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Abstract—We consider a Lie group formulation for the prob-  rigid-body [9] setting. Furthermore, our emphasis on the Lie
lem of control of formations. Vehicle trajectories are described group structure of the control laws distinguishes our work
using the planar Frenet-Serret equations of motion, which o0 an established physics literature in the area of large

capture the evolution of both vehicle position and orientation . . . . . - .
for unit-speed motion subject to curvature (steering) control. collections of interacting particles subject to local interaction

The Lie group structure can be exploited to determine the set laws, and giving rise to pattern-forming systems, spatially
of all possible (relative) equilibria for arbitrary G-invariant  localized coherent structures (e.g., flocks), and phase transi-

curvature controls, where G = SE(2) is a symmetry group  tions (e.g., from disorder to order); see, for instance, [10],
for the control law. The main result is a convergence result for [11], [12], [13].

n vehicles (for finite n), using a Lyapunov function which for
n = 2, has been previously shown to yield global convergence. A T

. - . . . . DYNAMICS, SHAPE VARIABLES, AND RELATIVE
continuum formulation of the basic equations is also presented.

EQUILIBRIA

I. INTRODUCTION . . : . N
Considern vehicles modeled as point particles moving in

We consider formations (or swarms) of vehicles which argne plane with unit speed. Figure 1 illustrates the trajectories
modeled as point-particles with unit-speed motion, subject igf the vehicles, and their respective planar Frenet-Serret
steering (curvature) control. Our initial practical motivationframes. Each Frenet-Serret frame consists of a unit tangent
for considering such systems was the problem of coordirector x; and a unit normal vectoy; to the 4t trajec-
nating formations of meter-scale UAVs (unmanned aerighry [14]. The control law specifies the steering commands

vehicles), but our results may have implications for othey,, ~. 4, for each vehicle. The dynamical equations are thus
types of unmanned vehicles, as well as certain biological

swarming or schooling systems. I = X,
In section Il, we discuss a Lie group setting for the prob- X; = yju;,

lem of control of formations. The setting emerges naturally .

from the analysis of basic cases and concomitant physical

contraints on the controls. (A modern reference for contrgbr ; = 1,....,n. The overdot denotes differentiation with

systems on Lie groups is Jurdjevic [1].) We review how theespect to time (where time is also the arclength parameter,

Lie-group structure can be exploited to determine the se@e to the unit speed assumption). The dynamics can also be

of all possible (relative) equilibria for arbitrarg-invariant written in polar coordinates as

curvature controls, wher€ = SE(2) is the symmetry group

for the control law [2], [3]. Ideas of “shape control” on Lie P = (‘{05 0; ) Cbj=uj, j=1,..n. ®)

groups arise in a natural way for this problem [4], [5], [6]. sin 6 ‘

) In Zection I, we plre'sen} some contrc;)llll'aws which aplpe'ar, There is a natural Lie group structure evident in system

ased on numerical simulation, to stabilize certain relativ e P
equilibria. The primary analytical result we present (in secel)' Specifically, ffg; is represented as

Y = —X;uj, 1)

tion 1V) is a convergence result for formationswofvehicles X; y; Tj

(for finite n), using a Lyapunov function which for = 2 has g; = , j=1,...n, 3)
been shown in previous work to yield a global convergence 0 0 1

result.

The use of curvature controls can be given the mechanict:!flen the (colllsmn-free) conflgu_ratlpn submanifald.or s
: . . . , . on which the dynamics evolve is given by
interpretation of steering unit-mass, unit-charge particles by
magnetic fields (and hence lyroscopicforces, which are n copies
associated withvector potentials). For a d|sc_us.S|o.n of the Monfig = {(917927 ) EGXGx .. xG
general theory of such controls, see [7]. This is in contrast

with other current approaches to formation control that are

based on scalar potentials, both in the point particle [8] and I<j#k= n}’ )

Tk 7é rj,
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Fig. 2. Relative equilibria for the-vehicle problem, illustrated forn = 5
(arrows indicate tangent vectors to the vehicle trajectories): (akfoe=
ug = ... = up =0, and (b) foru; = uz = ... = un, # 0 [2], [3].

Fig. 1. Particle (i.e., vehicle) trajectories and their associated Frenet-SerfEhen for equilibrium shapes (i.e., for relative equilibria of the

frames for unit-speed planar motion.

where G = SE(2) is the special Euclidean group in
the plane. The dynamics in configuration variables can be

expressed as

gj = gj§j7 J = 1a w1, (5)
whereéy, &, ... &, € g (the Lie algebra of7), have the form
5] = AO +A1uj7 \V/j = 17"'7”7 (6)
with
0 0 1 0 -1 0
Ay=10 0 0|, Ay=|1 0 01]. (7
0O 0 O 0 0 0

We define the shape variables

gj:gflgj7 j:2a"'an7 (8)
which evolve on the reduced (shape) space

n—1 copies

Mipape =1 (25 -, Gn) € G G|(3;)is+ (3;)35 >0
shape (927--7.9”)6 XX (93)13+(g])23> )

(@ '35 + (35 '9k)33 >0, 2< j #k < n},
)

where (§)13 denotes the (1,3)-component of the matgix

dynamics (5) on configuration space), = us = ... = uy,
and there are only two possibilities:
(@ uy =us = ... = u, = 0, in which case a relative

equilibrium consists of all vehicles heading in the same
direction (with arbitrary relative positions within the
formation), or

(b) uy = up = ... = u,, # 0, in Which case a relative
equilibrium consists of all vehicles moving on the same
circular orbit, with arbitrary chordal distances between
them.

Proof: See [2], [3].0

Figure 2 illustrates the two types of relative equilibria for
the n-vehicle problem described iRroposition 1 [2], [3].

Ill. FORMATION CONTROL LAWS

Here we present two control laws which in simulation
appear to stabilize the two types of relative equilibria. For
one of the control laws, the rectilinear control law, we
have previously proved a global convergence result for two
vehicles [2], [3]. We explore the implications of this result for
the n-vehicle problem (in section 1V), and for a continuum
setting for the problem of formation control (in section V).

A. Rectilinear control law

The rectilinear control law (i.e., the control law conjec-
tured to stabilize certain relative equilibria with = ... =
u, = 0) we have examined is given by equation (1) with

etc. (It is also possible to define shape variables in other

combinations; e.g9.j, = g;'19;, j = 2,..,n [5].) We

1 Tk Lk
X J Uj:—z T\ Y
consider control laws which have the property that the Ly T )| T

controls depend only on the shape variables;§€4o, ..., &,
depend only on the reduced variabigsgs, ..., g, This leads
to the following result (see [2], [3]):

—f(Irjxl) <|Z—:| 'YJ‘> + pxp 'Yj]a (10)

Proposition 1: Consider the dynamics given by equations (5)Vherer;i. = rj —ry. One possible choice fof(-) is

and (6), evolving on the collision-free submanifdld..,, ;4
given by equation (4), wher€&s = SE(2) (and r; is

Frsel) = a [1— ()] , (11)

defined as in equation (3) fgr= 1, ...,n). Assume that the
controls uy, us, ..., u, depend only on the shape variablesvherer, > 0, and whereu, 1, and o could be positive
given by equation (8) (i.e., the controls a€&invariant). constants, or else functions of the inter-vehicle distdngg.



/ Fig. 4. Circling formation initialization for ten vehicles from three different

sets of random initial conditions [3].

Fig. 3. Rectilinear formation initialization for ten vehicles from three
different sets of random initial conditions [2], [3]. . ) .
perpendicular to the baselines between the vehicles. Because

of the summation, there is an averaging of the influences of
Figure 3 shows simulation results for the control law giverall the other vehicles on the vehicle. This is consistent

by equation (10) [2], [3]. with many biological swarming and schooling models, which
The Lyapunov function candidate we consider is have (1) some mechanism for heading alignment, (2) repul-
n sion or attraction based on separation distance or density, and
V= Z Z [—In(cos(0; — 0r) + 1) + h(r; —ri])], (3) decreasing influence for neighbors at greater distances
j=1k<j [15].
(12) The inclusion of a collision-avoidance term, i.e., the term

where we use the polar variables for ease of calculatio;hvowmg £(-) in our control laws, distinguishes our work
even thoughV is G-invariant, and could be expressed iNfrom a model proposed by Vicsek, et. al. [10], and further
terms of the shape variablgs, j = 2,...,n. Forn =2, this  stydied (using graph-theoretic methods) by Jadbabaie, et. al.
Lyapunov function can be used to prove the following globai1 6], The Vicsek model is a discrete-time, unit-speed model
convergence result [2], [3]: in which each vehicle updates its heading direction at each

Proposition 2: Consider the system given by equations (ﬂime step by averaging its current heading direction with
and (10) forn = 2, with 8, and 6, defined by (2). Define those of its neighbors located within a fixed distance of

itself. (A noise term also contributes to the heading-direction

r = |ry — r1|, and assume the following:
updates.)

(A1) n(+), u(-), and f(-) Lipschitz continuous orf0, co);
(A2) dh/dr= f(r), so thath(-) is continuously different-
iable on(0, c0);

B. Circling control law
The circling control law (i.e., the control law conjectured

to stabilize certain relative equilibria withy = ... = u,, # 0)
(A3) lim h(r)=o0, lim h(r)=occ, 37 such thath(7)=0;  we have examined is given by equation (1) with
1
(A4.) ) >0 pie) > 6, anduted = gn(e), ¥r= 6 uj = - D[ < ” ’Xj> = f(|rjel) ( - 'yj) ; (14)
Define the set Ly I I
A = {(r,01,05)] cos(f2 — 1) # -1 and0 < r < oo} . where, as for equation (10),;, = r; — ry, and f(-) may be

(13)  given by equation (11); but heremay be either positive or
Then any trajectory starting ih C M;pqpe CONVerges to the negative.
set of equilibrium points contained iA. Figure 4 shows simulation results for control law (14).
Proof: See [2], [3].00 Equation (14), like equgtion (10) for the rect'ilinear control
law, can be expressed in terms of shape variables alone.
There is a simple physical interpretation for the control law There is a simple physical interpretation for the circling
given by equation (10). The terms involvipgserve to align control law (14), just as there was for the rectilinear control
the heading directions of the vehicles. The terms involvingaw. The terms involvingy tend to to align each vehicle
f(-) steer the vehicles toward each other (if they are toperpendicular to the baselines between the vehicles, but in
far apart), or away from each other (if they are too closeaddition, each vehicle tries to keep the others to its left
together). The terms involving tend to align the vehicles or right, depending on the sign of. As in the rectilinear



case, the terms involving(-) serve to maintain appropriate V = 0, andM contains an equilibrium of the reduced system
intervehicle distances. (corresponding t@; — 6, =0, Vj, k).

V. STABILIZING CONTROL LAWS FOR N VEHICLES Proof: By the hypotheses onh(-), it follows that

Ideally, we would like to prove convergence results forj—1 2_k<; M|r; — r&[) assumes a minimum value on
control laws (10) and (14), which based on numerical work!/shape- Without loss of generality (since we can add an
appear to have favorable convergence properties. As a ﬁ%rlbnrary constant td’), we may assume that this minimum
step in that direction, we address the question of whetherVg/Ue is zero. It follows that the minimum valig,,, of V
control law exists such thdt” given by equation (12) can is

serve as a Lyapunov function for anvehicle system. B -1
The derivative of V' along trajectories of equation (2), Vinin = Zzln In(2). @)
under assumption (A2), is i=1k<i
n 9 We define
Sln k . .
I ) (6 — Oy, n(n—1
P3P (e, Syt -0 Vinas = Vo +102) = 1n(1) = = ("5~ 1) mee)
(18)
r . .
+/f(lr; — I‘k|)7(|r — r:) (t; — I‘k)] and
n (0 9 ]) Q= {(gQa agn)|v(§23 agn) < Vmaz} ; (19)
sin — 0
= [ <COS(9]—W> (uj — uk) and we note that the radial unboundednes¥ p&long with
J=1k<y / the existence oV,,;, < Vinaz, iMplies thatQ) is compact.
(s —rkl)( —Ty) cos 0 — cos b, Then for (g, ..., gn) € 2, we have|d; — 0x| < 7/2, Vj,k
J |r; —r] sin §; —sin 6y, (because otherwist would necessarily exceed,, ).

n ; L Now we turn to the issue of choosing so thatV < 0.
sin(0; — 0)
= E — We seeku; such thatV takes the form
‘ cos(; —0k) +1 j

(rj—ry) (—(sin®;+sinby) <—51n k) > p(0;,04), (20)
X (ujfuk)+f(|rj*rk|)|rj_7rk|‘ cos 0; + cos b, ;; cos(0; — 0x) +1 J
B Z": sin(6; — 0x) wherep(0;, 0;) is a bounded function of the shape variables
- cos(f; —6) +1 which vanishes at equilibrium shapes, and resulty’ig 0.

) (An example would bep(6;,0;) = sin(f; — 6).) Equating
[uj + f(Ir; —rk\)< —T) | (‘Smeﬁ )}, equations (15) and (20) gives

|r; — 1 cos 0 N
(15) _sin(0; —0y) )
ZZ cos(6; —6x) +1 Ui

provided cos(6; — ;) # —1, and where we have used the =!#7J

following identity: B sin k)
o . . ZZ(COSG—Gk)—i—l
( sin(0; — 6) —(sin@; + sin 6y G=1 k#j
cos(6; —0x) +1 cos 0; + cos O, (rj—ry) [—sind,
. i — Tk sin
[ cosf; — cos Oy — 0. (16) x| (0, 0)+ f(|rj —ri]) It —ri| (cos@j) ~
sing; —sinf, ) . 1)
Proposition 3: Consider the system given by equations (5)'he solution to equation (21) which minimizgs’_, 7 is
and (6), evolving on the configuration submanifdlf}.,,, r;,
given by equation (4). Corresponding to this system, there is _ sin(0; —0) sin(0;—0%)
a reduced system evolving on the shape submaniféJg, . ; (COS 5, -0) +1) ; k%:l (COS("l O “)q”“
J

given by equation (9). Let/ be given by equation (12), u; =

9

and assume that (A2) and (A3) hold, witf(-) Lipschitz n , ?

continuous. Then there exist bounded contrals..., u,, Z Z%

expressible as feedback functions of the shape variables, and =1 \ k#l

a corresponding positively invariant S8tC M, Of the (22)

reduced dynamics which is a compact sublevel set/of Where
Furthermore, all trajectories starting i converge to the _ (rj —rg) (—sinb;
largest invariant sefi/ of the setE of points inQ where %% = P03, 0) + f(Irs = ri]) r; —rp| \ cost; )’ (23)



model evolves on the manifolds = SE(2), a three-
dimensional manifold, rather than orf Ras do existing con-
tinuum models for planar formations found in the literature
(c.f., [112]).

Instead of treating a very large number of vehicles as
discrete point particles, we define a vehicle density function
p(t,r,0), which describes the density of vehicles as a func-
tion of timet, positionr, and heading-angle The continuity

9! equation (Liouville equation) is
0]
2 L= v (xp), (26)
Mshape . ot . . . .
where the vector field( is given in coordinates as
dr/dt cos @
= | sinf |. 27)
Fig. 5. Sets defined iRroposition 3. M,ape is the manifold on which de/dt u

the shape variables evolvg, is the sublevel set of containing the initial L. . . . .
shape:; is the set (containing?) on which condition (25) is satisfieds ~ 1hus, the continuity equation can be written in coordinates

is the set of points if2 whereV = 0; and M is the largest invariant set gs

B (o) () o]
However, a necessary condition for equation (22) to paince “matter” is conserved, we may assume (or verify) that
meaningful is 2 / o(t,r,0)drdd — 1, V. (29)

zn: Z sin(6; — 0x) > 0. (24) The energy fur?ctional analogous to equation (12) is

=\ cos(6; —6x) +1

Ve(t) = %/Q/Q [— In <COS(9 —0)+ 1) + h(jr — f‘|)]

It can be shown that insid®, we have . _
xp(t,r,0)p(t, T, 0)drdidrdd, (30)

Zn Z 4 ( sin(0; —61) ) ) )
j=1 £<k#j \ cos(6; —0k)+1 << oo (25) where we assume that the supporp@f, r, 6) lies inQ C €.,
n sin(0; —6y) 2 ’ where
S (S nts i) Y
for some constant > 0. Q. = {(1“79) € G| cos(f —0,) > - 9, for somed, ¢,
The hypotheses ork(-), along with the boundedness (31)

assumption orp(-) and condition (25), ensure that thg

given by equation (22) e>§|st and remain bqunded fen Formally differentiating equation (30) along trajectories of
(Fu.rthermore, they; are easﬂy_seen.to be functl_ons of Shap‘Jlt.-quation (28) (assuming, e.g., a compact region of integration
variables alone.) Thus, dn, trajectories of equations (5) and ,  Q, with periodic boundary conditions) gives, in analogy
(6), with u; given by equation (22), exist and are unique. Bu{0 equ;tion (15) '

we also havd/ < 0 on €, sof2 is a positively invariant set '
for the (shape) dynamics; i.e., trajectories which starfiin 4V :/ / [_ In (COS(Q —0)+ 1) +h(|r — f-|)}
remain in{2 for all future time. Then by LaSalle’s Invariance d¢ QJa

Principle [17], trajectories which start if? converge to the dp (t,r,0)p(t, ﬂé)drd@did@

and thath(-) is such thatV.(¢) is well-defined.

X —

largest invariant sef/ contained in the set’ of points in ot
Q whereV = 0 (see figure 5).M includes at least one :_/ / [_ In (cos(@— 9 + 1) +h(|r—f\)]
equilibrium shape witl#; — 6, = 0, V7, k; namely, the shape aJa
for which V = V,,,;,, is attainedJ y {8(up) N (c9s 9) -Vrp] ot F, 6)drdodidd
o0 sin 6
V. CONTINUUM FORMULATION 5
Here we introduce a continuum formulation appropriate :/ / {U(t,rﬁ)% [— In (cos(e — 9) + 1)}
QJQ

for studying formation control of very large numbers of
vehicles. This formulation naturally extends the approach cos 6 V.h(lr —
. 2 + (S0 ) - Vel =)
we have taken above to thevehicle problem, and it incor- sin ) ]
porates the unit-speed assumption. The resulting continuum xp(t,r,80)p(t, T, 0)drdddrdd



[ ) ()

X [u(t, r,0)+ <02181109> f(r—=1|) (i : ;)
xp(t,r,0)p(t, T, 0)drdodrdo.
(32)

Similarly, we may write a formal expression fai(t,r, 6)

[4]

[5]

which is analogous to equation (22), or to equation (10) or[g]

(14).

One advantage of this type of continuum formulation is

that it only involves two scalar fields: the denspyt, r, 9),
and the steering controk(t,r, ).

The tradeoff is that

[7]

the underlying space is three-dimensional instead of two-
dimensional (for planar formations), and there is a multi-

plicative nonlinearity in the Liouville equation (28); i.eu,
multiplies p.

VI. DIRECTIONS FOR FUTURE RESEARCH

[8]

[9]

We have shown how a Lie group formulation provides

insight into the problem of steering control for planar for-
mations. Our main resultProposition 3, shows that it is

possible to prove convergence resultsifarehicles (although [10]

we have only proved global convergence fio= 2). We have

also shown how a continuum theory emerges naturally from

the analysis of thex-vehicle problem. This work is still at

an early stage, and there are many possible directions fgrl
future research, including (1) convergence analysis for the

rectilinear (forn > 2) and circling control laws presented in

section Ill, (2) further study of the continuum model, e.g., b3{12]
including temporal and spatial derivatives in the expression

for the control field u(t,r,0), and (3) three-dimensional

formation control.
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