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ABSTRACT Unintentional lane departure accidents are one of the biggest reasons for the causalities
that occur due to human errors. By incorporating lane-keeping features in vehicles, many accidents can be
avoided. The lane-keeping system operates by auto-steering the vehicle in order to keep it within the desired
lane, despite of changes in road conditions and other interferences. Accurate steering angle prediction is
crucial to keep the vehicle within the road boundaries, which is a challenging task. The main difficulty in this
regard is to identify the drivable road area on heterogeneous road types varying in color, texture, illumination
conditions, and lane marking types. This strenuous problem can be addressed by two approaches, namely,
‘computer-vision-based approach’ and ‘imitation-learning-based approach’. To the best of our knowledge,
at present, there is no such detailed review study covering both the approaches and their related optimization
techniques. This comprehensive review attempts to provide a clear picture of both approaches of steering
angle prediction in the form of step by step procedures. The taxonomy of steering angle prediction has been
presented in the paper for a better comprehension of the problem. We have also discussed open research
problems at the end of the paper to help the researchers of this area to discover new research horizons.

INDEX TERMS Computer vision, Machine learning, Neural network, Lane detection, Steering angle

I. INTRODUCTION

Road accidents cause numerous causalities every day. Khatib
et al. [1] concluded that the distraction of drivers is one of
the key reasons for accidents. Unintentional lane departure
accidents point to a major class of accidents caused due to
driver distraction. According to Mammeri et al. [2], lane
departure crashes counted 51% of total accidents reported
in the United States in the year 2011. There is a continuous
quest to improve vehicles and driving conditions in order
to eliminate the chances of lane departure accidents. In this
regard, driver assistance technologies such as lane-keeping
systems are being incorporated in vehicles.

Lane-keeping is a lateral control system aiming to au-
tomatically perform the steering of an autonomous vehicle
(AV) in order to keep it within the road boundaries despite of
changes in road conditions and other interferences [3]. This is

effectuated by deriving the desired steering wheel angle using
the lateral dynamics. This predicted steering wheel angle is
the main impetus to the lateral controller to perform lane
keeping maneuver in AVs.

For the successful steering angle prediction, robust road
region understanding is first and the foremost step. Road
region understanding is a challenging task, as there are a
variety of road conditions and their geometries. For example,
roads can be structured or unstructured, paved or unpaved,
occluded or unoccupied, and marked or unmarked. Even lane
markings have various variations e.g., continuous/disjoint,
white/yellow, curved/straight, and single/double markings.
Moreover, varying illumination conditions, weather condi-
tions, and artifacts on the road make the road region un-
derstanding a complex and difficult task. The very first step
of road region understanding is to perceive the vehicle’s
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FIGURE 1: Taxonomy of steering angle prediction

surrounding environment by using one or a combination of
sensors like camera, LIDAR, SONAR, and GPS, etc. Then
the obtained information is processed through various tech-
niques in order to make it usable for the subsequent process
of steering angle prediction. This paper covers literature only
on vision-based steering angle prediction techniques.

The steering angle prediction systems can broadly be cate-
gorized into two approaches. The first approach involves ex-
tracting road boundary coordinates and then applying math-
ematical or statistical models to predict the steering angle.
The second approach is based on imitation learning strat-
egy. The latter technique involves utilizing artificial neural
network (ANN) models, and the lane boundary extraction
process is not done explicitly by the practitioner. Rather,
the machine learns through demonstration of expert and
utilize this knowledge for predicting steering angle without
human intervention. Imitation-learning-based steering angle
prediction involves using only images or sequence of images
as input to ANN models to generate steering angle as output.
The predicted steering angle in both approaches is utilized
along with other lateral parameters for keeping AV within
the road boundaries. Figure 1 shows the taxonomy of vision-
based steering angle prediction.

A. EXISTING SIMILAR RECENT STUDIES

Recently, Gidado et al. [4] presented a survey paper which
covers the following topics: deep learning architectures (deep
reinforcement learning and convolutional neural network);

application of deep learning architectures for steering angle
prediction, longitudinal & lateral control; history and other
details of frameworks being used for designing and training
ANN architectures; analysis of year-wise and frequency wise
publication trend of deep learning applications in steering
control. Oussama et al. [5] presented a short literature review
on computer vision and deep learning approach for steering
angle prediction. Yet, to the best of our knowledge, there is no
available literature review of the techniques of steering angle
estimation part used in computer-vision-based approach. Our
review study is unique in its detailed coverage of step-by-
step processes involved in computer-vision-based as well
as the imitation-learning-based approaches for the steering
angle prediction. It presents the solutions various researchers
adopted to handle different challenges in the steering angle
prediction (e.g., different illumination and weather condi-
tions etc). This in-depth review will help novice researchers
get insight into the problem of steering angle prediction and
various methods to implement it.

Organization of the paper: Rest of the paper is structured as
follows: Section 2 discusses computer-vision-based approach
accompanied by image processing techniques for steering
angle prediction, which is accomplished in steps, including
image frames preprocessing, road region identification, road
boundary tracking and steering angle estimation based on
processed visual information. Section 3 covers imitation-
learning-based approach for steering angle prediction. This
Section is further divided into subsections based on the steps
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involved to solve the problem, including ANN model ar-
chitecture formulation, dataset collection, training the ANN
model and optimizing the model. Section 4 highlights open
research questions. Lastly, section 5 presents concluding
remarks.

II. STEERING ANGLE PREDICTION USING COMPUTER

VISION APPROACH

This method of steering angle prediction involves explic-
itly extracting road boundary coordinates or lane markings
based on which the steering angle is computed. Firstly,
image frames are captured through a live feed from the
camera mounted on the car. Then these image frames are
preprocessed in order to increase the likelihood of accu-
rately extracting relevant road features. The next stage is
lane boundary extraction using the preprocessed images.
Some researchers performed lane tracking after this step, by
considering consecutive frames for successful road detection
despite the missing or erroneous road information. Tracking
is achieved using particle filter, Kalman filter, and Bayes
filter. Description for each of these steps and the related
literature is elucidated in the next subsections.

A. PRE-PROCESSING

Calibration of camera, illumination changes, poor visibility
due to bad weather conditions, shadows, and light reflections
on the road may cause faulty lane detection and tracking
[6]. Therefore, image pre-processing is done for the sake of
enhancing and modifying input frames as a means to increase
the likelihood of delivering useful information to subsequent
stages. Conventionally, the preprocessing stage includes one
or a combination of the following methods: downsampling
the image, image segmentation, image smoothing, extraction
of Region of Interest, and the application of Inverse Perspec-
tive Mapping (IPM).

As the computation time is the most important criterion in
real-time applications. Therefore, the only relevant portion
of the image frame is taken for further processing, hence
rejecting portions of images that do not contribute to lane
detection and tracking (e.g., pixels of the image containing
sky). The portion containing the important information taken
for further processing is referred to as ‘Region of Interest’
(ROI). Any coordinate that lies beyond the ROI is disre-
garded. ROI should be taken such that it covers left and right
lanes and the point where both lanes appear to intersect at
each other in the image; this intersection point is mostly used
to find the steering angle. ROI can either be determined with
prior road area detections or it can roughly be chosen as
the lower portion of the image [7]. Carefully choosing ROI
is significant in improving computation efficiency and lane
detection accuracy.

Another measure to reduce the computational load is to
downsample the images using grayscale conversion [8]–[12],
inter-area interpolation [13], or using the image binarization
approach [14]. Among these, grayscale is mostly used for
downsampling. Figure 2 (b) shows a grayscale image of a

road. Apart from grayscale conversion, a lot of researchers
found that conversion of RGB to other color formats may
present better lane detection results instead of processing raw
RGB camera captured images. Sun et al. [15] argued that
applying a loose threshold method on the HIS color model
of the image yields better detection compared to RGB. Yet,
reducing the size and changing the format of the images may
result in the loss of useful information, especially in complex
situations.

1) Image Smoothing, sharpening, and shadow removal

Image smoothing is done to blur the noisy details diminishing
the impact of pixels which are not part of the lane markings.
The most widely used smoothing filters for road lane extrac-
tion are Gaussian filter [16], [17] and Median filter [18] or
both [19], [20]. It can be seen in Figure 2 (c, d), that both
median and Gaussian filters blur out noise and unnecessary
details, yet they can sometimes eradicate information crucial
for lane detection, such as in Figure 2(c) lane markings
information is lost. Therefore, a careful selection of the size
of the filter is necessary which again are road conditions and
application-specific.

Objects (such as buildings, bridges, and other vehicles)
may cast shadows on the road and alters the impact of road
texture by producing artifacts onto the road surface. Smooth-
ing and eliminating these shadows in the image is important
for error-free road boundary detection. Assidiq et al. [21]
used a method for shadow removal from the frames. The
method works by first deriving 1-d illumination invariant,
free of the shadow image. Then this invariant image was used
to locate the edges of shadows. These edges were then set
to zero in an edge representation of the original image, and
lastly, the obtained edge representation was reintegrated to
the original image by a method parallel to lightness recovery.
However, a problem with their approach is that the intensity
values are unlikely to remain consistent over the different
construction materials used to build the road. This can cause
a disparity in results for extracting shadow from the illumi-
nation of a single color.

According to Kucukmanisa et al. [22], B color channel of
RGB can easily detect and separate out white lane markings
using an MSER-based approach [23] despite of any kind of
shadows on the road. However, enhancing the B channel of
the image gives better detection results for yellow lanes as
well irrespective of shadows.

Parajuli et al. [24] applied a vertical gradient on the image
to remove the effect of shadows, as according to the authors,
shadows cast on the road are usually horizontal. The high
pass filter has also been used to eliminate shadows in om-
nidirectional images [25]. Since gradient operators are high
pass filters, which are sensitive to noise, hence can also be
used for lane detection, but they have difficulty in detecting
degraded lane markings [26].

Processing the image frames without applying contrast en-
hancement after smoothing gives rise to fading and phantom
edges [27]. Hence, after applying a single or a combination
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(a) Original Image (marked road) (b) Greyscale Image

(c) Median filtering (15*15) (d) Gaussian filtering (15*15)

FIGURE 2: Preprocessing a marked road

of smoothing filters, image enhancement has been done in
some researches in order to retain contour details [28]–[30].

2) IPM

The perspective mapping process of 3D road scene to the 2D
image plane brings forth many problems in the lane boundary
extraction process. If the lane boundary extraction process is
done directly on the original image, many non-target edges
exterior to the lane boundary will also be extracted, e.g.,
pedestrians, trees and traffic signs, etc. These are basically
sources of interference for lane detection, whose effect can
be minimized using IPM. IPM is top view or the bird’s
eye view of the road scene, having nearly vertical lines on
a darker background whose detection is more convenient
removing outliers on the roadsides. Originally IPM formula
was derived by Bertozz et al. [31] and was applied to the
GOLD AV successfully. After that, this method is being
extensively used in the preprocessing stage of the lane and
obstacle detection [32]–[41]. In Figure 3, IPM of roads can
be examined.

FIGURE 3: IPM [42]

B. ROAD BOUNDARY DETECTION & TRACKING

Road boundary detection aims to identify a drivable region on
the road by preparing the system for the accurate identifica-
tion of the lane marking (for marked roads) or road boundary
(for unmarked roads). The key for vision-based road area
detection is the ability to classify image pixels as belonging
or not belonging to the road surface. Almost every lane
detection algorithm follows three essential steps: lane feature
extraction, outlier removal, lane boundary representation. In

some methods, lane tracking has been performed as well,
which is aimed to track lane positions after performing road
boundary detection. For this purpose, Kalman filter and Par-
ticle filter are widely used methods that refine the detection
results and predict lane coordinate positions more efficiently.
While a few researchers used Bayes filter and custom-built
tracker. It can be observed in Table 1, that how different
researchers achieved the task of lane detection and tracking
by combining different approaches.

Road boundary detection is a lot easier for structured
and properly marked roads as compared to unstructured and
unmarked roads. Vision-based road detection techniques can
broadly be divided into three categories, namely: feature-
based techniques, model-based techniques, and machine-
learning-based techniques.

1) Feature-based techniques for drivable road area detection

Many features such as the geometric shapes, edges, color,
gradient, and road texture can be used to identify the drive-
able road region. A brief overview of the techniques utilizing
these features is given below:

1.1. Techniques using lane edge or gradient information

As the road lanes have brighter intensity values as com-
pared to the rest of the road, hence a gradient of dark-
bright-dark exists at lane lines. This gradient feature has been
utilized by gradient-based edge detectors to extract left, right,
and center lanes. In this regard, the Canny edge detector is
the most widely used gradient-based edge detector in the
literature [43]–[51]. It works by first smoothing the image
using a Gaussian filter, followed by calculating the gradient
direction and its amplitude on which non-maximal suppres-
sion is performed, lastly using a double threshold algorithm
edges are detected and connected. Hence the resultant image
after processing from the canny edge detector is a binarized
image with highlighted edges.

Another rather less commonly used gradient-based edge
detector for lane detection is Sobel operator [52]–[54], Pre-
witt operator [55] and other custom edge detectors [56].
Yet, the Canny edge detector is found to outperform other
gradient-based lane detection methods [57]. As the Canny
edge detector also performs image smoothing hence it is
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robust to slight noise. As can be seen in Figure 4, the image
processed with the canny edge detector still have edges
around the road which are not part of the lane marking. So, to
remove these outliers and locate actual lane markings, Hough
transform [58]–[64] and other methods are applied afterward.

FIGURE 4: Canny edge detection

The most popular methods for lane detection using the
gradient information extraction technique involve firstly to
convert the image into grayscale, followed by applying the
canny edge detector and lastly applying Hough transform.
Conversion into grayscale substantially reduces computation
time, but it may lose the gradient of lane lines leaving them
undetected. Yoo et al. [65] proposed a solution to this prob-
lem by enhancing the gradient through contrast enhancement
of white and yellow lanes of the road with respect to the road.
As the RGB intensity values of the same objects can vary
under different illumination, therefore enhancing intensity
values of a color with the same ratio is impractical. Therefore,
they used two random adaptable vectors for yellow and white
lanes, which produce a grayscale image having maximum
road lanes gradient.

Other methods to preserve lane gradient invariant of
shadow and other attenuation effects include processing im-
ages in a specific channel of RGB or conversion of images to
other formats such as HSI [66], YCbCr [67] YUV [68], [69]
and HSV [70] etc.

Another approach to preserving the lane markings gradient
minimizing attenuation effect is proposed by Liu et al. [71].
They first performed IPM on images. Then wavelet decompo-
sition was performed, followed by wavelet reconstruction in
order to enhance vertical edges and to weaken the horizontal
edge information (because in IPM lanes are transformed into
vertical lines). Then the Sobel operator and the Canny edge
detector are applied to these processed images. These oper-
ators are aimed to produce a binarized image highlighting
the road lanes and converting all the pixels other than the
road lanes to black. Finally, this binarized image is processed
using Hough transform to convert lane points into coordinate
points. Another variation of edge detection approach is “mid-
dle to side strategy". This approach begins with the search for
non-zero pixel or negative/positive gradient on both sides of
the road and moving upwards connecting points in successive
upward locations. This method is more prone to misdetection
because the first pair of points might be the artifacts [72].

1.2. Techniques using road texture feature

A popular technique of road detection using texture infor-
mation is intensity thresholding. As the whole road region
mostly has darker intensity values as compared to the sur-

rounding. Hence, using connected component and threshold
intensity values, the road region is segmented out from
pixels outside the road. Seo and Rajkumar [73] performed
intensity thresholding to identify the boundary of drivable
regions. Firstly, they applied IPM on acquired image frames,
followed by intensity thresholding for road region detection.
Lastly, the Bayes filter and unscented Kalman filter were
used to track detected boundaries. A limitation to intensity
thresholding technique is that the threshold has to be adjusted
according to the illumination condition and the detection
result varies by the threshold value [74].

1.3. Techniques using color feature

All the methods for drivable road region estimation involve
using color feature. Typical image frames are in RGB format,
which might be converted to other color formats in order
to reduce computation complexity or to aid better detection.
Illumination conditions keep varying constantly in different
times of the day, hence affecting other features used for road
region detection. For example, the gradient of lane markings
may not be preserved in very low illumination conditions,
hence leading to faulty lane detection. In short, the color
feature is essential in all methods of drivable road area es-
timation. Hence the color feature is taken into consideration
for devising road detection methods employing other road
features.

2) Model-based approaches for road area detection

In this approach, road boundary points are matched with
templates or lane models such as a parabola, hyperbola,
spline, and linear line; the best-fitted shape determines the
road boundaries. Hough transform and Random Sampling
Consensus (RANSAC) are the most popular model-based
approaches used for fitting lines and other geometric shapes
on the road boundaries for detecting lanes.

Through a detailed analysis of the literature regarding lane
detection, it is found that the majority of techniques utilize
Hough transform at some stage for lane detection. Hough
transforms works by finding the slope at each edge point
and proposing a single line that has the majority vote at
edge points. Hence a straight line can be drawn at the lane
position on the road using Hough transform, or in other
words lane boundaries can be represented in coordinates by
straight Hough lines. This process also has the advantage of
connecting dotted or disconnected lane edges. Yet, a major
drawback is that it is not efficient in the curve lane detection.
Another problem is that artifacts on the road, such as cracks,
navigational text, and arrows, etc. often have features similar
to straight lines. Hence Hough transform may mis-classify
these artifacts as the best candidate for lanes.

Another widely used method in this regard is the RANSAC
method. RANSAC first proposed by [81], performs iterative
estimation of parameters of a mathematical model from
observed data points. Robust estimation of model parameters
and separating out the inliers from the outliers with high
accuracy is the main advantage of this method.
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TABLE 1: Review of lane detection and tracking techniques

Ref Year
Preprocessing and

extraction of edges
Lane marking extraction Tracking Evaluation Critic

[56] 2018
Grayscale conversion,
Custom edge detection

technique(EDline)

Hierarchical
agglomerative clustering

and slope filter
Kalman filter

99%, 96% and 93%
accuracy during day with

clear, rainy and snowy
conditions respectively;

98% and 93% during
night with clear and rainy
conditions respectively.

Testing is done only on
straight roads (curve

scenarios are not handled)

[58] 2017 Image Binarization Hough Transform Kalman filter

97% accuracy in daytime
and 95% accuracy in

night-time. Operates on
15fps

Their method doesn’t
operate well on dotted

lanes

[59] 2013
IPM, Gaussian filtering,

Denoising template
filtering

Hough transform,
RANSAC B-Spline

Fitting algorithm
Kalman filter

Robust in straight as well
as curved roads with 92%

accuracy and 72ms
maximum processing time

for one frame

Not tested in low
illumination conditions or

night light

[60] 2018
IPM, Grayscale

conversion, Canny edge
detector

Hough transform, Linear
interpolation, Cubic spline

and cubic spline with
shape preservation

—-

87∼98% of accuracy,
Among the three

interpolation functions,
best result was obtained
with cubic spline with

shape preservation

Testing was not done in
Realtime

[64] 2019

Grayscale conversion,
image binarization,
dividing ROI in two

sections

Hough transform, lane
curve model

Custom built
tracker

92∼93% accuracy in
various challenging

scenarios like various
curves, night light, foggy

and rainy weather
conditions,

Testing was not done for
cases with intrusion on

lane markings

[63] 2014 Canny edge Detector Hough transform Kalman filter

91.0% of visible lane
boundaries were detected
successfully and 90.9% of
the detected results were

correct

Poor performance in
heavy traffic and uneven
illumination, Suitable for
straight roads but not for

curved

[70] 2017

Gaussian smoothing,
binarization, contrast
enhancement, RGB to

HSV conversion

RANSAC —-
86.21% accuracy with

4.3% standard deviation in
real time

Not tested in low
illumination conditions

RANSAC is found to be more efficient in curved as well as
straight lane detection. Many researchers combined model-
based and feature-based approaches, for attaining improved
results. For example, applying Hough transform on canny
edge detected image. In Table 2, a short review of feature-
based and model-based approaches have been presented.

C. STEERING ANGLE ESTIMATION

After performing road boundary extraction process, required
steering angle is computed. Different techniques have been
proposed by researchers for this purpose. The extracted
boundary points and the heading direction of the vehicle
are used for this purpose. In a technique proposed by Dev
et al. [82], required steering angle is determined as the
angle between Point of Intersection (POI) and the heading
direction of the vehicle. POI is the (x,y) coordinate, where
the extracted left and right boundary lines meet, as shown in
the Figure 5.

If the POI and the center point of road is aligned, the
required angle for AV to steer is zero. In the other case, a

FIGURE 5: Point of intersection of left and right boundary
lines

center line is determined connecting the POI and the center
of image, on the basis of which the required steering angle
is computed. Let sr and sl be the slopes of right and left
extracted line. Let br and bl be the slopes of angle bisectors
determined by sr and sl. The slope of the center line (slopec)
can be computed using following equations:
slopec1 = (sl ∗ br)−

sr∗bl
br−bl

slopec2 = (sl ∗ br) +
sr∗bl
br+bl

If abs(slope(c1)) > abs(slope(c2)), slope(c1) is chosen as
slope of center line; the intercept of middle line is computed

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083890, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Feature and model-based lane detection techniques

Ref Year Contribution Approach used
Type of roads and scenarios used

for testing
Color channel

[73] 2014

Efficiently performed detection and
tracking of unmarked road boundaries

by applying connected component
labeling of an intensity threshold image

followed by unscented Kalman filter

Feature-based
approach

Unmarked paved public roads,
images with snow by the sides of

roads
RGB

[75] 2020

Achieved Shadow and illumination
robust lane detection by firstly applying

top-hat transformation to filter out
non-lane objects and enhance the
contrast, then applying threshold

segmentation algorithm followed by
Hough transform algorithm with polar

angle and distance constraint.

Feature-based
+

Model-based
approach

Multi-lane urban roads with
various complex scenarios like

shadows, road marking
interference, damaged road

surface, road painted with other
shapes in addition to lane

markings, and scenarios with
different illumination conditions

Grayscale

[76] 2020

Robust lane detection by ’dynamic
region of interest technique’ achieved
through using vehicle speed data and

lane line equation

Feature-based
+

Model-based
approach

Highways, rural roads, wet roads,
curved and straight roads, day and

night scenarios
Grayscale

[77] 2020

Computationally efficient lane
detection in the scenarios with

interrupted lane marking, through the
use of model of road structure and

extended kalman filter.

Feature-based
approach

Various complex scenarios, such
as, strong light, lane-changing,

zebra crossing, dashed markings,
curved road, and presence of

shadows etc

Grayscale

[78] 2016

Improved curved lane detection by
combining Hough transform (for

section of road near the vehicle) and
parabolic model fitting (for section of

road far from the road)

Model fitting
approach

Roads with dark lane boundary
markings

Grayscale

[79] 2010

Improved lane detection by linking
edges using Ant colony optimization,

lines were extracted by the Hough
transform after applying canny edge

detector

Feature-based
+

Model-based
approach

Straight roads Grayscale

[80] 2020

Efficiently detected curved as well as
straight lane markings by fitting third
order spline over regions with highest
density of nonzero pixels of the image

obtained after edge and color
thresholding

Feature-based
+

Model-based
approach

Straight as well as curved roads Grayscale

as follows:
interc =

(cl∗br)(cr∗bl)
br−bl

Otherwise slopec2 is selected and the slope of centerline is
computed as follows:
interc =

(cl∗br)+(cr∗bl)
br+bl

The pair (slopec, interc) characterizes a line in cartesian
plane, which is the navigating path for the vehicle. A ref-
erence point from this line (x2,y2) and the POI (x1,y1) are
utilized to determine the required steering angle, as can be
seen in Figure 6.

The equation used for the computation of required steering
angle ’θ’ is as follows:
θ = arctan (y2−y1)

(x2−x1)

The main limitation to this technique is that it does not
handle the cases when only one boundary line or no boundary

line is detected. Yet in a technique proposed by Umamah-
eswari et al. [83], a virtual boundary line is computed if only
one line is detected, using the following equations:
For left virtual boundary line-
ψ = −(1/3) ∗ (η + 45) + 10,
For right virtual boundary line-
ψ = −(1/3) ∗ (η − 45)− 10.

Where ψ is the virtual edge inclination and η is the inclina-
tion of detected opposite edge. In their proposed technique,
steering angle is computed by drawing a line from the middle
of the road to the starting position of both extracted bound-
aries. Afterwards, the following equations are computed:
µ1 = arctan(b1/a1),
µ2 = arctan(b2/a2),
θ = µ1− µ2,
φ = b1− b2,
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FIGURE 6: Steering angle computation method proposed by
Dev et al. [82]

a1 = a2 = image width/2 = pixel distance
b1 = distance of (image height,0) value from edge.
b2 = distance of (image height, image width) value from
edge.
θ = steering angle required to align the vehicle in the center
of the road. φ is the perpendicular steering distance . The
value of φ varies between 150 to 100 based on the scenario.
A negative value of φ indicates rightward drag of the vehicle
and θ denotes the steering angle to align it along the mid-line
of lane. Similarly, a positive φ value indicates leftward drag.

The scenarios handled by their proposed algorithm and
their implication are listed in Table 3 and depicted in the
Figure 7.

TABLE 3: Conditions for different road scenarios

Scenario Steer Straight Steer Right Steer Left

φ -30<φ<30
b2>b1
φ<-30

b2<b1
φ>30

θ µ1-µ2=0
µ2>µ1

θ=negative
µ2<µ1

θ=positive

FIGURE 7: Cases of angular aberration from center of the
road [83]

In another approach proposed by Sujatha et al. [84],
steering angle prediction is done based on three cases: (1)
neither of the left or right boundaries are detected (2) both
the boundaries are detected and (3) one of the boundaries is
detected. Description of the steering angle prediction in all
these cases is as follows:

• Case1
When none of the boundary is extracted, the vehicle is
allowed to move straight along its path till it finds one
or both lane boundaries.

• Case2
In this case when both boundaries are extracted, the
slope and position of both extracted lines is determined.
The line in the right half of image and having a positive
slope is the right boundary; whereas the line in the
left half of the image and having a negative slope is
determined as left boundary. From the slope of both
boundaries, the common POI is calculated. The required
steering angle will be the deviation of POI of the bound-
aries from the orientation of the vehicle (centerline of
the image). The whole procedure from finding the slope
to the steering angle computation, is performed using
the following equations.

Sloperight = (Y4 − Y3)/(X4 −X3),
Slopeleft = (Y2 − Y1)/(X2 −X1),
C2 = Yright − (Sloperight ∗Xright),
C1 = Yleft − (Slopeleft ∗Xleft),
InterX = (C2 − C1)/(Slopeleft − Sloperight),
InterY = ((Slopeleft ∗ InterY ) + C1),
S = ((InterX − (w/2))− (InterY − h)),
Steering angle = 90− (tan−1(1/S) ∗ (180/π),

where X1; X2; X3; X4 and Y1; Y2; Y3; Y4 are the co-
ordinate points, whereas C1; C2 are the constants of the
extracted lines. Inter X and Inter Y are the coordinates
of POI of both extracted lines. S is the slope between
POI of the boundaries and the vehicle heading direction,
whereas h and w are the height and width of the image
in pixels. In Figure 8, marked points 1-4 represent the
coordinate points; marking 5 represents the POI of both
the boundaries; and marking 6 represents the required
steering angle. White dotted lines represent the center-
line of the image.

• Case3
When only one of the boundaries is visible within the
field of view of the camera, two approaches that can be
adapted are: (a) maintaining the vehicle in the center of
the road; (b) maintaining the vehicle towards the visible
boundary.

-- Case3a
In this case the vehicle is maintained at the center
of the road. If only one boundary is extracted, the
other boundary is usually considered the last column
of pixels on the other side of the image. For example,
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FIGURE 8: Depiction of points used for steering angle
computation [84]

if right boundary is not visible and only left boundary
is visible, then. The last pixel column on the right
side of the image is considered the right boundary.
After calculating the slope of both, the steering angle
computation is done using the same procedure as
mentioned for case 2.

-- Case3b
In this case the vehicle is maintained at a certain
distance from the visible boundary. If the width of
road is too large, it is difficult to maintain the vehicle
in the middle of the road since this way it will
move in a zigzag manner, especially on turns. Hence,
the vehicle can be maintained at a certain distance
from the road boundary instead of maintaining at
middle of the road. To keep the vehicle at a certain
distance from the boundary a base offset needs to be
computed, which is done as follows. Let a distance
to be maintained from the required boundary be 2m.
An imaginary straight-line boundary is assumed of
which the two sides are [x1, y1, z1] = [x1, 2, height
to which the camera is mounted] and [x2, y2, z2] =
[x1 + displacement, 2, height to which the camera
is mounted]. The points are converted into camera
coordinates and base offset angle is computed using
following equations:
θ1 = (180/π) ∗ (tan−1(y1/x1)),

φ = 90− 180
π

∗ tan−1(

√
x2

1
+y2

1

z1
),

Ix = rows/horizontalfov,
Iy = cols/verticalfov,
xim1 = rows− (cx + (θ1 ∗ Ix)),
yim1 = cols− (cy + (φ1 ∗ Iy)),
θ2 = (180/π) ∗ (tan−1(y2/x2))

φ2 = 90− 180
π

∗ tan−1(

√
x2

2
+y2

2

z2
),

xim2 = [rows− cx + (θ2 ∗ Ix)],
yim2 = cols− (cy + φ2 ∗ Iy),

φd = tan−1( (yim2−yim1)
(xim2−xim1)

) ∗ ( 180
3.14 ),

where x1; y1; z1;x2; y2; z2 are the assumed edges
of the boundary, xim1; yim1;xim2; yim2 are the cor-
responding image coordinates, cy is the center y-
coordinate of the image, cx is the center x-coordinate

of the image, cols are the pixels along height of the
image, rows are the pixels along width of the image,
ly is the vertical pixel per degree information, lx is
the horizontal pixel per degree information, and θd is
the base offset angle in degrees. This base offset angle
is maintained until vehicle has to maneuver with one
boundary. The angle between the extracted boundary
and the frame of reference is computed. For every
successive frame, the required steering angle is the
difference between the base offset and the angle of
frame of reference with the extracted boundary line.

Another recent technique of steering angle prediction pro-
posed by Tu et al. [85] also handles the cases when only
one boundary or none of boundary lines are detected. In their
proposed approach, a vertical line in the center of the image
is drawn and then following cases are considered:

• If a single left or right line is detected, the required
steering angle is the angle between the vertical line and
the detected lane.

• If both lines at the left and the right are detected:
Linear average of the two lanes is computed and the
required steering angle is the angle between the vertical
centerline and the linear average.

• If no lines are detected, preceding angle is used.

In Figure 9, vertical centerline is drawn in black and
the required steering angle is the angle between extracted
lane and linear average for single and both extracted lanes
respectively.

FIGURE 9: Steering angle computation proposed by Tu et al.
[85]

Another approach to steering angle estimation proposed by
Abdelrahman et al. [86] is by using decision tree. The current
situation of vehicle on the road is interpreted using decision
tree and respective heading line behavior is selected. In this
technique, after performing lane marking extraction process,
road is divided into segments. Two decision trees are then
used, one for upper and other for lower segments, see Figure
10 and 11.

In the decision tree. The first decision factor is whether the
boundary lines are detected or not and in which parts lines
are detected. If both left and right lines are detected, then the
distance between the two lines is measured in order to check
lane width. This is done to solve a problem of false detection
which comes from objects around the track or uneven light-
ing. If the condition is false, the current heading direction of
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FIGURE 10: Decision tree for the lower parts of the image

FIGURE 11: Decision tree for the upper parts of the image

the vehicle is checked. If heading direction determines that
the vehicle is turned to the right, the left detected line is not
considered in the steering angle estimation and vice versa.
If only one line is detected in the image, it is checked that
whether the vehicle is still within the lane boundary or not.
This verification is vital because the vehicle might be about
to leave the lane boundary, or the vehicle is approaching a
curvature. If the detected lane line appears in the right part at
the present step and in the previous step there was a single
line appearing in the left part, then the decision will be to
move the vehicle parallel to the detected line but in the right
side. But if the condition is false, the vehicle heading will be
parallel to the line but in the left side. If there is no line, this
means that the vehicle is still within the lane and the decision
is to proceed straight.

The decision tree for the upper and lower parts are the
same, other a condition to check if the detected line appears
in the upper right part and not the left lower part or vice
versa. This condition is checked since this line may be an

extension of the line detected in the opposite lower part
(curved lane line). If this condition is true, the line in upper
part is not considered in steering angle calculation step. But
if the condition is false, the decision tree will follow the
same conditions that are already checked of the lower parts.
Realtime testing results of their approach are depicted in
Figure 12.

FIGURE 12: Examples of the algorithm behavior after pass-
ing through the decision trees(As a reference the green is the
left detected line, the blue line is the right detected line and
red line is the calculated vehicle heading)
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When both the left and the right lines exist, the desired
steering angle is based on the average of the two lines’ slopes.
But if only one line exists, the desired steering angle is based
on the slope of line detected. In case when no line exists, the
vehicle should proceed with zero steering angle.

III. STEERING ANGLE PREDICTION USING

IMITATION-LEARNING-BASED APPROACH

Recent years have witnessed emergence and prevalence of
ANNs which has evoked a storm in intelligent transportation
systems. Among these, leveraging ANN models for vision
and control mechanisms required for lane keeping are notable
breakthroughs. An amazing development in this regard is
steering angle prediction through imitation-learning-based
approach. Research in imitation-learning-based steering an-
gle prediction started with second competition involving
the Udacity self-driving car. The winner of the competition
developed nine-layered CNN model [87], which was deter-
mined to be successful in autonomously driving the vehicle
in the Udacity simulator. Since then, continuous research
has been conducted on the design of optimal neural network
architectures for steering angle prediction and the discovery
of hyperparameters that deliver optimal training results.

Employing the imitation learning technique, the machine
learns the steering angles to be actuated on different scenarios
through human driving demonstration. For this purpose, im-
ages/sequence of images and steering angles induced during
driving the vehicle are collected simultaneously, which are
used as training data the ANN model. That is, the steering
angle is predicted by the ANN model using raw image pixels
as input.

Solving any problem using ANN involves following steps:
ANN model architecture formulation, dataset collection,
training ANN model & ANN model testing, and lastly op-
timizing ANN and retraining it to improve the results.

1) NN architecture formulation

For the purpose of steering angle prediction using imi-
tation learning approach, various architectures of ANNs
and their efficiency have been explored. Most widely used
ANNs for this purpose are Convolutional Neural Network
(CNN), Long-short-term-memory network (LSTM) and their
variants. Table 4 presents some recent studies conducted
for steering angle prediction using imitation-learning-based
approach.

1.1. CNN

It has been convincingly shown over the last few years,
that CNNs can produce a rich representation of the input
image by embedding it to a fixed-length vector, such that this
representation can be used for a variety of vision tasks [88].
CNNs are basically proficient in analyzing visual imagery.

The basic structure of a CNN has an input and an output
layer, as well as multiple hidden layers. Hidden layers of a
CNN consist of series of convolution layer, pooling layer,
normalization layer and fully connected layers. Convolu-

tional layers basically convolve over the data (usually im-
ages) with a multiplication or other dot product. This layer is
regarded as convolution only by convention. Mathematically,
a sliding window or filter performs dot product with the given
image. This operation has great importance for the indices in
the matrix, in that it affects how weights are determined at a
specific index point. The output of this layer is then directed
to the next layer called pooling layer, which is intended to
reduce the size of data in order to reduce computational
complexity [89], [90].

Due to remarkable performance in visual imagery un-
derstanding, CNN and its variants are being used for the
task of steering angle prediction. Various CNN architectures,
differing in number of layers and neurons in each layer, have
been explored for the purpose of steering angle prediction
[4], [87], [91]–[96].

1.3. Long short-term memory Network

Unlike standard feedforward neural networks, LSTMs
have feedback connections. LSTM not only can process
single data points (e.g., images), rather they can proficiently
process entire sequences of data (such as speech or video)
[97]. Due to the outstanding performance of LSTM in se-
quence learning and understanding, it has been used to AVs
for efficient lane keeping by analyzing the dependencies
between consecutive image frames. LSTMs are used to inter-
pret temporal dependencies and is mostly placed after CNN
which detects features. This CNN-LSTM assorted model has
been employed by several studies [98]–[100].

2) Dataset Collection

To utilize ANN for any purpose, training it with suitable data
is the first step. To train ANNs for the purpose of steering an
AV, different parameters (like steering angles and speed etc.)
are obtained through human demonstration during driving.
The required dataset in this regard can be produced using a
simulation software (like CARSIM, CARLA and TORCS)
[101]–[103], or by a human driven vehicle whose actions
and decisions are recorded using onboard cameras and angle
sensor [104]. Moreover, many state-of-the-art datasets (such
as, DIPLECS, Udacity and Comma.ai) are available publicly
which can also be utilized to train ANN models for steering
angle prediction. Purpose of training ANNs is to make the
system familiar with various scenarios and appropriate de-
cisions to be taken under different circumstances. Hence a
dataset for steering angle prediction should provide compre-
hensive coverage of various types of roads and illumination
conditions. Collecting the dataset covering all kinds of illu-
mination conditions and road structures in real world is an
expensive process in terms of resources and time. A solution
to this problem is ‘data augmentation’, which is basically a
technique to increase the amount of training data by applying
transformations on available data.

Tian et al. [105] proved through experiments that applying
realistic transformations on images and using the original
as well as transformed images for training, elevated the
performance of ANN. These image transformations include
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TABLE 4: Imitation learning approach for steering angle prediction

Ref Year
ANN

used

Number of

layers of ANN
Dataset used ANN model Testing Critic Evaluation metrics

[87] 2016 CNN 9 layers
Manually collected

data

Testing on simulated as
well as real-time

environment

Lane changing scenarios
were not handled

Model was able to
drive accurately 98%

of time for 10 miles of
driving in real-time

[91] 2018

Inception
V3

(variant
of CNN)

48 layers
25 hour driving in

GTAV game

Testing was done by
driving car in simulated
environment of GTAV

game

Pretrained inception V3
weights were not able to
recognize the patterns in
input frame from GTAV

game

35% classification
accuracy

[92] 2017
CNN-
LSTM

1 input layer, 2
hidden layers, 1

output layer
(total 4 layers)

Manually collected
dataset using
prototype car

Testing was done on a
prototype car using

Raspberry Pi module

Testing done on a toy car
rather than a real car

95 % classification
accuracy

[93] 2017 CNN
3 convolutional
+ 4 Relu + 3 FC
(total 10 layers)

152K frames from
“comma.ai" dataset

Testing was done on
videos from “comma.ai"

dataset

Night illumination
scenarios were not

handled, model was not
tested to drive car in
simulation nor in real

world

MSE of 2.42 and
standard deviation

error of 3.26

[94] 2017 CNN

1 output, 1
output, 3

convolution, 1
FC layers

Dataset collected
through driving in

CARSIM
simulator

Testing was done by
driving car in CARSIM

simulator

Does not have reasonably
well accuracy on unseen

data

ME of 0.0338 and
0.0346 standard

deviation using NAG
optimizer

[95] 2019
CNN-
LSTM

Input layer,
CNN (having 6
convolution, 2

FC, 1 input
layer), 2 FC and
a LSTM layer at

the end

dataset collected
through driving in
CARLA simulator

Testing was done by
driving car in CARLA

simulator

A single end-to-end
network for lane steering

control, speed
adjustment, traffic light
and speed limit signs

identification is
computationally

expensive

0.014 validation loss
& 0.022 testing loss on

CNN-LSTM

[96] 2018 CNN

1 input layer, 1
output layer, 2
hidden layers
(total 4 layers)

10868 manually
collected image

frames

Testing was done on a
prototype car using

Raspberry Pi module

Lane changing scenarios
are not handled

Model drove the
prototype vehicle

intensity, color, dimension, spatial and other realistic trans-
formations. The majority of other studies also performed the
image transformations for more exposure of scenarios to the
ANN e.g., adding shadow to random parts of images and
flipping images horizontally etc.

3) ANN training and testing

Training of an ANN model is of critical importance. The
training process of any ANN model is basically aimed to
find a set of optimal network parameters. These optimal
parameters are saved in some form (depending on software
being used) as a trained model. Efficiency and accuracy of
this trained model are tested on test dataset and validation
dataset through evaluation metrics. Mostly used evaluation
metrics for measuring the performance of any ANN model on
test dataset is the mean error (ME), mean square error (MSE),
root mean square error (RMSE) and standard deviation error.
Whereas, some researchers used percentage accuracy for re-
porting the results. Supervised training is the dominant trend
followed to train ANN models for steering angle prediction
purpose. Yet a few researchers used unsupervised technique

TABLE 5: Frameworks for training ANN models for purpose
of steering angle prediction

Frameworks References

Caffe [94], [108]–[115]

Pytorch [116]–[120]

Keras with tensorflow as
backend

[91], [121]–[127]

for this purpose. Yang et al. [106] used an unsupervised
learning algorithm to train an improved auto-encoder at the
first stage of training. Then in fine tuning stage, which is
the second stage of training, the model was trained using
supervised learning.

ANN training frameworks which are mostly used for
training steering angle predictive models include: Keras with
tensorflow as backend, Caffe [107], and Pytorch. Research
studies in which these frmaworks have been used are listed
in the Table 5.

For testing the performance of the ANN models, three
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approaches have been used in the literature: (i) Using offline
images and videos as test set (ii) Using an autonomously
driving toy car (iii) Testing on driving simulator (iv) On-road
testing

In the first method of testing, researchers reported average
prediction results on test dataset of images or videos which
have already been recorded. For example, Chen and Huang
[93] used CNN model having 3 convolutional layers, 4 relu
layers, and 3 fully connected layers. Five video clips having
152K frames were taken from comma.ai dataset for training
and 2 video clips were taken for testing from comma.ai
dataset. The mean absolute error found was 2.42 and the
standard deviation of the error was 3.26.

In the second method of testing, a toy car is used. For
example, Jain [96] used steering angle predictive CNN to
autonomously steer an Arduino driven car. Implementation
was done using Raspberry Pi and a camera module mounted
on the top of the prototype car. CNN architecture used
consisted of 128 input nodes, two hidden layers, each having
32 neurons and lastly an output layer having four neurons for
each of four outputs (i.e., left, right, stop and forward). 10868
images frames extracted from video were used for training
process. Though their proposed model was able to efficiently
drive a prototype. Yet they did not perform Realtime road
testing.

In the third type of testing method, driving simulators are
used for testing performance of the ANN model. Rausch et
al. [94] developed CNN-based autonomous vehicle steering
model and simulated it using car simulator (CARSIM). It
contained 3 convolutional layers, 1 fully connected layer, 1
input & 1 output layer and a batch size of 128. They used
a single camera as a sensor for analysis of environment. For
training of their model, they gathered frames labeled by steer-
ing angles data obtained through human driver demonstration
using joystick wheel in CARSIM simulation. They used
neural network framework CAFFE. For updating weights and
bias they used three solvers Nesterov’s accelerated gradient
(NAG) solver getting mean error of 0.0338, SGD solver
getting error of 0.0395 and Adam solver whose error was
0.0465. Among these Nesterov’s accelerated gradient (NAG)
solver was found to perform best on their model. Haavaldsen
et al [95] simulated AV driving on Carla software [103] to
train and test CNN as well as CNN-LSTM models. CNN
used was inspired by DAVE-2 [87] developed by NVIDIA.
They used 10 million simulation steps for training to auto
steer the vehicle in Carla environment. Chaudhari et al. [91]
used Inception V3 to enable learning steering angles, throttle,
acceleration and deceleration decisions based on a given
image frame. The dataset was collected by 25 hours driving
car in GTAV game (used as simulator). Testing was also done
using different tracks of GTAV game and 35% accuracy was
obtained.

The fourth type of testing involves utilizing the steering
angle predicted by the ANN model to autonomously steer a
real car in realtime. Bojarski et al. [87] trained their model
using 9 layers of convolutional neural network (CNN) using

10 frames per second (FPS) of video. They tested their model
by 3 hours of 100 miles driving in a simulated environment,
and 10 miles of real road driving. The model was able to
drive accurately in real time for 98% of the time. The problem
with their approach is that it did not tackle scenarios with
obstacles, vehicle or any object in front. Moreover, no lane
changing scenarios was taken into consideration for training.

4) Optimizing ANN for optimized results

Any neural network has parameters and hyperparameters,
each configuration of which gives different results. There-
fore, neural network designed for any problem needs tuning,
to get high accuracy and reduced error. Hence parameter as
well as hyperparameter tuning of a neural network is of chief
importance.

4.1. Parameter Tuning of neural network

For the parameter tuning of ANNs, gradient methods are
most widely used , among which, stochastic gradient descent
using the backpropagation algorithm is the most popular one
[128]. Backpropagation has some drawbacks. Firstly, it has
“scaling problem" i.e., it works well on simple and less
complex problems, yet its performance degenerates rapidly
as the complexity of problem increases. Secondly, it has a
high tendency of getting trapped in local minima especially
in multimodal problems. There is a way to escape these
local minima with a high enough momentum, yet it lacks
knowledge of whether the succeeding one will be better or
worse. When the global minima are hidden among local
minima, it can keep bouncing between local minima without
having overall improvement [129]. The third drawback of
backpropagation is that it has slow convergence. Another
chief weakness of the gradient methods is that the derivative
information is essential such that the error function to be
minimized has to be differentiable and continuous. Moreover,
backpropagation has a high dependency on the initial param-
eters. To solve these problems, nature-inspired algorithms are
being used for parameter training of neural network used
for huge, complex, multimodal and nondifferentiable domain
[129]–[131]. Various studies have demonstrated that nature
inspired optimization algorithms outperform significantly
than backpropagation in training the neural networks [132]–
[136]. Another popularly used optimizer used for steering
angle prediction is Adam optimizer and was found to outper-
form standard SGD optimizing method [100], [137]–[141].
Rausch et al. [94] also employed Nesterov’s accelerated
gradient (NAG) and found that it outperforms Adam and
SGD optimizer.

4.2. Hyperparameter Tuning of Neural Network

Hyperparameter tuning is another critical aspect of train-
ing a neural network. The efficiency of a neural network
highly depends on its hyperparameter tuning. Hyperparam-
eters of a neural network include learning rate, number of
epochs, batch size, activation function, dropout for regular-
ization, number of hidden layers and units. A convolutional
neural network has convolution, Relu, pooling and fully con-
nected layers. The organization of these layers and the size of
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filters in each one of them are chosen during hyperparameter
tuning of hidden layers and units of CNN. Each combination
of all the hyperparameter values has different impact on
learning network parameters of neural network.

Hyperparameter optimization is an attempt to identify
set of optimal hyperparameters which minimizes the gen-
eralization error for the given problem. This becomes very
challenging when the dimensionality of the hyperparameter
space increases. Especially, deep neural networks have many
different hyperparameters that can be adjusted to any given
input data set, resulting in a high-dimensional search space.

For this process of optimizing hyperparameters, brute
force technique has been widely used in the past, i.e.,
manually adjusting each hyperparameter by practitioner and
finding at which combination of these values the model gives
the best result. Especially in case of CNN with a potentially
high number of filters on each layer hyperparameter setting
can take a long time. So, using brute force for this purpose
is not an efficient way. Recently, EA (GA and differential
algorithms, etc.) and swarm-based algorithms (e.g., Particle
swarm optimization algorithm) are emerging as optimization
techniques for this purpose. These techniques are inspired by
biological phenomenon of evolution and collaborative social
behavior of animals. Mostly Genetic algorithm [142]–[145],
Particle swarm optimization [146]–[151] and their variants
are used for this purpose.

Nature inspired algorithms proved efficiency for parameter
and hyperparameter search problems separately. Yet several
researchers also used these algorithms to simultaneously
train ANN network and optimize its architecture [152]–
[154]. An another area of research in this field is to com-
bine nature inspired algorithms by traditional gradient search
techniques for speeding up convergence and having higher
accuracy [155], [156].

IV. OPEN RESEARCH QUESTIONS

Despite several advancements in the steering angle prediction
of AVs, there are still many challenges that require further
study. In this section, we outline some of the challenges
and open research questions revealed in the literature survey
which are as follows:

A. CONVOLUTIONAL NEURAL NETWORK

OPTIMIZATION

Bat algorithm has been used for optimization of hyperparam-
eters by a simple feedforward neural network; and showed
better results for hyperparameter tuning of feedforward ANN
as compared to GA and PSO [157]. Yet, to the best of
our knowledge Bat algorithm has not been used for the
optimization of CNN hyperparameters. Hyperparameter opti-
mization of a neural network is a non-convex, non-linear and
complex global optimization problem. To solve these kind
of problems, Bat algorithm and its variants showed efficient
results as compared to various other popular nature inspired
metaheuristic algorithms [157]–[159]. Wang and Guo [158]
proposed a variant of Bat algorithm designed by incorporat-

ing pitch adjustment operation of Harmony Search. To verify
effectiveness of this improved Bat algorithm, they applied
fourteen standard benchmark functions and found that it
has superior performance in global optimization problems as
compared to Ant colony optimization, Differential evolution
algorithm, Genetic algorithm, and particle swarm optimiza-
tion. By considering these groundworks, it is expected that a
variant of Bat algorithm would outperform in hyperparameter
optimization of CNN for the purpose of predicting steering
angle for an autonomous vehicle. Therefore, exploring the
efficiency of bat algorithm for optimizing CNN structure
can be an interesting area of research. In order to achieve
this, each hyperparameter of CNN can be represented by
a dimension of bat. Hence a set of hyperparameters can
be encoded as a position of a bat. In this way, number of
bats represent the number of hyperparameter’s set and the
fitness of bat represents the evaluation metric of the CNN
model. Each hyperparameter set is improved by updating the
position of bat using equations of bat algorithm. The process
of updating the position of bats in the population is to be
repeated upto maximum number of specified generations.

B. AFFECTIVE DRIVABLE ROAD AREA DETECTION

Riaz & Niazi [160] concluded through their research study
that more robust collision avoidance can be achieved in AVs
through combining human emotions with a cognitive agent.
Likewise, a potential research horizon can be to incorporate
emotion feature in road boundary detection. As in real world
driving, various kinds of risky road scenarios are encountered
including bridges and roads on the hills, etc. In developing
countries most of the hilly roads are unstructured, unmarked
and not properly built. Moreover, scenarios where the system
is uncertain about the drivable road area due to heavy traffic
occluding the lane markings or due to overexposure, should
be discerned as high risk scenarios. For these kinds of sce-
narios, an element of fear can be incorporated into AVs for
safe autonomous lane keeping. To achieve this, fuzzy rules
can be applied based on the intensity of fear (e.g., very high
fear, high fear, medium fear, low fear, very low fear). The
intensity of fear corresponds to the level of risk. In high risk
scenarios, speed of the vehicle should be reduced and an
emergency handling module should be activated. The emer-
gency handling module can be designed in such a way that
firstly it analyses the problem and then act upon solving the
problem accordingly. For example, in case of unstructured
road and occluded lane markings, the steering angle can be
based on position of the front vehicle in horizontal plane in
the frame, instead of determining the angle based on road.
Quick analysis of the problem can be done through a function
determining the average pixels of the image.

C. TESTING SCENARIOS

Literature regarding real world imitation-learning-based
steering angle prediction deprives a comprehensive study
covering various testing scenarios varying in road types,
weather and illumination conditions. The researchers in the
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domain of ANN-based steering control of AVs heavily rely
on artificial datasets for the experimentation. However, the
use of artificial datasets has challenges in conducting exper-
iment with the aim of deploying the results in a real-world
environment [4]. There is a need for a comprehensive re-
search study covering real world road scenarios with different
weather conditions (such as snow, rain, sunny and cloudy),
illumination conditions and road types (including unpaved
and broken roads).

D. WEIGHTS INITIALIZATION IN ANN-BASED STEERING

ANGLE PREDICTION

The performance and convergence of majority ANN highly
depends on its weights initialization [161] [162]. Modern
deep learning frameworks such as Keras, Caffe and Torch
etc provide a facility of high level synthesis of ANN models
and controlling its training parameters. Researchers are using
automatic weight initialization using these deep learning
frameworks for the purpose of steering angle prediction.
Pretrained weights of various outperforming ANN models
are available the classification task. Yet, employing these
pretrained weights for regression task of steering angle pre-
diction is not feasible. Hence there is a need for a detailed
research study on weight initialization for ANN architectures
designed for the purpose of steering angle prediction.

E. PRACTICAL COMPARISON OF

IMITATION-LEARNING-BASED APPROACH AND

COMPUTER-VISION-BASED APPROACH

To be best of our knowledge, a practical comparison of the
two approaches of steering angle prediction has yet to be
done. Hence a study has to be conducted presenting the
comparison of processing time, accuracy and other evalua-
tion factors. For this purpose, recent baseline researches of
both approaches can be implemented by practically and then
results can be evaluated and compared.

F. RESEARCH STUDY EVALUATING DIFFERENT

TECHNIQUES OF DRIVABLE ROAD AREA DETECTION

Various techniques have been proposed by researchers for
drivable road area detection. As the testing scenarios un-
dertaken in each research study varies, supremacy of an
approach over the other cannot be assured. Hence, there
is a need for a research study which evaluates different
techniques using a single dataset. The selected dataset should
cover various scenarios i.e., different weather conditions,
traffic conditions, curves, colors of lane markings, and types
of lane markings etc.

V. CONCLUSION

Advanced driver assistance technologies such as lane keeping
are being incorporated into the vehicles in order to reduce
chances of accidents. Lane keeping systems are determined
to counter unintentional road departures, for which an ac-
curate steering angle prediction is crucial. In this paper, the
problem of steering angle prediction and various techniques

for solving it has been discussed. Vision-based steering angle
prediction involves analyzing road area using camera and
steering the vehicle autonomously within the road bound-
aries. Major challenge in this regard is to make the system
robust in various scenarios, such as illumination changes,
curved & straight roads, urban roads & highways, traffic
conditions in surrounding of ego vehicle, and different ar-
tifacts on the roads (e.g., shadows and cracked roads etc). In
order to meet this challenge, various solutions proposed by
researchers have been highlighted in this paper.

The first approach to steering angle prediction is through
computer vision escorted by image processing techniques.
The first step to this approach is capturing the vehicle en-
vironment through the camera. The obtained image frames
are then preprocessed to enhance the required features or
portions of the image. These preprocessed image frames are
then used for road detectors and/or tracking algorithms. By
analyzing the drivable road region, steering angle and other
parameters are derived by AV for maneuvering the vehicle
within the lane boundaries of the road. This is done by the
vehicle controller continuously sending commands to the
actuators according to the road dynamics and vehicle state.

The second approach to steering angle prediction is
through ANNs. This involves estimation of steering angle
by inputting frames or sequences of frames without per-
forming extra road region extraction processes. The obtained
steering angle along with other parameters is leveraged by
the controller for keeping ego vehicle on the road. Any
neural network model requires a dataset to be trained on for
achieving a particular task. For the neural network designed
for steering angle prediction, the dataset is obtained through
human demonstration through driving a car. After designing
any neural network model, optimization is crucial for obtain-
ing the required results. Traditionally, this is done through
hit and trial by the practitioner, but this is time consuming
and inefficient method. A more efficient way is to use nature-
inspired optimizartion algorithms for this purpose, which are
being in the research focus these days.

In this paper, various techniques adopted by various re-
searchers under both the approaches for steering angle pre-
diction are discussed. At the end of the paper, open research
problem regarding steering angle prediction has been high-
lighted. For future work, we are planning to conduct a review
analysis of the latest researches on the various perception
devices for autonomous vehicles.
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Proceedings, pp. 150–156.

[146] T.-Y. Kim and S.-B. Cho, “Particle swarm optimization-based cnn-lstm
networks for forecasting energy consumption,” in 2019 IEEE Congress

on Evolutionary Computation (CEC). IEEE, Conference Proceedings,
pp. 1510–1516.

[147] Y. Wang, H. Zhang, and G. Zhang, “cpso-cnn: An efficient pso-based
algorithm for fine-tuning hyper-parameters of convolutional neural net-
works,” Swarm and Evolutionary Computation, vol. 49, pp. 114–123,
2019.

[148] F. C. Soon, H. Y. Khaw, J. H. Chuah, and J. Kanesan, “Hyper-parameters
optimisation of deep cnn architecture for vehicle logo recognition,” IET

Intelligent Transport Systems, vol. 12, no. 8, pp. 939–946, 2018.
[149] T. Yamasaki, T. Honma, and K. Aizawa, “Efficient optimization of con-

volutional neural networks using particle swarm optimization,” in 2017

IEEE Third International Conference on Multimedia Big Data (BigMM).
IEEE, Conference Proceedings, pp. 70–73.

[150] T. Sinha, A. Haidar, and B. Verma, “Particle swarm optimization based
approach for finding optimal values of convolutional neural network pa-
rameters,” in 2018 IEEE Congress on Evolutionary Computation (CEC).
IEEE, Conference Proceedings, pp. 1–6.

[151] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor,
“Particle swarm optimization for hyper-parameter selection in deep neu-
ral networks,” in Proceedings of the genetic and evolutionary computa-

tion conference, Conference Proceedings, pp. 481–488.
[152] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and

neural networks: Optimizing connections and connectivity,” Parallel

computing, vol. 14, no. 3, pp. 347–361, 1990.
[153] S. A. Harp and T. Samad, “Optimizing neural networks with genetic

algorithms,” in Proceedings of the 54th American Power Conference,

Chicago, vol. 2, Conference Proceedings.
[154] W.-y. Ling, M.-p. Jia, F.-y. Xu, J.-z. Hu, and B.-l. Zhong, “Optimizing

strategy on rough set neural network fault diagnosis system,” Proceedings

of the CSEE, vol. 23, no. 5, pp. 98–102, 2003.
[155] I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing connection weights in

neural networks using the whale optimization algorithm,” Soft Comput-

ing, vol. 22, no. 1, pp. 1–15, 2018.
[156] S. Ding, C. Su, and J. Yu, “An optimizing bp neural network algorithm

based on genetic algorithm,” Artificial intelligence review, vol. 36, no. 2,
pp. 153–162, 2011.

[157] N. S. Jaddi, S. Abdullah, and A. R. Hamdan, “Multi-population coopera-
tive bat algorithm-based optimization of artificial neural network model,”
Information Sciences, vol. 294, pp. 628–644, 2015.

[158] G. Wang and L. Guo, “A novel hybrid bat algorithm with harmony search
for global numerical optimization,” Journal of Applied Mathematics, vol.
2013, 2013.

[159] R. Sedaghati and F. Namdari, “An intelligent approach based on meta-
heuristic algorithm for non-convex economic dispatch,” Journal of Op-

eration and Automation in Power Engineering, vol. 3, no. 1, pp. 47–55,
2015.

[160] F. Riaz and M. A. Niazi, “Enhanced emotion enabled cognitive agent-
based rear-end collision avoidance controller for autonomous vehicles,”
Simulation, vol. 94, no. 11, pp. 957–977, 2018.

[161] S. K. Kumar, “On weight initialization in deep neural networks,” arXiv

preprint arXiv:1704.08863, 2017.
[162] S. Timotheou, “A novel weight initialization method for the random

neural network,” Neurocomputing, vol. 73, no. 1-3, pp. 160–168, 2009.

HAJIRA SALEEM is pursuing MS degree in
Computer Science at Mirpur University of Sci-
ence and Technology (MUST), AJ&K Pakistan.
She received her undergraduate degree in Com-
puter Science from Fatima Jinnah Women Uni-
versity, Pakistan. She is currently employed at
Automotive and Robotics Lab, National Center
of Robotics, Department of Computer Sciences,
MUST, AJ&K Pakistan. Her research interests lies
in Machine Learning, Affective computing and

intelligent transportation.

VOLUME 4, 2016 19



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083890, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FAISAL RIAZ received his Ph.D. from Iqra Uni-
versity, Pakistan in 2018 in the field of Cyber
Physical Systems (CPS) and is currently serving
as an Associate Professor in the Department of
Computer Sciences, Mirpur University of Science
and Technology. His research interests are Vehic-
ular Cyber Physical Systems, Cognitive Radio,
Affective Computing, and Agent Based Model-
ing. He has more than 34 research publications
in various national/international research journals

and conferences. He is the author of three books as well. Furthermore, he
heads Control, Automotive and Robotics Lab, National Center of Robotics,
Department of Computer Sciences, Mirpur University of Science and Tech-
nology (MUST), AJ&K Pakistan. Under the banner of the CAR-lab, he
has innovated the world’s first ever cognitive and emotional Autonomous
Vehicle. He received the hall of the fame award in 2018 in the recognition
of his smart innovations. He is the reviewer of many well reputed jour-
nals. He has served as a technical program committee member in many
international IEEE conferences. His reviewing profile can be viewed over
https://publons.com/author/742771.

MUAZ A. NIAZI is Chief Scientific Officer (Pro-
fessor) at COMSATS Islamabad. With an under-
graduate degree in Electrical Engineering, Dr. Ni-
azi has an MS and a PhD in Computer Sciences
from Boston University, MA, USA and the Uni-
versity of Stirling, Scotland, UK respectively in
addition to postdoc from the Stirling’s COSIPRA
Lab. Dr. Niazi’s areas of research interest are
in the Modeling, Simulation and Engineering of
Complex Adaptive Systems (CAS) using various

techniques such as agent-based and complex-network-based approaches
other than distributed pervasive/mobile application development. Dr. Ni-
azi has published in many prestigious journals and conference proceed-
ings besides several books. Dr. Niazi is the Founding Editor-in-Chief of
SpringerOpen/Biomed Central’s Complex Adaptive Systems Modeling, an
Open Access journal and IGI Global’s International Journal of Privacy and
Health Information Management. He also serves as an Associate Editor for
Wiley’s Transactions on Emerging Telecommunication Technologies. Dr.
Niazi is an active member of the IEEE Consumer Electronics Society, IEEE
Computational Intelligence Society and IEEE Robotics and Automation
Society. He regularly organizes and participates in various capacities in
conferences, workshops, special sessions and journal special issues around
the globe. Dr. Niazi also serves as the founding Head of the COmplex Sys-
tems MOdeling, Simulation & Engineering (COSMOSE) Research group
at COMSATS. He is a senior member of the IEEE and has been listed
in the “Who’s Who around the World" and “Who’s Who in Science and
Engineering". Previously, he has also served as Director Research/ORIC at
Bahria University, where he played an active role in laying the foundations
of research practice in all University campuses.

AMMAR RAFIQ is currently working as Assis-
tant Professor, Department of Computer Science
at NFC Institute of Engineering & Fertilizer Re-
search, Faisalabad Pakistan. He has done his Ph.D.
in Computer Science from University of Engineer-
ing and technology Lahore, Pakistan, in 2021 and
Masters in Information Technology form National
University of Science and Technology (NUST)
Islamabad Pakistan, in 2007. His research inter-
ests include Optical communication and networks,

Wireless sensor network, and wireless communication.

SAQIB SAEED received the B.Sc. (Hons.) de-
gree in computer science from the International
Islamic University Islamabad, Pakistan, in 2001,
the M.Sc. degree in software technology from
the Stuttgart University of Applied Sciences, Ger-
many, in 2003, and the Ph.D. degree in information
systems from the University of Siegen, Germany,
in 2012. He is a Certified Software Quality En-
gineer from the American Society of Quality. He
is currently an Associate Professor with the De-

partment of Computer Information Systems, Imam Abdulrahman Bin Faisal
University, Dammam, Saudi Arabia. His research interests include human-
centered computing, data visualization & analytics, software engineering,
information systems management and digital business transformation. He
is an associate editor of IEEE Access and International Journal of Public
Administration in the Digital age, besides being member of the advisory
boards of several international journals.

LEONARDO MOSTARDA is an Associate Pro-
fessor at Camerino University, department of com-
puter science, Italy. In 2007 he was Research
Associate at the Computing Department, Imperial
College London. In 2010 he was Senior Lecturer
at networking department, Middlesex University
(UK). His research activities are in the areas of
IoT, middleware and security.

20 VOLUME 4, 2016


