the texture
operators. In particular, at location (i.e., grid point) xk = 2s k ,
k ∈Z

2, and scale s:

φs,k (x) =φs (x −xk ) =
1

2s
φ

( x−xk

2s

)
=

1

2s
φ

(
x
2s −k

)
. (2)

In the Fourier domain, (2) corresponds to

φ̂s,k (ρ,ϕ) = áφs (·−xk )(ω) = 2sφ̂(2s
ω)e−j〈xk ,ω〉

= 2sφ̂(2sρ)e−jρkρ cos(ϕ−ϕk ). (3)

Proposition 1 determines sufficient conditions for such a
wavelet system.

Proposition 1 (c.f. [34, Proposition 4.1.]). Let ĥ : [0,∞) →R

be a smooth function satisfying:

1) ĥ(ρ) = 0 for ρ >π (bandlimited),

2)
∑

s∈Z

∣∣ĥ
(
2sρ

)∣∣2
= 1,

3)
dn ĥ

dρn

∣∣∣∣∣
ρ=0

= 0 for n = 0, . . . , N (vanishing moments).

Using any norm p as 1 ≤ p ≤∞, the mother wavelet φ whose

Fourier transform is given by

φ̂ (ω) = ĥ
(
‖ω‖ℓp

)
(4)

generates a normalized tight wavelet frame of L2(R2) whose

basis functions

φs,k (x) =φ
(
x −2s k

)
(5)

have vanishing moments up to order N . In particular, any

f ∈ L2
(
R

2
)

can be represented as

f =
∑

s∈Z

∑

k∈Z2

〈
f , φs,k

〉
φs,k . (6)

As a particular example of such wavelets, in this work, we
use Simoncelli’s isotropic wavelet [35] defined by its radial
frequency profile

ĥ(ρ) =

{
cos

(
π
2 log2

(
2ρ
π

))
, π

4 < ρ ≤π

0, otherwise.
(7)

From the primal isotropic wavelet defined in this section
we generate polar separable ones by the application of the
multi-order complex Riesz transform.

D. The Multi-Order Complex Riesz Transform

The multi-order complex Riesz transform is used to ob-
tain systematic representations of local circular frequencies,
which are required to characterize the LOIDs. The first-
order complex Riesz transform corresponds to the multi-
dimensional extension of the Hilbert transform and was
introduced in the literature by Larkin [36, 37]. The latter is
defined in the Fourier domain as

R f (x) ↔
(ωx + jωy )

‖ω‖
f̂ (ω) = ejϕ f̂pol(ρ,ϕ). (8)

Similarly to the Hilbert transform, it corresponds to a
convolution-type operator that acts as an allpass filter. Its
phase response is completely encoded in the orientation.

The Riesz transform is translation- and scale-invariant.
More precisely,

∀y ∈R
2, R f (·− y)(x) =R f (·)(x − y) (9)

∀a ∈R
+, R f

( ·

a

)
(x) =R f (·)

( x

a

)
. (10)

The nth-order complex Riesz transform R
n is defined as

the n-fold iterate of the complex Riesz transform R. In the
Fourier domain,

R
n f (x) ↔ ejnϕ f̂pol(ρ,ϕ). (11)

Isolated transform orders are orthogonal to each other. The
higher order Riesz transform inherits the invariance prop-
erties of the complex Riesz transform, since they are pre-
served through iteration. Thus, it is scale- and translation-
invariant, and provides a unitary mapping from an L2

(
R

2
)

tight wavelet frame to another one.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2017 4

Fig. 3. Profiles of CHWs φ(n)
s,k

for n = 0, . . . ,5. Top, middle and bottom rows
correspond the real, imaginary parts and absolute values, respectively.

E. Circular Harmonic Wavelet Frames

We apply the multi-order complex Riesz transform to
a primal isotropic function that satisfies Proposition 1.
The generated wavelet frames are called circular harmonic
wavelets (CHW) and allow systematic characterizations of
image scales and directions. We note that our CHWs are
similar to ones of Jacovitti [32], with the difference that the
latter ones are non-tight. The new wavelet functions are
defined as φ(n) :=Rnφ. More precisely, in Fourier, we have

F
{
R

n{φs (·− y)}
}

(ρ,φ) = 2s ĥ(2sρ)ejnφ−jρ0ρ cos(φ−φ0). (12)

The n-channel tight wavelet frame is generated as
{φ(n)

s,k =F−1{φ̂(n)
s,k }}n∈S . In this case, the elements of the

distinct set S are called harmonics (corresponding to the
exponentials). The nth-order CHW φ(n)

s,k has a rotational
symmetry of order n around its center that corresponds
to the nth-order rotational symmetry of ejnφ. CHWs are
depicted in Figure 3 for n = 0, . . . ,5.

The wavelets φ(n)
s,k form a tight wavelet frame, thus any

finite-energy function f can be decomposed as

f =
∑

n,s,k

〈
f , φ(n)

s,k

〉
φ(n)

s,k . (13)

A remarkable property of the CHWs is that of being self-
steerable, where any rotation of φ(n)

s,k can be expressed as a
linear combination of their own real and imaginary parts.
More precisely,

φ(n)
s,0,θ0

(x) =φ(n)
s,0 (R−θ0 x) = e j nθ0φ(n)

s,0 (x), (14)

where R−θ0
=

[
cos(θ0) −sin(θ0)
sin(θ0) cos(θ0)

]
. Therefore, any rotation of a

multi-order CHW representation can be obtained with the
block-diagonal steering matrix Aθ0 as




Re
(〈

f ,φ(1)
s,0,θ0

〉)

Im
(〈

f ,φ(1)
s,0,θ0

〉)

.

.

.

Re
(〈

f ,φ(n)
s,0,θ0

〉)

Im
(〈

f ,φ(n)
s,0,θ0

〉)

.

.

.




=




cos(θ0) −sin(θ0)
sin(θ0) cos(θ0)

. . .

cos(nθ0) −sin(nθ0)
sin(nθ0) cos(nθ0)

. . .




︸ ︷︷ ︸
Aθ0




Re
(〈

f ,φ(1)
s,0

〉)

Im
(〈

f ,φ(1)
s,0

〉)

.

.

.

Re
(〈

f ,φ(n)
s,0

〉)

Im
(〈

f ,φ(n)
s,0

〉)

.

.

.




.

It can be noticed that Aθ0 is sparse and the steering of
multi-order representations requires much less computa-
tion when compared to other steerable wavelet represen-
tations with full steering matrices [34] (e.g., real Riesz
wavelets, Simoncelli’s pyramid).

F. Texture Representations from CHWs

The absolute values of the collection of subbands pro-
vided by (13) yields a rich and compact representation for
characterizing natural textures because it allows encoding
the LOIDs for each position x and for a fixed scale s.
The use of multi-order harmonics n = 0, . . . , |S| provides a
rich characterization of the local angular spectrum. The

representation based on the complex modulus
∣∣∣
〈

f ,φ(n)
s,k

〉∣∣∣
is rotation-invariant, but it discards the phase shifts be-
tween the harmonics. This is undesirable since two texture
functions with different inter-harmonics phase shifts will
be mixed. As an alternative, the representation based on
real parts

∣∣∣Re
(〈

f ,φ(n)
s,k

〉)∣∣∣ preserves the phases between the
harmonics. However, this representation has two major
drawbacks for texture recognition. First it is not invariant
to rotations, i.e.,

∀θ0 6= 0,2π,




∣∣∣Re
(〈

f ,φ(0)
s,0

〉)∣∣∣
∣∣∣Re

(〈
f ,φ(1)

s,0

〉)∣∣∣
...∣∣∣Re

(〈
f ,φ(|S|)

s,0

〉)∣∣∣



−




∣∣∣Re
(〈

fθ0
,φ(0)

s,0

〉)∣∣∣
∣∣∣Re

(〈
fθ0

,φ(1)
s,0

〉)∣∣∣
...∣∣∣Re

(〈
fθ0

,φ(|S|)
s,0

〉)∣∣∣



6= 0,

(15)

where fθ0 = f (R−θ0 x). It will therefore not provide the same
representation for two identical textures that are rotated
versions of each other. This issue is addressed in Proposi-
tion 2 (see Section II-G). Second, it can hardly distinguish
between texture classes that differ in terms of their LOIDs
only when integrated over an image domain M , since each

element
∫

M

∣∣∣
〈

f ,φ(n)
s,k

〉∣∣∣dx is not local anymore. Both issues
will be discussed in the next section, where solutions are
proposed and exemplified for n = 1 (i.e., the gradient).

G. MF Representations from Locally Steered Gradients

In this section, we show how to analytically derive
rotation- and translation-invariant texture representations
from locally steered gradients (the gradient vector is equiv-
alent to CHWs with n = 1.) using moving frames. We also
provide some evidence that the MFs tend to preserve the
joint location and orientation structure of texture, which en-
ables better characterization of the LOIDs when compared
to using unaligned unidirectional texture operators.

Let {e1,e2} be the canonical basis for R
2, and let x denote

the coordinates with respect to this basis; i.e., x = (x1, x2)
represents the point x1e1+x2e2. Let P be a rotation (by an
angle θ0) and translation (by a vector y) of the plane R

2. We
consider a gray scale image F : P → R. We suppose that F

can be evaluated as f (x) when θ0 = 0 and y = 0. When P is
rotated and translated, F is evaluated in global coordinates
as f (R−θ(x−y)). Our goal is to define a moving frame for P

in global coordinates using basis vectors
{

e1,x , e2,x
}
, where

e1,x = cos(θx )e1 + sin(θx )e2, (16)

e2,x = cos(θx +π/2)e1 + sin(θx +π/2)e2. (17)

This frame will be defined by the local geometry of F

so that it will be invariant to translations and rotations
of P . For now, we assume that the wavelet scale s and
the harmonic index n = 1 are fixed; however, the same
computation will be valid for any value.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2017 5

Definition 1 (Optimal angle θx and moving frames). We

consider a manifold P of the form described above. Any point

on the manifold can be written in global coordinates as x =

(x1, x2). For this point, we compute the optimal angle, with

respect to F , as

θx ,F : = argmax
θ∈[0,2π)

(
Re

(〈
F, φ(1)

s,0,θ(·−x)
〉))

= argmax
θ∈[0,2π)

(
Re

(〈
F, φ(1)

s,0(R−θ(·−x))
〉))

. (18)

We also define the moving frame representation with

respect to F to be the decomposition of an image using the

locally steered multi-order CHWs

φ(n)
s,x ,θx ,F

=φ(n)
s,0 (R−θx ,F (·−x)). (19)

Note that inner products are taken with respect to the global

coordinates.

Proposition 2. The moving frame is invariant to rotation

and translation. We have

θx , f (R−θ0 ·−y) −θ0 = θR−θ0 x−y , f . (20)

The proof of Proposition 2 is detailed in Appendix A.
A discrete moving frame representation

{
e1,k , e2,k

}
is

obtained from the discretization of
{

e1,x , e2,x
}

with k1 =

x1/∆x1, k2 = x2/∆x2. A remarkable property following Def-
inition 1 is that the effect of integration on the MF rep-
resentation over an image domain M does not dissoci-
ate the joint responses of directional operators because
the orientation θx ,F of all wavelets φ(n=1,...,|S|)

s,0,θx ,F
varies for

each global coordinate x . Therefore, the MF representation∣∣∣∑|S|
n=0 Re

(〈
f , φ(n)

s,0,θx
(x)

〉)∣∣∣ tends to preserve the joint loca-
tion and orientation structure of texture, yielding a precise
characterization of the LOIDs.

H. Learning Moving Frames from Multi-Order CHWs

Equation (18) defines MFs optimal angles θx ,F based
on the gradient. However, the latter is handcrafted and
does not allow finding local orientations that are useful
to discriminate the texture classes of a considered set C .
Following our previous work [7], we use linear SVMs in
a feature space spanned by the absolute values of the

multi-order subbands
∣∣∣Re

(〈
f ,φ(n)

s,k

〉)∣∣∣ to learn optimal linear
combinations (i.e., in the sense of structural risk minimiza-
tion [38]) of consecutive harmonics for a class c in a one-
versus-all (OVA) classification configuration. For a set of
classes c = 1, . . . ,C , the latter will generate a shaping matrix
U of the canonical CHW representation of steerability. This
will add directionality to resulting wavelet profiles, and yield
class-specific local orientations θ(c)

x ,F to construct MFs.
We formulate the transform similarly to Unser et al. [34],

with the difference that U is not necessarily orthogonal. The
transformation is described as




ψ(1)
s,k
...

ψ(C )
s,k


= U




φ(0)
s,k
...

φ(|S|)
s,k


 . (21)

{ψ(c)
s,k } are the new wavelet channels at scale s and location

k . The new wavelets are also steerable and span the same
space as the wavelet frame φ(n)

s,k . L2-SVMs are used to
find the optimal linear combination of harmonic channels
u(c) (the lines of U) for the texture class c. Considering a
training set of I texture instances vi=1,...,I , the SVMs find
the separating hyperplane u(c) with the maximum margin

1
‖u(c)‖

between the instances with positive versus negative

labels y+
i

and y−
j

, respectively [38]. More precisely, u(c) is a
solution of the primal formulation

min
uc ,ξ,b

{∥∥u(c)
∥∥2

2
+Q

I∑

i=1
ξ2

i

}
subject to

yi

(〈
u(c), vi

〉
−b(c))

≥ 1−ξi , ∀i .

(22)

ξi is called a slack variable and loosens the margin con-
straints when the classification configuration is not linearly
separable (ξi > 1). b(c) is the offset of u(c). The regularization
variable Q is used to control the cost of errors. The in-
stances vi that are located within the margin (0 ≤ ξi ≤ 1) are
called the support vectors. The primal formulation in (22)
can be solved with a dual formulation where a Lagrangian
based on the primal variables is minimized [38].

By creating different training sets for each class where
the labels y+

i
are set for all instances vi of the class c

and y−
j

are set for the instances v j of all other classes,
the shaping matrix U can be built and a collection of
class-specific texture signatures ψ(c=1,...,C )

s,k are obtained. This
allows creating a new collection of class-specific MFs from
the optimal angles θ(c=1,...,C )

x ,F , defined with respect to F , as

θ(c)
x ,F : = argmax

θ∈[0,2π)

(〈
F, ψ(c)

s,0,θ(·−x)
〉)

= argmax
θ∈[0,2π)

(〈
F, ψ(c)

s,0(R−θ(·−x))
〉)

. (23)

Since ψ(c)
s,k inherits the rotation- and translation-invariance

properties of φ(n)
s,k (see [34]), the learned MF representation

is also invariant to rotation and translation, which can be
demonstrated following the proof of Propositon 2. Equa-

tion (23) allows defining the basis vectors
{

e(c)
1,x , e(c)

2,x

}
of

the class-specific MF representation, where

e(c)
1,x = cos(θ(c)

x )e1 + sin(θ(c)
x )e2, (24)

e(c)
2,x = cos(θ(c)

x +π/2)e1 + sin(θ(c)
x +π/2)e2. (25)

The learned MF representation
∣∣∣
〈

f , ψ(c)
s,0,θx

(x)
〉∣∣∣ encodes

the LOIDs that are now specific to the class c. Intuitively, the
learned MFs can be seen as class-specific detectors that are
applied and rotated at each point of the image to evaluate
the magnitude of their responses, i.e., probing the presence
of the texture class c in a rotation-invariant fashion.

In summary, the SWM forward function maps an input
image fi to feature maps ti ,x trough linear operations
(i.e., convolution and linear combinations) interleaved by
non-linear steermax operations (see Figure 2). The final
feature representation ti ,x can be further used by either
a segmentation model, or aggregated over a region M and
used by a classifier (e.g., SVMs, k-nearest neighbors).
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        o        of1(x) : f2(x) :

∣∣∣Re
(
〈 f ,φ(1)

s=1〉
)∣∣∣

∣ ∣ ∣Im
( 〈

f
,φ

(1
)

s=
1
〉)∣ ∣ ∣

image gradients

∣∣∣Re
(
〈 f ,φ(1)

s=1,θx
〉

)∣∣∣
∣ ∣ ∣Im

( 〈
f

,φ
(1

)
s=

1,
θ

x
〉)∣ ∣ ∣

MF gradients

e1

e2

e1,x

e2,x

e1,x

e2,x

e1,xe2,x

Fig. 4. f1(x) and f2(x) only differs in terms of the LOIDs. The joint
responses of image gradients expressed in terms of global coordinates
{e1,e2} can hardly discriminate between f1 and f2 when averaged over the
full image (top right). However, the gradient vector expressed in terms of
the MFs

{
e1,x ,e2,x

}
perfectly separates between the two textures (bottom

right). The imaginary part of the MF gradient gets higher responses on
crosses in f1 than on bars in f2. One circle in the gradient representation
corresponds to one realization (i.e., full image) of f1,2.

III. EXPERIMENTAL RESULTS

The behavior and performance of the proposed texture
operators are evaluated in this section. The ability of
MFs to characterize the LOIDs is first demonstrated in
Section III-A. A toy problem is presented in Section III-B
to illustrate the moving frame learning process. A full
evaluation of the classification performance of MFs with
three test suites of the Outex database and the CUReT
database is described in Section III-C.

A. Gradient-Based MF Representations of the LOIDs

The ability of gradient-based MFs (see Section II-G)
to discriminate textures that differ in terms of the
LOIDs only is illustrated in Figure 4. The gradient vec-

tor
(∣∣∣Re

(
〈 f ,φ(1)

s=1〉

)∣∣∣ ,
∣∣∣Im

(
〈 f ,φ(1)

s=1〉

)∣∣∣
)

expressed in terms of

global coordinates {e1,e2} cannot accurately discriminate
between the textures f1 and f2 when averaged over the
image domain M (see Figure 4 top right). However, the gra-

dient vector
(∣∣∣Re

(
〈 f ,φ(1)

s=1,θx
〉

)∣∣∣ ,
∣∣∣Im

(
〈 f ,φ(1)

s=1,θx
〉

)∣∣∣
)

expressed

in the MFs
{

e1,x ,e2,x
}

perfectly separates between f1 and
f2 (see Figure 4 bottom right). The optimal angle MF angle
θx ,F was defined based on s = 2 (i.e., the second wavelet
scale), which is why the imaginary part of the gradient of
scale 1 is not null.

B. Moving Frame Learning with Synthetic Textures

The moving frame learning process is illustrated in
Figure 5 for two synthetic textures f1 (sum of vertical
and horizontal sines) versus f2 (vertical sine only), and
|S| = 5. The SVMs assigned non-null weights un,c to even
harmonics only (i.e., n = 0,2,4) since Re

(
φ(n=1,3,5)

)
are not

sensitive to horizontal directions. The corresponding profile
ψ(c) corresponds qualitatively to a detector of horizontal
sines, the latter being required to discriminate f1 and f2.
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)
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∣ ∣ R
e
(〈
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,φ

(n
)〉)
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e
(〈
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,φ

(n
)〉)

∣ ∣
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Fig. 5. Illustration of the template learning process for |S| = 5. An optimally
discriminant template ψ(c) for textures f1 (top left) versus f2 (middle
left) was learned with linear SVMs (bottom left). f1 and f2 have identical

average responses
∣∣Re

(〈
fc ,φ(n)

〉)∣∣ for the odd harmonics n = 1,3,5 (see top
and middle right). Therefore, the SVMs assigned non-null weights u(c)

n to
even harmonics n = 0,2,4 only (see bottom right). The new representation〈

fi ,ψ(c)
s,0,θ0

〉
can be further used to derive learned MFs representations

based on local optimal angles θ(c)
x , fi

with Eq. (23).

C. Texture Classification with SWMs

We evaluated the performance of SWMs for texture clas-
sification using the Outex [39], CUReT [40] and UIUC [17]
databases. Both require using texture operators that are
invariant to Euclidean transforms and illumination changes.
Test suites designed for extensively testing the rotation-
invariant properties of the algorithms exist and come with
pre-defined training and testing sets, which allows for direct
performance comparisons between approaches (i.e., iden-
tical validation methods). The cardinalities of the classes
are balanced both in the training and test sets for all
problems. The test suites are Outex_TC_10, Outex_TC_12,
CUReT and UIUC, which were widely used to compare
texture classification approaches [5, 7, 15, 16, 18, 22–29, 41–
45].

Outex is a set of real textures photographed with con-
trolled illumination conditions and consists of 24 texture
classes with pronounced directional structures. Three dif-
ferent color spectra were used for image capture to evalu-
ate illumination invariance of approaches: 2300 Kelvin (K)
horizon sunlight denoted as “horizon”, 2856 K incandescent
denoted as “inca”, and 4000 K fluorescent tl84 denoted
as “tl84”. Each texture sample was captured using nine
rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and
90◦) to focus on the rotation-invariant properties of the
approaches. There are 20 128× 128 texture instances per
class (see Figure 6). The Outex_TC_10 test suite has a total
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Fig. 6. 128×128 unrotated blocks from the 24 texture classes of the Outex
database.

of 4320 (24× 20× 9) image instances of illuminant “inca”.
The training set consists of the 480 (24× 20) non-rotated
images and the remaining 3840 (24× 20× 8) images from
8 orientations are constituting the test set. Outex_TC_12
includes two subproblems: P0 and P1. Both problems use
the same training set as in Outex_TC_10 (i.e., 24×20 non-
rotated images of illuminant “inca”). The test sets consist
of all samples captured using illuminant “tl84” for P0 and
“horizon” for P1 and contain 4320 images each.

The CUReT [40] database contains 61 texture classes
with 92 200×200 images each under varying illumination
direction but at a constant scale. For each class, training
and test sets are obtained from even random splits of the
92 images. The reported accuracies were obtained after
averaging over 10 Monte-Carlo (MC) repetitions.

The UIUC [17] dataset contains 25 classes with 40
640×480 images each, captured under varying viewpoints.
It therefore includes strong intra-class variations in texture
scale in addition to image orientation. For each class,
training and test sets are obtained from even random splits
of the 40 images. The reported accuracies were obtained
after averaging over 10 MC repetitions.

6 dyadic CHW scales were used to cover the spatial spec-
trum of the images with an undecimated wavelet transform.
The templates ψ(c)

s were learned using images from the
training set. Each of them was learned and steered for each
scale separately. The cost of errors Q of the internal SVM
in Eq. (22) was set to 102 for all experiments. The absolute
values of the feature maps ti ,x in Figure 2 were averaged
over the 128×128 images and used for classification. The
latter were concatenated from each scale. From this final
feature space, L2-SVMs with Gaussian kernels (hereinafter
referred to as K-SVMs) were constructed using the training
set. The cost of errors Q in (22) and σK of the Gaussian ker-
nel were optimized in the intervals [100,108] and [10−9,102],
respectively.

The classification performance is shown in Figure 7
for the three classification subproblems of Outex and for
different numbers of combined harmonics |S|. The perfor-
mance for the CUReT database is shown in Figure 8. Two
representations are compared:

• CHW, i.e., the complex modulus of the collections
of CHW subbands provided by (13):

∣∣∣
〈

fi ,φ(n)
s,x

〉∣∣∣. The
feature dimensionality is 6 · (n +1), i.e., from 6 to 66.

• SWMs, i.e., the final feature representation ti ,x based
on moving frames provided by (23) with learned U:

∣∣∣∣∣

〈
fi , ψ(c)

s,x ,θ(c)
x , fi

〉∣∣∣∣∣ (see Figure 2). The feature dimension-

ality is 6 ·C , i.e., 144 for Outex, 366 for CUReT and 150
for UIUC.

The influence of the final classifier is studied for Ou-
tex_TC_10, where linear SVMs (L-SVMs) and k-nearest
neighbors (kNN) are compared to K-SVMs (see Figure 7).
The cost of errors Q was optimized in [100,108] for L-SVMs.
The number of neighbors k was optimized in [0,10] for
kNNs.

The performance of nineteen other approaches for
rotation-invariant texture classification based on Outex
TC_10, TC_12 P0, TC_12 P1, CUReT and UIUC are reported
in Table I and compared to the proposed approach.

IV. DISCUSSIONS AND CONCLUSIONS

We developed novel texture operators that can encode
the multi-scale class-specific LOIDs in a translation- and
rotation-invariant fashion. Whereas current approaches en-
coding the LOIDs (e.g., LBPs, MR8, SIFT, ScatNet) yield
handcrafted image features, the proposed approach learns
class-specific encoding of the LOIDs that is relevant to the
specific image recognition task in hand. The cornerstone
of the proposed method is to generate MFs from locally
steered linear combinations of CHWs. Class-specific MFs
were obtained by using SVMs to learn optimal transforma-
tions (i.e., in the sense of structural risk minimization [38])
of the initial CHW representation, the latter corresponding
to the canonical representation of wavelet steerability [34].
The full SWM forward function is composed of linear
operations (i.e., convolution and weighted combinations)
interleaved by non-linear steermax operations (see Fig-
ure 2). The application scope of SWMs is restricted to image
modalities with pixel sizes defined in physical units (e.g.,
medical and satellite imaging, material analysis), where the
image scale is an important discriminative property.

The discriminatory power of gradient-based MFs was
first qualitatively demonstrated in Figure 4, which yielded
feature representations that were linearly separable be-
tween texture classes that only differed in terms of their
LOIDs. This verified that the joint location and orientation
structure of textures are preserved when the proposed
texture operators are integrated (i.e., averaged) over an
image domain M . The invariance of MFs to Euclidean
transformations was demonstrated in Appendix A.

A proof of concept of the MF learning process was illus-
trated in Figure 5 with the construction of a discriminant
template ψ(c) between a texture f1 (sum of vertical and
horizontal sines) versus f2 (vertical sine only). Discriminat-
ing between f1 and f2 only requires detecting the pres-
ence of horizontal image directions: the SVMs transformed
the initial CHW representation of texture

〈
f ,φ(n)

〉
into

the angular-selective representation
〈

f ,ψ(c)
〉

, where only
channels that are sensitive to horizontal directions received
non-null weights. The local orientation maximization of this
particular angular-selective representation yielded MFs that
are optimally discriminant between f1 and f2.
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Fig. 7. Texture classification accuracies for Outex_TC_10 (left), Outex_TC_12 P0 (middle) and Outex_TC_12 P1 (right) and for different number of
combined harmonics |S| = 0, . . . ,10. Various classifiers are compared for Outex_TC_10 (i.e., K-SVMs, L-SVMs, kNNs).

TABLE I
PERFORMANCE COMPARISON WITH OTHER APPROACHES FOR ROTATION-INVARIANT TEXTURE CLASSIFICATION BASED FOR OUTEX, CURET AND UIUC. THE

STUDIES ARE ORDERED BY DECREASING CLASSIFICATION ACCURACY FOR OUTEX TC_10.

Study Outex_TC_10 Outex_TC_12 P0 Outex_TC_12 P1 CUReT UIUC description

Liu et al. 2016 [29] 99.87 99.49 99.7 99.02 – Median robust extended LBP

Liu et al. 2012 [22] 99.7 98.7 98.1 97.29 – Extended LBPs

Proposed (SWMs) 99.56 97.85 99.12 96.86 89.12 Steerable wavelet machines

Guo et al. 2010 [24] 99.32 95.32 94.53 95.86 – Completed LBPs

Khellah 2011 [41] 99.27 94.4 92.85 95 –
Dominant neighborhood structure

combined with LBPs

Shrivastava et al. 2015 [23] 99.19 96.97 96.93 95.81 92.84
Noise invariant structure patterns

(based on LBPs)

He et al. 2011 [25] 99.18 96.2 96.2 93.04 – LBP textons

Sifre et al. 2012 [31] 98.75 – – – –
ScatNet: Scattering transform

(based on wavelets
and deep convolutional networks)

Guo et al. 2012 [26] 98.64 95.99 94.16 94.49 –
LBPs based on high-order

directional derivatives

Depeursinge et al. 2014 [7] 98.4 97.8 98.4 – – Steerable Riesz wavelets

Zand et al. 2015 [42] 98.38 – – – –
Combined Gabor wavelets

and curvelets

Guo et al. 2010 [27] 98.15 95.39 95.57 94.15 – LBP variance

Ojala et al. 2002 [5] 97.9 90.2 87.2 – – Original LBP implementation

Hadizadeh 2015 [28] 97.3 – – 94.51 –
LBPs on top of Gabor wavelet

coefficients

Varma et al. 2009 [18]
(perf. reported in [25]) 94.11 92.64 92.64 97.47 97.83 Patch statistics (intensity-based)

Varma et al. 2005 [16]
(perf. reported in [18, 25, 27, 44])

92.5 (best)
72.57 (worst)

90.9 (best)
87.49 (worst)

91.1 (best)
87.49 (worst)

98.4 92.94 Maximum response filterbank (MR8)

Zhang et al. 2012 [45]
(perf. reported in [42]) 79.22 – – – – Rotation-invariant curvelets

Lazebnik et al. 2005 [17]
(CUReT perf. reported in [46]) 75.26 60.44 57.43 72 92.61

Rotation-invariant feature transform
(RIFT) with dense sampling

Leung et al. 2001 [15]
(perf. reported in [44]) 51.87 – – – – Leung-Malik filterbank

Xu et al. 2010 [19] – – – – 98.6 Multi-orientation wavelet leaders

The classification performance of the proposed operators
was evaluated in Section III-C (see Figures 7, 8 and Table I).
It can be observed that |S| = 1 provided poor accuracies,
which can be explained by the fact the templates were
learned on top of the gradient-based MF representations.
Starting from orders as low as |S| = 2, SWMs provided
equal or superior performance when compared to CHW,
highlighting the superiority of learned representations when
compared to handcrafted ones. It also underlines the im-
portance of the inter-harmonic phase information, which
is discarded by CHW. The performance gain observed

between |S| = 2 and |S| = 4 suggests that the number
of harmonics of the initial CHW representation needs to
be rich enough to learn relevant operators and shape
significant directional wavelet profiles. Tuning the number
of harmonics |S| acted as regularization optimization of the
wealth of the operators. This is particularly symptomatic
when analyzing the performance drop in Figure 8 for |S| > 6,
where high-order SWMs are not generalizing well. The
influence of the final classifier was studied for Outex_TC_10
in Figure 7 (left). L-SVMs, K-SVMs and kNNs showed all
a large classification improvement when using SWMs. The
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Fig. 8. Texture classification accuracies for CUReT for a varying number
of combined harmonics |S| = 0, . . . ,10.

top accuracies were obtained by SVMs, where L-SVMs
and K-SVMs yielded very close performance for |S| > 3.
The computing time for the SWM forward function of a
128×128 image of the Outex dataset was of 0.83 second for
|S| = 5 with MATLAB R2015b, The MathWorks Inc., Natick,
Massachusetts, USA on a 2.5 GHz Intel Core i7 CPU.

Overall, the performance obtained with SWMs were very
competitive when compared to the state-of-the-art (see
Table I) on Outex and CUReT. The top performances on the
Outex test suites were very close to the LBP-based methods
of Liu et al. [22, 29]. When compared to the latter, SWMs
have the advantage of a small number of free-parameters
(essentially |S|), as well as compact feature dimensions.
Feature dimensionality as large as 800 are reported in [29].
Such a large number of dimensions should be avoided
to limit the risk of overfitting when the number of train-
ing instances are as low as 480 in the Outex database.
For all subsets, a number of harmonics |S| ∈ [2,8] was
found to provide stable performances, which suggests that
this free-parameter is not difficult to optimize for a new
application. The multi-order CHWs yielded an excellent
initial representation for building and learning MFs. The
combinations of harmonics allowed encoding both sym-
metric and anti-symmetric profiles, providing an excellent
characterization of the local circular phase and frequencies.
CHW relate to rotation-invariant LBP [33] by modeling
local circular harmonics and come with a more complete
theoretical framework for encoding the LOIDs at multiple
scales. Moreover, CHWs are linear operators and do not
require the binarization step carried out with LBPs, the
latter entailing the risk of discarding important information
concerning the dynamic and differential range of local pixel
values. The top performance was already obtained with
a relatively small number of harmonics |S| of two to six.
When circular harmonics are coupled with isotropic wavelet
frames, the coverage of the spatial spectrum can be fully
controlled, which is not the case for the family of classical
LBP operators. The proposed approach also achieved top
performance with the two Outex_TC_12 subproblems and
the CUReT. This highlighted the robustness of the operators
to changes in illumination. The latter is naturally achieved
by using zero-mean (i.e., bandpass) operators. The per-
formance obtained on the UIUC dataset is relatively low
because our method is not regrouping patterns that are

x2

x1

x

θ0 ν

R−θ0
x

ν

R−θ0
x − y

ν

θ0

Fig. 9. Illustrating the proof of Proposition 2. The moving frame is invariant
to any rotation parameterized by θ0 and to any translation parameterized
by y . Note that neither R−θ0

x nor R−θ0
x − y need lie on the x1-axis.

similar at different scales (the steerable wavelets are learned
for each scale independently). As expected, the methods
achieving high performance on UIUC are invariant to image
scale (e.g., [17–19]). However, the latter (e.g., [17, 18]) are
providing lower performance on the Outex and CUReT
because they discard scale as a discriminative property (see
Table I).

We are currently extending the framework to 3-D based
on [47, 48]. Future work will also include revealing and
exploiting the visual diversity of texture patterns in order
to account for texture classes composed of multiple distinct
visual events (e.g., see Figure 6) [49]. We are also working
on the learning of the radial profile. The authors will make
the implementation available to the community.

APPENDIX A
PROOF OF PROPOSITION 2

Proof. Suppose there is an image F on the manifold P , and
F is given by g = f (·− y). We then have θx , f = θx+++y , f (·−y) =

θx+++y ,g , i.e., shifting the manifold does not change the
computed angle. Hence the frame remains the same at each
point of P .

Now suppose the manifold P is oriented so that
F is computed as g = f (R−θ0 ·). We then have
θ0,g −θ0 = θ0, f (R−θ0 ·)

−θ0 = θ0, f . We interpret this to
mean that the frame of the rotated manifold is equivalent
to the rotation of the frame of the original manifold, which
is the invariance that we sought to show. In general, we
will have

θx , f (R−θ0 ·)
−θ0 = θR−θ0 x , f . (26)

We can combine these two invariance properties to see
that a similar result holds when the manifold is both
translated and rotated.

The proof of Proposition 2 is illustrated in Figure 9.
Consider a point x in the plane, an angle θ0 and a shift y .
Suppose that the optimal angle at the point R−θ0 x−y for the
unrotated and unshifted function f is ν, i.e., ν= θR−θ0 x−y , f .
Then the optimal angle for the rotated and shifted function
f (R−θ0 ·−y) at the point x is θ0+ν, i.e., θ0+ν= θx , f (R−θ0 ·−y).
Combining these equations, we have

θx , f (R−θ0 ·−y) −θ0 = θR−θ0 x−y , f . (27)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2017 10

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science
Foundation (under grant PZ00P2_154891), the European Re-
search Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013)/ERC grant agreement n◦

267439, and the Hasler Foundation.

REFERENCES

[1] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep convolutional filter banks
for texture recognition and segmentation,” CoRR, vol. abs/1411.6836,
2015.

[2] C. Blakemore and F. W. Campbell, “On the existence of neurones
in the human visual system selectively sensitive to the orientation
and size of retinal images,” The Journal of Physiology, vol. 203, no. 1,
pp. 237–260, 1969.

[3] J. R. Bergen and M. S. Landy, “Computational modeling of visual
texture segregation,” in in Computational Models of Visual Processing,
pp. 253–271, MIT Press, 1991.

[4] T. Watanabe and P. Cavanagh, “Texture laciness: the texture equivalent
of transparency?,” Perception, vol. 25, no. 3, pp. 293–303, 1996.

[5] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray–
scale and rotation invariant texture classification with local binary
patterns,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, no. 7, pp. 971–987, 2002.

[6] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors:
A survey,” Foundations and Trends in Computer Graphics and Vision,
vol. 3, no. 3, pp. 177–280, 2008.

[7] A. Depeursinge, A. Foncubierta, D. Van De Ville, and H. Müller,
“Rotation–covariant texture learning using steerable Riesz wavelets,”
IEEE Transactions on Image Processing, vol. 23, pp. 898–908, 2014.

[8] O. Ben-Shahar and S. Zucker, “The perceptual organization of texture
flow: a contextual inference approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 4, pp. 401–417, 2003.

[9] D. G. Lowe, “Object recognition from local scale–invariant features,”
in Proceedings of the International Conference of Computer Vision,
ICCV 1999, (Corfu, Greece), 1999.

[10] K. Liu, H. Skibbe, T. Schmidt, T. Blein, K. Palme, T. Brox, and
O. Ronneberger, “Rotation–invariant HOG descriptors using Fourier
analysis in polar and spherical coordinates,” International Journal of
Computer Vision, vol. 106, no. 3, pp. 342–364, 2014.

[11] M. Papadakis, G. Gogoshin, I. A. Kakadiaris, D. J. Kouri, and D. K.
Hoffman, “Nonseparable radial frame multiresolution analysis in
multidimensions and isotropic fast wavelet algorithms,” in Proc. SPIE
Wavelets: Applications in Signal and Image Processing X, vol. 5207,
pp. 631–642, 2003.

[12] E. Oyallon and S. Mallat, “Deep roto–translation scattering for object
classification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2865–2873, 2015.

[13] E. J. Candès and D. L. Donoho, “Curvelets – a surprisingly effective
nonadaptive representation for objects with edges,” in Curves and
Surface Fitting, pp. 105–120, Vanderbilt University Press, 2000.

[14] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features
for image classification,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 3, no. 6, pp. 610–621, 1973.

[15] T. Leung and J. Malik, “Representing and recognizing the visual ap-
pearance of materials using three–dimensional textons,” International
Journal of Computer Vision, vol. 43, no. 1, pp. 29–44, 2001.

[16] M. Varma and A. Zisserman, “A statistical approach to texture classifi-
cation from single images,” International Journal of Computer Vision,
vol. 62, no. 1-2, pp. 61–81, 2005.

[17] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation
using local affine regions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 8, pp. 1265–1278, 2005.

[18] M. Varma and A. Zisserman, “A statistical approach to material
classification using image patch exemplars,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 31, pp. 2032–2047, 2009.

[19] Y. Xu, X. Yang, H. Ling, and H. Ji, “A new texture descriptor using
multifractal analysis in multi–orientation wavelet pyramid,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 161–168, 2010.

[20] O. D. Faugeras, “Cartan’s moving frame method and its application
to the geometry and evolution of curves in the Euclidean, affine
and projective planes,” tech. rep., Institut National de Recherche en
Informatique et en Automatique (INRIA), 1993.

[21] L. Florack, B. Ter Haar Romeny, J. Koenderink, and M. Viergever,
“Cartesian differential invariants in scale–space,” Journal of Mathe-
matical Imaging and Vision, vol. 3, no. 4, pp. 327–348, 1993.

[22] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, “Extended
local binary patterns for texture classification,” Image and Vision
Computing, vol. 30, no. 2, pp. 86–99, 2012.

[23] N. Shrivastava and V. Tyagi, “Noise–invariant structure pattern for
image texture classification and retrieval,” Multimedia Tools and
Applications, pp. 1–20, 2015.

[24] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local
binary pattern operator for texture classification,” IEEE Transactions
on Image Processing, vol. 19, no. 6, pp. 1657–1663, 2010.

[25] Y. He, N. Sang, and R. Huang, “Local binary pattern histogram
based texton learning for texture classification,” in IEEE International
Conference on Image Processing, ICIP, pp. 841–844, 2011.

[26] Z. Guo, Q. Li, J. You, D. Zhang, and W. Liu, “Local directional
derivative pattern for rotation invariant texture classification,” Neural
Computing and Applications, vol. 21, no. 8, pp. 1893–1904, 2012.

[27] Z. Guo, L. Zhang, and D. Zhang, “Rotation invariant texture classi-
fication using LBP variance (LBPV) with global matching,” Pattern
Recognition, vol. 43, no. 3, pp. 706–719, 2010.

[28] H. Hadizadeh, “Noise-resistant and rotation-invariant texture descrip-
tion and representation using local Gabor wavelets binary patterns,”
in International Symposium on Artificial Intelligence and Signal Pro-
cessing (AISP), AISP, pp. 30–34, 2015.

[29] L. Liu, S. Lao, P. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen, “Median
robust extended local binary pattern for texture classification,” IEEE
Transactions on Image Processing, vol. 25, no. 3, pp. 1368–1381, 2016.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25 (F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[31] L. Sifre and S. Mallat, “Combined scattering for rotation invariant tex-
ture analysis,” in European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, pp. 24–27, 2012.

[32] G. Jacovitti and A. Neri, “Multiresolution circular harmonic decom-
position,” IEEE Trans. on Signal Proc., vol. 48, pp. 3242–3247, 2000.

[33] J. Fehr, “Rotational invariant uniform local binary patterns for full
3D volume texture analysis,” in Finnish Signal Processing Symposium
(FINSIG), 2007, (Oulu, Finland), 2007.

[34] M. Unser and N. Chenouard, “A unifying parametric framework for
2D steerable wavelet transforms,” SIAM Journal on Imaging Sciences,
vol. 6, no. 1, pp. 102–135, 2013.

[35] J. Portilla and E. P. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” International Journal
of Computer Vision, vol. 40, no. 1, pp. 49–70, 2000.

[36] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of
two-dimensional fringe patterns. I. General background of the spiral
phase quadrature transform,” Journal of the Optical Society of America
A, vol. 18, pp. 1862–1870, 2001.

[37] K. G. Larkin, “Natural demodulation of two-dimensional fringe pat-
terns. II. Stationary phase analysis of the spiral phase quadrature
transform,” Journal of the Optical Society of America A, vol. 18,
pp. 1871–1881, 2001.

[38] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[39] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen, and
S. Huovinen, “Outex – new framework for empirical evaluation of
texture analysis algorithms,” in 16th International Conference on
Pattern Recognition, pp. 701–706, IEEE Computer Society, 2002.

[40] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink,
“Reflectance and texture of real–world surfaces,” ACM Transactions
on Graphics, vol. 18, no. 1, pp. 1–34, 1999.

[41] F. M. Khellah, “Texture classification using dominant neighborhood
structure,” IEEE Transactions on Image Processing, vol. 20, no. 11,
pp. 3270–3279, 2011.

[42] M. Zand, S. Doraisamy, A. A. Halin, and M. R. Mustaffa, “Texture
classification and discrimination for region–based image retrieval,”
Journal of Visual Communication and Image Representation, vol. 26,
pp. 305–316, 2015.

[43] N. Doshi and G. Schaefer, “A comparative analysis of local binary
pattern texture classification,” in Visual Communications and Image
Processing (VCIP), pp. 1–6, 2012.

[44] O. Ghita, D. Ilea, A. Fernandez, and P. Whelan, “Local binary patterns
versus signal processing texture analysis: a study from a performance
evaluation perspective,” Sensor Review, vol. 32, pp. 149–162, 2012.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2017 11

[45] D. Zhang, M. Islam, G. Lu, and I. Sumana, “Rotation invariant curvelet
features for region based image retrieval,” International Journal of
Computer Vision, vol. 98, no. 2, pp. 187–201, 2012.

[46] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A
comprehensive study,” International Journal of Computer Vision,
vol. 73, no. 2, pp. 213–238, 2007.

[47] J. P. Ward and M. Unser, “Harmonic singular integrals and steerable
wavelets in l2(Rd ),” Applied and Computational Harmonic Analysis,
vol. 36, no. 2, pp. 183–197, 2014.

[48] H. Skibbe, M. Reisert, T. Schmidt, T. Brox, O. Ronneberger, and
H. Burkhardt, “Fast rotation invariant 3D feature computation uti-
lizing efficient local neighborhood operators,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 34, pp. 1563–1575, 2012.

[49] A. Depeursinge, A. Foncubierta, H. Müller, and D. Van De Ville,
“Rotation–covariant visual concept detection using steerable Riesz
wavelets and bags of visual words,” in SPIE Wavelets and Sparsity
XV, vol. 8858, pp. 885816–885816–11, SPIE, 2013.

Adrien Depeursinge received the B.Sc. and M.Sc.
degrees in electrical engineering from the Swiss
Federal Institute of Technology (EPFL), Lausanne,
Switzerland, in 2003 and 2005, respectively, with
a specialization in signal and image processing.
From 2006 to 2010, he performed his Ph.D. thesis
on medical image analysis with a focus on texture
analysis and content–based image retrieval at the
University Hospitals of Geneva (HUG). He then
spent two years as a Postdoctoral Fellow at the De-
partment of Radiology of the School of Medicine

at Stanford University. He has currently a joint position as a Professor of
Computer Science at the Institute of Information Systems, University of
Applied Sciences Western Switzerland (HES–SO), and as a Senior Research
Scientist in the Biomedical Imaging Group, École Polytechnique Fédérale
de Lausanne (EPFL).

Zsuzsanna Püspöki received her PhD Diploma in
Electrical Engineering in 2016 from the École poly-
technique fédérale de Lausanne (EPFL), Switzer-
land. There, she developed methodologies and
frameworks for the efficient analysis of biomedical
images with the focus on local transformable
representations and their applications for feature
extraction. Currently, she is a research assistant
at the Lausanne University Hospital in the Labo-
ratory for Research in Neuroimaging (LREN), di-
rected by Prof. Bogdan Draganski. She is currently

working on problems related to the understanding of neurodegenerative
diseases and MRI imaging.

John Paul Ward received a B.S. degree in mathe-
matics from the University of Georgia, Athens, and
a Ph.D. in mathematics from Texas A&M Univer-
sity, College Station, in 2005 and 2010, respectively.
He did postdoctoral work at Texas A&M Univer-
sity, College Station in the math department; the
Swiss Federal Institute of Technology, Lausanne,
Switzerland in the Biomedical Imaging Group; and
the University of Central Florida, Orlando in the
mathematics department. Since 2016, he is an as-
sistant professor in the mathematics department

at North Carolina Agricultural and Technical State University..

Michael Unser (M’89–SM’94–F’99) is professor
and director of EPFL’s Biomedical Imaging Group,
Lausanne, Switzerland. His primary area of in-
vestigation is biomedical image processing. He is
internationally recognized for his research contri-
butions to sampling theory, wavelets, the use of
splines for image processing, stochastic processes,
and computational bioimaging. He has published
over 250 journal papers on those topics. He is the
author with P. Tafti of the book “An introduction
to sparse stochastic processes”, Cambridge Uni-

versity Press 2014.
From 1985 to 1997, he was with the Biomedical Engineering and

Instrumentation Program, National Institutes of Health, Bethesda USA,
conducting research on bioimaging.

Dr. Unser has held the position of associate Editor-in-Chief (2003-2005)
for the IEEE Transactions on Medical Imaging. He is currently member of
the editorial boards of SIAM J. Imaging Sciences, IEEE J. Selected Topics
in Signal Processing, and Foundations and Trends in Signal Processing.
He is the founding chair of the technical committee on Bio Imaging and
Signal Processing (BISP) of the IEEE Signal Processing Society. Prof. Unser
is a fellow of the IEEE (1999), an EURASIP fellow (2009), and a member of
the Swiss Academy of Engineering Sciences. He is the recipient of several
international prizes including three IEEE-SPS Best Paper Awards and two
Technical Achievement Awards from the IEEE (2008 SPS and EMBS 2010).


