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Abstract
It is often the case that images generated by image synthesis algorithms are judged by
visual examination. The user resorts to an iterative refinement process of inspection and
rendering until a satisfactory image is obtained. In this paper we propose quantitative met-
rics to compare images that arise from an image synthesis algorithm. The intent is to be
able to guide the refinement process inherent in image synthesis. The Mean-Square-Error
(MSE) has been traditionally employed to guide this process. However, it is not a viable
metric for image synthesis control. We propose the use of a wavelet based perceptual metric
which incorporates the frequency response of the Human Visual System. A useful aspect of
the wavelet based metric is its ability to selectively measure the changes to structures of dif-
ferent sizes and scales in specific locations. Also, by resorting to the use of wavelets of vari-
ous degrees of regularity, one can seek different levels of smoothness in an image. It is rare
that such level of control can be obtained from a metric other than a wavelet based metric.
We show the usefulness of our metric by examining it’s effectiveness in providing insights for
common operations of an image synthesis algorithm (e.g., blurring). We also provide some
examples of it’s use in rendering algorithms frequently used in graphics.

1.  Introduction

The goal of any image synthesis algorithm is to produce a 2D image that is typically used for a variety of pur-
poses. The image is judged for suitability by visual inspection and, if not deemed satisfactory a new image is
generated. Suitability is often influenced by the rigors of the underlying application and the aesthetic leanings
of the user. Seemingly appropriate parameters of the image synthesis algorithm are then altered to produce yet
another image. This refinement loop is often continued a few number of times. It would be useful to employ a
metric that guides the refinement process. The metric ideally should identify beneficial or adverse effects of
various rendering operations on the final image and facilitate the choice of parameters. We propose a wavelet
based perceptual metric in this paper. Objective perceptual metrics have been proposed elsewhere also [15].
The proposed metric differs from previous methods in that it has the ability to measure variations in images at
specific locations, orientations and scales. Also, it has the ability to discern intensity functions of varying
degree of smoothness in the image.

To explain the need for viable metrics let us consider the following examples derived from different image
synthesis algorithms. For instance, in volumetric rendering blurring and aliasing can occur during the process
of reconstruction along the ray (raycasting algorithms [9]) or along a slice (slicing algorithms [23]). Thus, if a
certain filter of a certain size is used in function reconstruction, we would like to gauge the effect of this filter
at different locations in the final image and on structures of different sizes. Also, more importantly, we would
like to determine if a more pleasing and useful image can be obtained by altering the size of the reconstruction
filter or even replacing the existing filter with another one. Through successive comparison of images we
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should ideally choose the correct size of the reconstruction filter or choose one filter over the other. Similarly,
in both surface and volumetric raytracing algorithms, to mitigate the effects of aliasing, sub-pixel rays are cast
as part of a supersampling scheme. The subpixels are then filtered to result in a pixel intensity. Once again, it
would be useful to employ a quantitative tool to determine if supersampling actually improved the image
quality and to determine the size of the subpixel neighborhood. Also, it might be useful to understand the effi-
cacy of jittering schemes which are commonly used to anti-alias raytraced images. Yet another case for the
use of numerical metrics can be made when classification and shading techniques are employed to enhance
structures. Noise is often introduced in the image as a result of these enhancement techniques. Once again
quantitative insight is often useful. Although our discussion pertains to rendering algorithms, a similar case
can be made for other image synthesis algorithms including radiosity.

The mean square error (MSE) and the root mean square error (RMSE) are often used to compare images.
However, they are not adequate measures to employ in comparing images. We shall provide several examples
of the inadequacy of MSE in Section 5. The limitations of MSE arise from the fact that comparisons are based
only on corresponding pixels and does not include any knowledge of the human visual system (HVS) and the
underlying structures in the image. What we propose here are numerical metrics that allow control of the
refinement process of an image synthesis algorithm. Ideally, one would seek to devise a metric that

• measures the information content of an image in terms of structures and features,

• responds to changes wrought to an image from the application of operators, such as blurring, and

• incorporates aspects of the HVS.

Our goals are similar in essence to those of Higgins who states that the image quality of tone reproduction
systems depends on how well the microscopic details are reproduced [6]. We propose a perceptual metric that
meets these three goals. Each of the two images to be compared is subject to a process to yield saliency values
which are then actually compared in a MSE fashion. The saliency value of an image is determined by first
conducting an orthogonal wavelet transform. A simple structure detection scheme follows that allows identi-
fication of all significant scale-coherent structures (edges, corners, ridges, etc.) in an image. Finally, the coef-
ficients of the wavelet transform are modulated with a Contrast Sensitivity Function (CSF). The CSF
measures the frequency response of the HVS. Essentially, the proposed metric is a weighted MSE, the weights
being derived from the CSF.

In Section 2 we present the necessary background on wavelet transforms, and make the case that one can
obtain metrics (based on the wavelet transform) which emulate the functioning of the human visual system.
Previous work in the area of image comparison metrics is described in Section 3. In Section 4 we describe our
metric, while in Section 5 we provide some examples of possible usage. Finally, in Section 6 we provide con-
cluding remarks and point to the future.

2.  Multiscale Approach to Perception

Multiscale transforms have been employed to analyze and code images. We examine their suitability to emu-
late the human visual system. Then, we justify our choice of the wavelet transform for developing perceptual
metric. Finally, in this section we describe some previous efforts from various application domains.

Of the many multiscale transforms used in image analysis, we are particularly interested in the Gabor [14],
the Cortical [18] and the wavelet transforms [3]. The first two transformations are more amenable to use as
tools for image analysis rather than coding or compression of images. It has also been shown that the recep-
tive field of the visual cortex can be modeled as a 2D Gabor Transform [14]. For 2D images, the Gabor trans-
form also describes the orientation of the structures. However, the transform is redundant and is expensive to
compute since it cannot be realized as a pyramid. There do exist bi-orthogonal approximations to the Gabor
Transformation. Notable among these is the cortical transformation of Watson [18] which has often served as
a computational model of the HVS. The cortical transformation was devised as a result of a study of the
human cortex and the visual system. It differs from the Gabor transform in two main ways; the basis functions
are Gabor-like (but are different) and the transform can be realized as a pyramid. Although the motivation for
the multi-resolution nature was more for the sake of efficiency, it was noted by many that the HVS does func-
tion in a multi-scale fashion. Witkin [22], for instance, noted that the eye discerns only those features that per-
sist through all scales.



Gaddipati et al. / Steering Image Generation with Wavelet Metric

The discrete orthogonal wavelet transform does not serve as a computational model for the HVS. However, it
can be computed very efficiently and can represent arbitrary functions with few number of coefficients. The
basic idea behind wavelet analysis is that the original image is split into several sub-images by a dyadic sub-
division of image’s frequency spectrum. The process is similar to that of HVS wherein image is locally
decomposed into spatial frequency and orientation components.  Finally, by choosing wavelets with different
degrees of regularity one can choose the level of smoothness one is seeking in the intensity function. We
employ Daubechies wavelets [3] in the work described here. These wavelets are indexed by a parameter N - a

function is implemented as a 2N tap band-pass filter. Two important properties of these filters are that

they have compact support in the spatial domain and that they are N-regular (  has N vanishing moments),

i.e., all polynomials of degree  are accurately represented, as shown below.

(1)

There do exist disadvantages over the use of the orthogonal wavelet transform, namely that the basis func-
tions that describe a local region of an image severely alias each other. It is only in the inverse transform that
the aliasing effects are mitigated. Redundant transforms like the steerable transforms found in [16] perform a
decomposition into frequency bands which are further split into orientation bands. In redundant transforms,
basis functions overlap each other at different scales, thus reducing the aliasing artifact. However, we do not
explore the use of this transform in this paper.

We now describe a popular CSF. Later, in Section 4, we shall describe a way to employ the contrast sensitivity
function with a pyramid transform. The human cortex is often modeled as a linear system and its response to
a visual excitation in the receptive field is expressed as a convolution of the impulse response of the visual
cortex with the input stimulus. Since convolution over a large array of neurons in the cortex is expensive to
compute, the impulse response is often expressed as a Contrast Sensitivity Function. Thus, the response to an
input can be obtained by multiplying the CSF with the Fourier transform of the input. The CSF measures the
response of the visual system to different frequencies. Another perspective of CSF is that it is the reciprocal of
the contrast necessary for a given frequency to be perceived. It is important to note that the response is lower
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FIGURE 1. (a) 1-D Contrast Sensitivity function.
The dyadic subdivision (of the wavelet transform) is
imposed on the image frequency. (b) 2D Version of
the CSF. Black indicates low value and white the
highest.
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for higher frequencies. There exists reported work which attempts to measure the CSF of the human visual
system. For instance, Mannos and Sakrison [10], after conducting a series of psychophysical experiments on
human subjects, found that the CSF can be modeled by the function in Equation 2.

(2)

Here fs is spatial frequency in cycles per degree. This model converted to cycles per pixel (cpp) using the fol-
lowing transformation [8]:

(3)

Here, fi is the image frequency (obtained from Fourier transform), the normalizing factor fn is the number of
pixels within 1 degree at the viewing distance of d times the diagonal image size, h is the horizontal image
size and v is the vertical image size in pixels.  A 2D version can be easily obtained by replacing fi with radial

frequency, , where µ and υ are the horizontal and vertical frequencies.

Figure 1(b) shows the 2D contrast sensitivity function. Magnitude of the function decays radially. White indi-
cates high value and black low. Other CSF functions have also appeared in the literature. Some of these have
been described for photographic and tone reproduction systems [6] and used to describe the resulting image
quality. We, however, shall restrict ourselves to the one constructed by Mannos and Sakrison [10].

One can conceivably multiply the CSF with the frequency spectrum of an image and then determine a
saliency [15]. However, this disallows the ability to delineate regions of interest and the use of simple
schemes to detect structures. Hence, multiscale transforms offer significant advantages when combined with a
CSF. As an alternative, a windowed Fourier Transform can be conducted to maintain locality [11] [21]. This
methodology is however computationally expensive. We propose use of an alternate methodology which
determines the weight of the CSF curve in each subband. A frequency decomposition induced by a dyadic
wavelet transform is imposed on the CSF (Figure 1a). Thus for each band a weight can be computed which is
then applied to the wavelet transform. The CSF based model is linear and cannot explain all aspects of human
vision, especially the ability to detect low contrast images. In [17] the transform of [16] is used to construct a
non-linear model of human vision which can address the issue of contrast masking. We however, limit our-
selves to the linear perceptual model. We provide the details of this process in Section 4. We now describe
previous work in designing metrics for variety of applications including image synthesis, coding and database
searches.

3.  Previous Work

It should be noted that we are primarily interested in objective measures and do not survey the vast literature
that exists on subjective measures of image quality. We are cognizant of the fact that our objective measures
have to be validated by an evaluation procedure that employs human subjects. However, objective measures
can perform well in many situations if designed with care. For instance, it was reported in [2] that the quanti-
tative measure of signal-to-noise ratio (SNR) actually outperformed more expensive subjective tests.

There has been little effort in developing viable image metrics in image synthesis. Among the first known
efforts, Rushmeier et al. employ metrics from image coding literature to compare images that arise from radi-
osity algorithms [15]. Three metrics were described which differ from each other in the CSFs used. Five eval-
uation criteria were proposed to determine the suitability of the metrics. Sample scenes were constructed and
the behavior of the metrics was examined for these scenes. Although two of the proposed metrics (including
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the one in [10]) performed adequately for the given scenes, they still did not capture local variations in inten-
sity well. The metrics employ the Fourier transform which does not preserve local spatial characteristics.
Finally, the metrics were designed and used more for purposes of visual similitude rather than as guiding tools
in a refinement process. In [1] methodologies have been proposed to include perceptual considerations into
the rendering process. Although laudable, these methodologies are cumbersome to incorporate and are
restricted to specific rendering algorithms.

Much effort has been expended in incorporating the characteristics of the HVS into all aspects of image cod-
ing and restoration [8][19][20]. For instance, the HVS weighing method of Mannos and Sakrison [10] has
been applied to coders including those based on the wavelet transform. However, as it was pointed out in [15],
one cannot directly use the metrics of coding in image synthesis. In medical imaging, however, much effort
has been expended in defining metrics. Furuie et al. designed a set of phantom images which test the recon-
struction accuracy of algorithms on 3D PET (Positron Emission Tomography) images [5]. As a result, they
design Figure-Of-Merits (FOMs) which can be used to benchmark algorithms. Also, Cosman et al. performed
a study of quality measures which are applied to compressed medical images [2].

Similarly, considerable work has been done to develop viable metrics for searching in image databases. These
metrics operate on color, texture, orientation, shape and contrast of images. Essentially, one searches for
similitude in image content in an extracted feature space.The Haar wavelet transform was employed in [7].
However the resulting metric is not robust. Finally, in multispectral image fusion, images obtained from dif-
ferent spectral bands are combined [21]. The combination is guided by the presence of structures or informa-
tion. Wavelet based methods are being reported which estimate the features or structures in an image region-
by-region. The maximum estimator, the energy, or a HVS weighted measure is used to determine the close-
ness of two images. The images are combined if the images are close, otherwise the image with the larger
estimate dominates. Wilson et al. also employ the HVS weighing method of Mannos and Sakrison [10] to
guide the combining process. A windowed Fourier transform of the wavelet sub-bands is performed to obtain
a finer frequency analysis of the wavelet spectrum. These frequencies are weighed by the contrast sensitivity
function. We proposed a metric for image synthesis [11] similar in essence. However, for reasons of computa-
tional efficiency we propose another metric which is easier to compute. We describe our methods in Section 4.

4.  Wavelet Based Image Comparison Metric

In this section we describe our metric. The perceptual metric we propose here builds on the subband coherent
structure detection algorithm described in [12]. The detection of coherent structure follows the wavelet trans-
form. Later, by employing weights based on the CSF we modulate the wavelet coefficients. Finally, the
images are compared in the mean square sense.

4.1  Coherent Structure Detection

Our sub-band combining algorithm described in [12] is similar to the one presented in Xu et al. [23]. Both
attempt to detect correlated structures across the scales by employing the product of the wavelet transform
across scales. However, in [23] the emphasis is on denoising and being able to detect edges, while in [12] the
algorithm identifies structures of arbitrary singularity and assigns pixel-wise saliency values in regions popu-
lated by singular structures. The saliency is obtained from a mask derived from the process of multiplication.
Figure 2 shows examples of images and their masks. The mask persists in regions of discontinuities and is
zero otherwise. Wherever the mask is set to zero, the corresponding coefficients in the pyramid are set to zero.
This mask can be used to further threshold the coefficients. Denoising is also implemented in two stages of
the algorithm. The coefficients are first thresholded by using a Gaussian noise model as reported in [4]. Later,
while generating the combining mask, denoising is again achieved as the noise in smoother levels is elimi-
nated. As a result of the second thresholding operation, only the coefficients contributing to coherent strutures
remain.

4.2  Perceptive Modulation

 The coefficients at each level and location are modulated using a perceptual weight arrived at by integrating
CSF over the area occupied by the band in 2D frequency space. We use the CSF model in Equation 2, substi-
tuting radial frequency fr for fi.  The wavelet transform is obtained from the continuous application of two
quadrature mirror filters [13]; H, a low-pass filter and G, a half band-pass filter. Thus, by applying G to a dis-
crete input with bandwidth (0,π), a signal with bandwidth (0,π/2) is acquired. Thus, after m iterations   the
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weight for level m is:

(4)

This weight measures the area of the CSF curve in each octave band (Figure 1a). It is assumed that the filters
H and G are ideal and have non-aliased spectra. For 2D frequency domain, the integral is over a rectangular
area rather than a line. The weights now measure volume under CSF surface. Each level m has three weights
except the coarsest level which has a weight only for approximation. The weights are precomputed and stored
in a table.

4.3  Perceptual Metric

 The perceptual comparison metric is computed as

(5)

where A and B are the images being compared and SA and SB are saliency values of pixel i, j, at level m of the
wavelet pyramids. Nh and Nv are number of pixels in horizontal and vertical directions. Saliency measures the

response of the HVS to the frequency input at pixel (i,j) in the mth sub-band image. Thus,

(6)

Here Cm is the contrast sensitivity weight derived in Equation 4 and W(m,i,j) is the wavelet coefficient at level
m and pixel location (i,j). Using saliency values at low resolution levels only gives us low resolution distor-
tion metric. Similarly, vertical distortion can be obtained by considering saliency values in vertical orientation
only. Thus, one has the ability to measure changes or distortions in sections of the image and along different
orientations (vertical, horizontal and diagonal). One can also compute a composite distortion over all levels
and orientations, which is essentially the sum of saliencies of all blocks at all levels. We now provide experi-
ments to illustrate the efficacy of our metric. We specifically will show that incorporating perceptual criterion
is critical to the development of metrics for image synthesis.

5.  Experiments

In this section we describe the response of our perceptual metric to different image processing and rendering
algorithms. First, we show why the MSE is a not a viable metric. Later, we study the responses of the MSE
and the perceptual metric to blurring, supersampling and an example image synthesis algorithm. We start with
an image A and create the set . We now measure the distance of consecutive images in
terms of the total metric or in terms of sub-bands or limit ourselves to regions. Effectively, for a metric M, we
measure the incremental distortion set, {M(A, A1), ..., M(AN-1, AN)}. This set of measurements emulates the
refinement loop of an image synthesis algorithm.

We use a Daubechies wavelet of length 8 to perform 4-level wavelet transformation of all images. The choice
of a particular Daubechies wavelet is dictated by the inherent smoothness of the image.

It is generally the case that Daubechies wavelets with eight coefficients suffice for most images. In the case of
color images we convert the RGB images to the L*a*b color space and perform the wavelet transform on each
of the components of this space.

Before we describe our experimental methodology we enumerate a list of desirable properties an image com-
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parison metric should possess. Any metric of image comparison should measure numerical distortion and
visual similitude. If two images A, B were to be compared, we expect the metric M to behave in the following
fashion:

• M(A,B) = 0 if A, B have identical features
• M(A,B) is small if A, B have some dissimilar features
• M(A,B) is large if A, B are very dissimilar.

These set of rules dictate that the metric should not behave in a monotonic manner in response to changes in
the applied operator. The behavior should rather be dictated by the changes wrought upon the image. Rush-
meier et al. used few ratio based criteria in addition to the ones listed above [15]. We did not consider ratios in
our metric as it is already normalized. Before we describe our experimental methodology, we illustrate the
short comings of the MSE metric.

5.1  Why Is MSE Not A Viable Metric?

We illustrate this through the example shown in Figure 3. The photograph of Albert Einstein is distorted in
two different ways. In Figure 3b, a constant bias is added, while in Figure 3c the edges of the image are
altered resulting in greater visual distortion. The photographs are texture mapped on to a polygonal model of
an ashtray and rendered with a raycasting algorithm. The distorted images are then compared with the origi-
nal using MSE and our metric. The MSE measured at 225 for the image in Figure 3b and 160 for the image in
Figure 3c. This indicates that the image in Figure 3c is a better image as it is closer to the original. However,
this certainly is not the case. The perceptual metric on the other hand provides a realistic estimate of the
image quality. Our metric measured at 156 for the more distorted image in Figure 3c and 73 for the less dis-
torted one in Figure 3b.

We now summarize the reasons for MSE not being a viable metric in rendering algorithms:

• An important reason why MSE fails to report changes in an image is that it is a pixel based measure.In

(a) (b) (c) (d)

FIGURE 2. Images and their masks. The top row shows the images of size 2562, while the bottom row shows their
masks. The mask is obtained with a Daubechies wavelet of length 8. The mask is set wherever a discontinuity exists, (a)
MRI (b) Lenna (c) Synthetic (d) Pipes.
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Figure 3b the visual distortion is not significant since a constant bias (d.c value) is added and the human
visual system does not notice extremely low frequency information. However, the pixel-wise distortion is
maximum in this case. While in Figure 3c, the visual distortion is significant since edges are altered consider-
ably resulting in a larger amount of high frequency information which the HVS detects. However, the pixel-
wise distortion is smaller since fewer pixels are altered.

•  Another major characteristic of MSE is that it always depicts a monotonic behavior when presented with
incremental, degraded/enhanced images. This is not always true in many rendering situations, especially
when the effects of various operators are nonlinear. This behavior of MSE violates the three conditions we
laid out for a metric in the beginning of this section. We now explore the behavior of the metric on commonly
used operator namely, blurring.

5.2  Smoothing

We chose three representative images to study the effect of the blurring operator.

• MRI (Figure 2a)- This image contains sufficient noise and has a profusion of edges and small structures.
This image is typical of images arising from rendering of medical datasets.
• Lenna (Figure 2b) - This image has significant amount of texture (hair) and smoother edges.
• Synthetic (Figure 2c)- This image has several sharp edges and is representative of images used in computer
graphics.

Although many filters can be employed the Gaussian filter is commonly used to perform smoothing. We show
the effect of using increasingly larger box filters over an image of size 2562. This is shown for all three repre-
sentative images. Each of the images are subjected to smoothing by a Gaussian filter of size

FIGURE 3. Example of why MSE is not viable metric.
(a) Original (b) Image with a constant bias (c) Image
with distorted edges. The MSE between the original and
distorted images leads one to believe that image (b) is
more distorted. In reality, image (c) is more distorted.

(b)

(a)

(c)
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. Blurring occurs from the application of a low pass filter which essentially removes high
frequency content in an image. Larger size filters decimate the frequency content more significantly. The per-
ceptual metric (Figure 4a) for the Synthetic image drops constantly, similar in behavior to the corresponding
plot for MSE (Figure 4b). However, for the MRI and the Lenna images, while the MSE monotonically drops
in value, the perceptual metric rises first and then drops. This indicates that most significant change occurs
between the second and third images, rather than the first and second as the MSE indicates. A visual examina-
tion of the images (Figure 4c) confirms this fact. A possible explanation could be the fact that the blurring
operator of size 7 (=2*3+1) alters many more structures significantly. In the case of the Synthetic image, the
structures are much larger in pixel area and hence no such behavior is observed. In the case of all three images
the difference in the metric is smaller as the filter gets larger in extent. It is for smaller filter sizes that the
change is more dramatic. This is evident from a visual inspection of the images also. Finally, the MSE shows
less degradation for the MRI image than the Synthetic image which is not the case. This can be attributed to
the fact that the MRI image is noisy and populated with small features and hence the pixel-wise differences
show up prominently. Our implementation of Rushmeier metric[15] followed MSE closely for this example.
In the following examples also, Rushmeier metric fared worser when compared to our metric. Due to space
constraints, we do not discuss this any further in this paper.

Another benefit of the wavelet based perceptual metric is the ability to observe the effect of operators at dif-
ferent scales (Figure 4d). More importantly, the effect on structures of different sizes can be studied. For
example, it is instructional to see that most of the higher frequency (k=1) difference spectra is diminished
rather quickly. At this level the details arise mostly from noise and the difference in the saliencies is very
insignificant. For the next level (k=2), the change in the metric is less dramatic, although still significant. It is
the spectra at level k=3, which dominates the total spectrum and resembles the Figure 4a closely. The approx-
imation spectrum hardly changes. This is expected since blurring should only affect higher frequency compo-
nents. It is these insights which make the wavelet based perceptual metric useful. It is often the case that a
different smoothing or low-pass filter provides a better image. The difference at times cannot be easily per-
ceived. It is possible to see improvement if any, with the aid of the perceptual metric, once again.

5.3  Aliasing in RayTracing

To illustrate the effects of aliasing, we employ supersampling schemes which gradually decrease the high fre-
quency content in an image. In a typical supersampling scheme the benefits are accrued when the higher fre-
quencies of the primary spectra are not aliased with those from neighboring spectra. Supersampling increases
the width between the spectra reducing the chance of an overlap and hence aliasing. We used subsampling
and supersampling schemes on the Pipes image (Figure 2a) to illustrate efficacy of the metric. The subsam-
pling was done by taking every 4th (image 1), 2nd (image 2) pixel. The third image resulted from shooting a
single ray from every pixel. The other images were generated by using supersampling and sub-pixel neigh-
borhoods of 22,...,42. The aliasing is reduced and the images, which are not shown here, look significantly
better. The MSE metric once again shows a monotonic behavior and indicates a much more significant
improvement than is achieved in reality. The perceptual metric on the other hand indicates more modest
changes. Both metrics are normalized with respect to number of pixels in the image. The perceptual metric
indicates that a supersampling of size 3 is sufficient, which corresponds to the result of visual examination.

We also conducted the same test on the PacMan image shown in Figure 5b. Only a supersampling scheme
was conducted for this image beginning with a neighborhood of 1x1. This image has texture and structures of
different sizes.  Figure 5c shows the plot of MSE and our metric for unjittered image sequence.  Figure 5d  is
a plot for jittered image sequence. As expected, the values for the MSE and perceptual metric were more for
the jittered image sequence.

5.4  Artifacts in Volume Rendering

We tested our metric on images obtained from a slice-based volume rendering algorithm for unstructured
grids generated from tetrahedral cells [24]. The algorithm slices the unstructured grid parallel to the screen
and then composites the resulting triangles from each slice. The algorithm employs an edge-table scheme to
exploit the coherency in such grids. The quality of the image depends on the number of slices. The images
suffer primarily from aliasing. We employ our method to determine the appropriate number of slices. Once
again, we find the MSE to be inadequate. It seems to indicate that the third image is acceptable enough. How-
ever, a visual display of the images in Figure 6 indicates otherwise. Real improvements start showing up in
the sixth image (60 slices).

2m 1 m,+ 1 … 4, ,=
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6.  Conclusions and Future Work

In this work we presented a metric to guide visualization algorithms based on the wavelet transform and a
model of the Human Visual System. The perceptual metric captures the change in images wrought by opera-
tors and the image synthesis algorithms. We would like to exploit the multiscale feature of the metric further
and garner more insight into the images rendered at different scales. The perceptual weights were computed
with the assumption that the wavelet transforms are ideal. Thus, it might be useful to recompute the weights.
Also, redundant wavelet schemes like those of [16] cure some of the ills of the orthogonal wavelet transform,
especially aliasing. It will be useful to learn about use of such a transform in developing a metric. Finally, the
metric should be tested on more image synthesis algorithms to understand its performance completely.

FIGURE 4. Effect of Gaussian Blurring. We show the effect of the Gaussian filter on three images (MRI - dashed
line, Lenna - solid line, Synthetic - dotted line). The x-axis indicates the successive image pairs compared (n), while
the vertical axis measures the metric. (a) Incremental behavior of perceptual metric, Mp. (b) Incremental behavior of

MSE, Ms.(c) The sequence of first three Lenna images obtained by applying a 3x3 and 5x5 Gaussian filter respec-

tively. It is important to note that maximum distortion occurs between the second and third image. (d) Incremental
scale distortions for Lenna image. The arrow indicates increasing scale levels from fine to coarse.
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