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Abstract

This paper presents a simple steering control algorithm for a rigid
body model, which is a famous example of non-holonomic control sys-
tems with drift. The controllability Lie Algebra of a rigid body model
contains Lie brackets of depth two. We propose a back-stepping-based
adaptive controller design under the strict-feedback form. We analyze
two cases for continuous steering. In the first case, the parameters of
the model are assumed to be known while in the second case these
are estimated by considering them unknown. This approach does not
necessitate the conversion of the system model into a “chained for-
m”, and thus does not rely on any special transformation techniques.
The practical effectiveness of the controller is illustrated by numerical
simulations and graceful stabilization.

©2017 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The design of feedback control laws for systems with nonholonomic constraints has been a topic of
interest for researchers over the last few years. The problem statement was to find control laws that
can stabilize these systems about an equilibrium point. These systems with non-holonomic constraints
often arise in the form of mobile robots and robot manipulators that are either designed with fewer
actuators than the degree of freedom or they must be able to function in the presence of actuator
failures. There is considerable challenge in the stabilization of such systems as pointed out in a famous
paper by Brockett [1] that these systems cannot be stabilized by continuously differentiable, time
invariant, state feedback control laws.

A number of approaches have been proposed for the stabilization of these systems to overcome the
limitations that are imposed by Brockett. A complete survey of the field can be found in [2]. The
solutions that have been presented can be divided into three types. Smooth time varying controllers
[3,4], discontinues or piecewise smooth controllers [5,6] and hybrid controllers [7]. All the discontinuous
stabilization control strategies resulted in rough tracking and stabilization control over the states with
time.
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Fig. 1 (a) generic reference frame and vector and (b) the inertial and body fixed frames of rigid body.

In this paper a steering control algorithm for the rigid body model is presented. The method is
based on the adaptive backstepping technique originally proposed in [8–10]. The objective is to steer
the system from any initial state to any desired state. In our work we propose continuous steering
control algorithm in order to achieve more graceful control. The proposed scheme also controls the
plants with unknown parameters, therefore helpful in smooth tracking and adaptation. This method
does not require alteration of the system model into a “chained form”, and so it does not rely on any
particular transformation techniques.

2 A kinematics model of rigid body with two torque actuators

Let us consider a frame F0 attached to the rigid body and whose axis correspond to the principal inertia
axes of the body, and a fixed frame F1 whose attitude is the desired one for F0. Let us also denote X
the angular velocity vector of the frame F0 with respect to the frame F1, expressed in the basis of F0. J
the diagonal of the principal moments of inertia J = Diag ( j1+ j2+ j3) and S(X) represents the matrix
representation of the cross product called the Rotation matrix.

S(X) =





0 x3 −x2

−x3 0 x1

x2 −x3 0



 .

The Rotation matrix R from frame F0 to F1 is denoted by R
F0

F1
and is element SO(3) which is defined

as:

SO(3) = {R|Rεℜ3×3,RTR = 1 and detR = 1}.

Where I is a 3× 3 matrix. If R is the Rotation matrix representing the attitude of F1 with respect
to F0 (and whose column vectors are the basis vectors of F1 expressed in F0). We get the well known
equations

Ṙ = S(x)R,

Jẋ = S(x)Jx+B(τ1,τ2,0)
T.

where τi are the torques applied to the rigid body and B represents the directions in which these
torques are applied where the above equation is the control system with two scalar inputs and state
space SO(3)×R3. We make assumption that B= I3 that means the torques are applied in the direction of
principal inertia axes. However, our result can be easily extended to any location of the actuators from
which the rigid body is controllable, after an adequate change of state and control variables, similar to
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one proposed in [11]. When the rigid body moves in local frame with velocity V, the components of
the velocity along X, Y, Z axes are given by





Ẋ

Ẏ

Ż



=





j23YZ

J31ZX

J12XY



 .

Where the Euler angles are α , β and γ , the relation between the time rate of Euler angles and torque
τ is τ = (τ1,τ2,0)

T is given by




α
β
γ



=





1 0 0

0 1 0

0 0 1









τ1

τ2

0



 .

Combining the equations and introducing new set of coordinates (X ,Y,Z = x1,x2,x3) and (U1,U2,0 =
τ1,τ2,0) we get the following equations as given in [11].





ẋ1

ẋ2

ẋ3



=





j23x2x3

J31x3x1

J12x1x2



+





1

0

0



U1 +





0

1

1



U2. (1)

ẋ = f (x)+g1(x)u1 +g2(x)u2, x ∈ ℜ3. (2)

where f (x) =





J23x2x3

J31x3x1

J12x1x2



g1(x) =





1

0

0



 & g2(x) =





0

1

0



 .

The kinematics model (2) has the following important properties:

• (P1) The vector fields g1(x) & g2(x) are linearly independent.

• (P2) System (2) satisfies the LARC (Lie algebra rank condition) for accessibility, namely that
L(g1,g2), the Lie algebra, L(g1,g2)(x) spans ℜ3 at each point x ∈ ℜ3.

To verify property P2, it is sufficient to calculate the following Lie brackets of f (x), g1(x) & g2(x):

g3(x)
de f
= [ f ,g1](x) =





0

−J31x3

−J12x2



 & g4(x)
de f
= [ f ,g2](x) =





−J23x3

0

−J12x1



 & g5(x)
de f
= [ f ,g4](x) =





0

0

−J12



 .

which satisfy the LARC condition: span{g1,g2,g5}(x) = ℜ3, ∀x ∈ ℜ3.

3 The control problem

• (SP): Given a desired set point xdes ∈ ℜ3, construct a discontinuous feedback strategy in terms
of the controls ui : ℜ3 → ℜ, i = 1, 2 such that the desired set point xdes is an attractive set for
(2), so that there exists an ε > 0, such that x(t; t0, x0)→ xdes, as t → ∞ for any initial condition
(t0, x0) ∈ ℜ+×B(xdes;ε).

Without the loss of generality, it is assumed that xdes = 0, which can be achieved by a suitable translation
of the coordinate system.
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4 Controller design

The model of a rigid body (2) can be rewritten as:

ẋ1 = J23x2x3 +u1 (a),
ẋ2 = J31x1x3 +u2 (b),
ẋ3 = J12x1x2 (c).

(3)

Assuming that the parameters are known. Consider the equation (3a), and choose u1 = x2 − J23x2x3,
equation (3a) becomes:

ẋ1 = x2. (4)

Now by considering x2 as the virtual control, α1 as the stabilizing function and z1 = x2−α1 be the error
variable, equation (4) can be rewritten as:

ẋ1 = z1 +α1. (5)

To work out α1, consider the Lyapunov function: V0 =
1
2
x2
1 for (5). Then,

V̇0 = x1ẋ1 = x1{z1 +α1}.

By choosing α1 =−x1, the above equation becomes:

V̇0 =−x2
1 + x1z1.

Equation (5) becomes,
ẋ1 = z1 − x1. (6)

Consider the equation (3b), and choose u2 = x3 − J31x1x3 +θ(t) where θ(t) = θ̂ (t)−θss + θ̃(t). θ̂ (t) and
θ̃ (t) are time varying functions which will be determined independently, while θss is the steady state
value of θ̂ (t). Then equation (3b) becomes:

ẋ2 = x3 +θ(t). (7)

Now by considering x3 as the virtual control, α2 as the stabilizing function and z2 = x3−α2 be the error
variable, equation (7) can be rewritten as:

ẋ2 = z2 +α2+ θ̂(t)−θss + θ̃(t).

Since z1 = x2 −α1 = x2 + x1 its dynamics can be written as:

ż1 = ẋ2 + ẋ1 = z2 +α2 + θ̂(t)−θss+ θ̃ (t)+ z1− x1. (8)

To work out α2, consider the Lyapunov function: V1 =V0 +
1
2
z2
1 for (5) & (8). Then,

V̇1 =−x2
1 + z1(z2 +α2+ θ̂(t)−θss + z1)+ z1θ̃ (t).

By choosing α2 =−2z1 − θ̂(t)+θss

V̇1 =−x2
1 − z2

1 + z1z2 + z1θ̃ (t).

Equation (8) becomes:
ż1 = z2 − z1− x1 + θ̃(t). (9)

Consider the equation (3c): ẋ3 = J12x1x2.
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Since z2 = x3 −α2 = x3 +2z1 + θ̂(t)−θss its dynamics can be written as:

ż2 = ẋ3 +2ż1 +
˙̂θ(t) = J12x1x2 +2z2 −2z1 −2x1 +2θ̃(t)+ ˙̂θ(t). (10)

Consider the Lyapunov function: V2 =V1 +
1
2 z2

2 +
1
2 θ̃2(t) for (5), (8) & (10). Then,

V̇2 =−x2
1 − z2

1 + z2(J12x1x2 +2z2 − z1 −2x1 +
˙̂θ(t))+ θ̃ (t)(z1 +2z2 +

˙̃θ(t)).

By choosing
˙̂θ(t) =−J12x1x2 −3z2 + z1 +2x1,
˙̃θ(t) =−z1 −2z2 − θ̃(t).

V̇2 =−x2
1 − z2

1 − z2
2− θ̃2(t).

Equation (10) becomes,
ż2 =−z2 − z1 +2θ̃(t). (11)

The closed loop system becomes:
ẋ1 = z1 − x1,
ż1 = z2 − z1− x1 + θ̃(t),
ż2 =−z2 − z1 +2θ̃(t).

(12)

Since x1,z1,z2 → 0& θ̂ (t)→ θss

x2 = z1 − x1 → 0,

x3 = z2 −2z1 − θ̂ (t)+θss → 0.

Now assuming J23, J31 & J12 are unknown parameters.
Let Ĵ23 be the estimated value of J23 and J̃23 = J23 − Ĵ23 be the parameter error. Consider the

equation (3a), and choose u1 = x2 − Ĵ23x2x3, equation (3a) becomes:

ẋ1 = x2 + J̃23x2x3. (13)

Now by considering x2 as the virtual control, α1 as the stabilizing function and z1 = x2−α1 be the error
variable, equation (13) can be rewritten as:

ẋ1 = z1 +α1+ J̃23x2x3. (14)

To work out α1, consider the Lyapunov function: V0 =
1
2x2

1 for (14). Then,
Then, V̇0 = x1ẋ1 = x1{z1 +α1}+ J̃23x1x2x3.
By choosing α1 =−x1, the above equation becomes:

V̇0 =−x2
1 + x1z1 + J̃23x1x2x3.

Equation (14) becomes,
ẋ1 = z1 − x1 + J̃23x2x3. (15)

Consider the equation (3b), and choose u2 = x3 − Ĵ31x1x3 +θ(t) where θ(t) = θ̂ (t)−θss + θ̃(t). θ̂ (t) and
θ̃ (t) are some time varying functions which will be determined independently, while θss is the steady
state value of θ̂ (t). Let Ĵ31 be the estimated value of J31 and J̃31 = J31 − Ĵ31 be the parameter error.
Then equation (3b) becomes:

ẋ2 = J̃31x1x3 + x3 +θ(t). (16)

Now by considering x3 as the virtual control, α2 as the stabilizing function and z2 = x3−α2 be the error
variable, equation (16) can be rewritten as:

ẋ2 = z2 +α2+ θ̂(t)−θss + θ̃(t)+ J̃31x1x3.
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Since z1 = x2 −α1 = x2 + x1 its dynamics can be written as:

ż1 = ẋ2 + ẋ1 = z2 +α2 + θ̂(t)−θss+ θ̃ (t)+ J̃31x1x3 + z1− x1 + J̃23x2x3. (17)

To work out α2, consider the Lyapunov function: V1 =V0 +
1
2z2

1 for (14) & (17). Then,

V̇1 =−x2
1 + z1(z2 +α2 + θ̂(t)−θss+ z1)+ J̃23(x1x2x3 + z1x2x3)+ J̃31z1x1x3 + z1θ̃ (t).

By choosing α2 =−2z1 − θ̂(t)+θss

V̇1 =−x2
1 − z2

1 + z1z2 + J̃23(x1x2x3 + z1x2x3)+ J̃31z1x1x3 + z1θ̃ (t).

Equation (17) becomes:
ż1 = z2 − z1− x1 + θ̃(t)+ J̃31x1x3 + J̃23x2x3. (18)

Consider the equation (3c) and let Ĵ12 be the estimated value of J12 and J̃12 = J12− Ĵ12 be the parameter
error. The equation (3c) becomes:

ẋ3 = Ĵ12x1x2 + J̃12x1x2. (19)

Since z2 = x3 −α2 = x3 +2z1 + θ̂(t)−θss its dynamics can be written as:

ż2 = ẋ3 +2ż1 +
˙̂θ(t) = Ĵ12x1x2 + J̃12x1x2 +2z2 −2z1 −2x1 +2θ̃ (t)+2J̃31x1x3 +2J̃23x2x3 +

˙̂θ(t). (20)

Consider the Lyapunov function: V2 =V1+
1
2z2

2+
1
2 θ̃2(t)+ 1

2 J̃2
23+

1
2 J̃2

31+
1
2 J̃2

12 for (14), (17) & (20). Then,

V̇2 =− x2
1 − z2

1+ z2(Ĵ12x1x2 +2z2 − z1 −2x1 +
˙̂θ(t))+ θ̃ (t)(z1 +2z2 +

˙̃θ(t))

+ J̃23(x1x2x3 + z1x2x3 +2z2x2x3 +
˙̃J23)+ J̃31(z1x1x3 +2z2x1x3 +

˙̃J31)+ J̃12(z2x1x2 +
˙̃J12).

Replacing ˙̃J23 =− ˙̂J23,
˙̃J31 =− ˙̂J31 & ˙̃J12 =− ˙̂J12.

V̇2 =− x2
1 − z2

1+ z2(Ĵ12x1x2 +2z2 − z1 −2x1 +
˙̂θ(t))+ θ̃ (t)(z1 +2z2 +

˙̃θ(t))

+ J̃23(x1x2x3 + z1x2x3 +2z2x2x3 −
˙̂J23)+ J̃31(z1x1x3 +2z2x1x3 −

˙̂J31)+ J̃12(z2x1x2 −
˙̂J12).

By choosing

˙̂θ(t) =−Ĵ12x1x2 −3z2 + z1 +2x1,

˙̃θ(t) =−z1 −2z2 − θ̃(t),

˙̂J23 = x1x2x3 + z1x2x3 +2z2x2x3,

˙̂J31 = z1x1x3 +2z2x1x3,

˙̂J12 = z2x1x2,

V̇2 =−x2
1 − z2

1 − z2
2− θ̃2(t).

Equation (20) becomes,

ż2 =−z2 − z1+ J̃12x1x2 +2θ̃ (t)+2J̃31x1x3 +2J̃23x2x3. (21)

The closed loop system becomes:

ẋ1 = z1 − x1 + J̃23x2x3,

ż1 = z2 − z1 − x1+ θ̃(t)+ J̃31x1x3 + J̃23x2x3,

ż2 =−z2 − z1+ J̃12x1x2 +2θ̃ (t)+2J̃31x1x3 +2J̃23x2x3.

(22)

Since x1,z1,z2 → 0& θ̂ (t)→ θss

x2 = z1 − x1 → 0,

x3 = z2 −2z1 − θ̂ (t)+θss → 0.
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Fig. 2 Simulation results indicating stability of 3 states of two torque actuator system starting with initial
con-dition 0.5 with error function approaching to zero with time.

Fig. 3 Simulation results indicating stability of 3 states of two torque actuator system starting with varying
ini-tial conditions with error function approaching to zero with time.

5 Results

The model of the rigid body with two torque actuators has been transformed into a closed loop system
(12) and (22) for known and unknown parameters respectively using the adaptive backstepping tech-
nique. The simulations of the models are given below. It can be seen that all the states of the system
are going to zero. The aim was to steer them to a desired value which was assumed to be zero. It is
evident from the simulations that the objective has been achieved.

The controller designed above guarantee that in the presence of uncertain bounded nonlinearities
the closed loop systems (12) and (22) remains bounded. Simulation results demonstrates that in our
proposed method the uncertainties are more specific. They consist of unknown constant parameters
which appear linearly in the system equations (3). In the presence of such parametric uncertainties
we have achieved both boundedness of the closed loop states and convergence of the tracking error to
zero.

Case 2: With unknown parameters
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Fig. 4 Simulation results indicating stability of 3 states of two torque actuator system with 4 unknown pa-
rameters starting with initial condition 0.5 with error function approaching to zero with time.

Fig. 5 Simulation results indicating stability of 3 states of two torque actuator system with 4 unknown pa-
rameters starting with varying initial conditions with error function approaching to zero with time.

6 Conclusion

In this paper, a systematic method for the construction of steering control for the rigid body model with
two torque actuators is introduced without transforming the system into “chain form” using adaptive
backstepping technique. The main objective was to steer the system from any initial state to a desired
state. The method has been successful in dealing with the control difficulties caused by the uncertainties
present in the system. The designed controllers effectively accommodate the parametric changes by
processing the output, since the output carries the information of the system’s states hence helpful in
achieving the boundedness of the plant state and in tracking problem. The effectiveness of the approach
is general and can be applied to any nonholonomic control system with drift. The proposed controller
has achieved the desired purpose which is evident from simulation results.
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