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Abstract— We consider a Lie group formulation for the prob-
lem of control of formations. Vehicle trajectories are described
using the planar Frenet-Serret equations of motion, which
capture the evolution of both vehicle position and orientation
for unit-speed motion subject to curvature (steering) control.
The Lie group structure can be exploited to determine the set
of all possible (relative) equilibria for arbitrary G-invariant
curvature controls, where G = SE(2) is a symmetry group
for the control law. The main result is a convergence result for
n vehicles (for finite n), using a Lyapunov function which for
n= 2, has been previously shown to yield global convergence. A
continuum formulation of the basic equations is also presented.

I. I NTRODUCTION

We consider formations (or swarms) of vehicles which are
modeled as point-particles with unit-speed motion, subject to
steering (curvature) control. Our initial practical motivation
for considering such systems was the problem of coordi-
nating formations of meter-scale UAVs (unmanned aerial
vehicles), but our results may have implications for other
types of unmanned vehicles, as well as certain biological
swarming or schooling systems.

In section II, we discuss a Lie group setting for the prob-
lem of control of formations. The setting emerges naturally
from the analysis of basic cases and concomitant physical
contraints on the controls. (A modern reference for control
systems on Lie groups is Jurdjevic [1].) We review how the
Lie-group structure can be exploited to determine the set
of all possible (relative) equilibria for arbitraryG-invariant
curvature controls, whereG = SE(2) is the symmetry group
for the control law [2], [3]. Ideas of “shape control” on Lie
groups arise in a natural way for this problem [4], [5], [6].

In section III, we present some control laws which appear,
based on numerical simulation, to stabilize certain relative
equilibria. The primary analytical result we present (in sec-
tion IV) is a convergence result for formations ofn vehicles
(for finite n), using a Lyapunov function which forn = 2 has
been shown in previous work to yield a global convergence
result.

The use of curvature controls can be given the mechanical
interpretation of steering unit-mass, unit-charge particles by
magnetic fields (and hence bygyroscopicforces, which are
associated withvector potentials). For a discussion of the
general theory of such controls, see [7]. This is in contrast
with other current approaches to formation control that are
based on scalar potentials, both in the point particle [8] and

rigid-body [9] setting. Furthermore, our emphasis on the Lie
group structure of the control laws distinguishes our work
from an established physics literature in the area of large
collections of interacting particles subject to local interaction
laws, and giving rise to pattern-forming systems, spatially
localized coherent structures (e.g., flocks), and phase transi-
tions (e.g., from disorder to order); see, for instance, [10],
[11], [12], [13].

II. DYNAMICS , SHAPE VARIABLES, AND RELATIVE

EQUILIBRIA

Considern vehicles modeled as point particles moving in
the plane with unit speed. Figure 1 illustrates the trajectories
of the vehicles, and their respective planar Frenet-Serret
frames. Each Frenet-Serret frame consists of a unit tangent
vector xj and a unit normal vectoryj to the jth trajec-
tory [14]. The control law specifies the steering commands
u1, ..., un for each vehicle. The dynamical equations are thus

ṙj = xj ,

ẋj = yjuj ,

ẏj = −xjuj , (1)

for j = 1, ..., n. The overdot denotes differentiation with
respect to time (where time is also the arclength parameter,
due to the unit speed assumption). The dynamics can also be
written in polar coordinates as

ṙj =
(

cos θj
sin θj

)
, θ̇j = uj , j = 1, ..., n. (2)

There is a natural Lie group structure evident in system
(1). Specifically, ifgj is represented as

gj =

 xj yj rj

0 0 1

 , j = 1, ..., n, (3)

then the (collision-free) configuration submanifoldMconfig

on which the dynamics evolve is given by

Mconfig =
{

(g1, g2, ..., gn) ∈
n copies︷ ︸︸ ︷

G×G× ...×G
∣∣∣∣rk 6= rj ,

1 ≤ j 6= k ≤ n
}
, (4)



Fig. 1. Particle (i.e., vehicle) trajectories and their associated Frenet-Serret
frames for unit-speed planar motion.

where G = SE(2) is the special Euclidean group in
the plane. The dynamics in configuration variables can be
expressed as

ġj = gjξj , j = 1, ..., n, (5)

whereξ1, ξ2, ... ξn ∈ g (the Lie algebra ofG), have the form

ξj = A0 +A1uj , ∀j = 1, ..., n, (6)

with

A0 =

 0 0 1
0 0 0
0 0 0

 , A1 =

 0 −1 0
1 0 0
0 0 0

 . (7)

We define the shape variables

g̃j = g−1
1 gj , j = 2, ..., n, (8)

which evolve on the reduced (shape) space

Mshape=
{

(g̃2, .., g̃n) ∈
n−1 copies︷ ︸︸ ︷
G× ...×G

∣∣∣∣(g̃j)2
13 + (g̃j)

2
23 > 0,

(g̃−1
j g̃k)2

13 + (g̃−1
j g̃k)2

23 > 0, 2 ≤ j 6= k ≤ n
}
,

(9)

where (g̃)13 denotes the (1,3)-component of the matrixg̃,
etc. (It is also possible to define shape variables in other
combinations; e.g.,̃gj = g−1

j−1gj , j = 2, ..., n [5].) We
consider control laws which have the property that the
controls depend only on the shape variables; i.e.,ξ1, ξ2, ..., ξn
depend only on the reduced variablesg̃2, g̃3, ..., g̃n. This leads
to the following result (see [2], [3]):

Proposition 1: Consider the dynamics given by equations (5)
and (6), evolving on the collision-free submanifoldMconfig

given by equation (4), whereG = SE(2) (and rj is
defined as in equation (3) forj = 1, ..., n). Assume that the
controls u1, u2, ..., un depend only on the shape variables
given by equation (8) (i.e., the controls areG-invariant).

(a) (b)

Fig. 2. Relative equilibria for then-vehicle problem, illustrated forn = 5
(arrows indicate tangent vectors to the vehicle trajectories): (a) foru1 =
u2 = ... = un = 0, and (b) foru1 = u2 = ... = un 6= 0 [2], [3].

Then for equilibrium shapes (i.e., for relative equilibria of the
dynamics (5) on configuration space),u1 = u2 = ... = un,
and there are only two possibilities:

(a) u1 = u2 = ... = un = 0, in which case a relative
equilibrium consists of all vehicles heading in the same
direction (with arbitrary relative positions within the
formation), or
(b) u1 = u2 = ... = un 6= 0, in which case a relative
equilibrium consists of all vehicles moving on the same
circular orbit, with arbitrary chordal distances between
them.

Proof: See [2], [3].�

Figure 2 illustrates the two types of relative equilibria for
the n-vehicle problem described inProposition 1 [2], [3].

III. F ORMATION CONTROL LAWS

Here we present two control laws which in simulation
appear to stabilize the two types of relative equilibria. For
one of the control laws, the rectilinear control law, we
have previously proved a global convergence result for two
vehicles [2], [3]. We explore the implications of this result for
the n-vehicle problem (in section IV), and for a continuum
setting for the problem of formation control (in section V).

A. Rectilinear control law

The rectilinear control law (i.e., the control law conjec-
tured to stabilize certain relative equilibria withu1 = ... =
un = 0) we have examined is given by equation (1) with

uj =
1
n

∑
k 6=j

[
− η

(
rjk
|rjk|

· xj
)(

rjk
|rjk|

· yj
)

−f(|rjk|)
(

rjk
|rjk|

· yj
)

+ µxk · yj

]
, (10)

whererjk = rj − rk. One possible choice forf(·) is

f(|rjk|) = α

[
1−

(
ro
|rjk|

)2
]
, (11)

where ro > 0, and whereµ, η, and α could be positive
constants, or else functions of the inter-vehicle distance|rjk|.



Fig. 3. Rectilinear formation initialization for ten vehicles from three
different sets of random initial conditions [2], [3].

Figure 3 shows simulation results for the control law given
by equation (10) [2], [3].

The Lyapunov function candidate we consider is

V =
n∑
j=1

∑
k<j

[− ln(cos(θj − θk) + 1) + h(|rj − rk|)] ,

(12)
where we use the polar variables for ease of calculation,
even thoughV is G-invariant, and could be expressed in
terms of the shape variables̃gj , j = 2, ..., n. For n = 2, this
Lyapunov function can be used to prove the following global
convergence result [2], [3]:

Proposition 2: Consider the system given by equations (1)
and (10) forn = 2, with θ1 and θ2 defined by (2). Define
r = |r2 − r1|, and assume the following:

(A1) η(·), µ(·), andf(·) Lipschitz continuous on(0,∞);
(A2) dh/dr=f(r), so thath(·) is continuously different-

iable on(0,∞);
(A3) lim

r→0
h(r)=∞, lim

r→∞
h(r)=∞, ∃r̃ such thath(r̃)=0;

(A4) η(r) > 0, µ(r) > 0, andµ(r) > 1
2η(r), ∀r ≥ 0.

Define the set

Λ =
{

(r, θ1, θ2)
∣∣ cos(θ2 − θ1) 6= −1 and0 < r <∞

}
.

(13)
Then any trajectory starting inΛ ⊂Mshape converges to the
set of equilibrium points contained inΛ.

Proof: See [2], [3].�

There is a simple physical interpretation for the control law
given by equation (10). The terms involvingµ serve to align
the heading directions of the vehicles. The terms involving
f(·) steer the vehicles toward each other (if they are too
far apart), or away from each other (if they are too close
together). The terms involvingη tend to align the vehicles
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Fig. 4. Circling formation initialization for ten vehicles from three different
sets of random initial conditions [3].

perpendicular to the baselines between the vehicles. Because
of the summation, there is an averaging of the influences of
all the other vehicles on thejth vehicle. This is consistent
with many biological swarming and schooling models, which
have (1) some mechanism for heading alignment, (2) repul-
sion or attraction based on separation distance or density, and
(3) decreasing influence for neighbors at greater distances
[15].

The inclusion of a collision-avoidance term, i.e., the term
involving f(·) in our control laws, distinguishes our work
from a model proposed by Vicsek, et. al. [10], and further
studied (using graph-theoretic methods) by Jadbabaie, et. al.
[16]. The Vicsek model is a discrete-time, unit-speed model
in which each vehicle updates its heading direction at each
time step by averaging its current heading direction with
those of its neighbors located within a fixed distance of
itself. (A noise term also contributes to the heading-direction
updates.)

B. Circling control law

The circling control law (i.e., the control law conjectured
to stabilize certain relative equilibria withu1 = ... = un 6= 0)
we have examined is given by equation (1) with

uj =
1
n

∑
k 6=j

[
η

(
rjk
|rjk|

· xj
)
−f(|rjk|)

(
rjk
|rjk|

· yj
)]

, (14)

where, as for equation (10),rjk = rj − rk, andf(·) may be
given by equation (11); but hereη may be either positive or
negative.

Figure 4 shows simulation results for control law (14).
Equation (14), like equation (10) for the rectilinear control
law, can be expressed in terms of shape variables alone.

There is a simple physical interpretation for the circling
control law (14), just as there was for the rectilinear control
law. The terms involvingη tend to to align each vehicle
perpendicular to the baselines between the vehicles, but in
addition, each vehicle tries to keep the others to its left
or right, depending on the sign ofη. As in the rectilinear



case, the terms involvingf(·) serve to maintain appropriate
intervehicle distances.

IV. STABILIZING CONTROL LAWS FORn VEHICLES

Ideally, we would like to prove convergence results for
control laws (10) and (14), which based on numerical work,
appear to have favorable convergence properties. As a first
step in that direction, we address the question of whether a
control law exists such thatV given by equation (12) can
serve as a Lyapunov function for ann-vehicle system.

The derivative ofV along trajectories of equation (2),
under assumption (A2), is

V̇ =
n∑
j=1

∑
k<j

[(
sin(θj − θk)

cos(θj − θk) + 1

)
(θ̇j − θ̇k)

+f(|rj − rk|)
(rj − rk)
|rj − rk|

· (ṙj − ṙk)
]

=
n∑
j=1

∑
k<j

[(
sin(θj − θk)

cos(θj − θk) + 1

)
(uj − uk)

+f(|rj−rk|)
(rj−rk)
|rj−rk|

·
(

cos θj−cos θk
sin θj−sin θk

)]
=

n∑
j=1

∑
k<j

(
sin(θj − θk)

cos(θj − θk) + 1

)
×
[
(uj−uk)+f(|rj−rk|)

(rj−rk)
|rj−rk|

·
(
−(sin θj+sin θk)
cos θj + cos θk

)]
=

n∑
j=1

∑
k 6=j

(
sin(θj − θk)

cos(θj − θk) + 1

)
×
[
uj + f(|rj−rk|)

(rj−rk)
|rj−rk|

·
(
− sin θj
cos θj

)]
,

(15)

providedcos(θj − θk) 6= −1, and where we have used the
following identity:(

sin(θj − θk)
cos(θj − θk) + 1

)(
−(sin θj + sin θk)

cos θj + cos θk

)
−
(

cos θj − cos θk
sin θj − sin θk

)
= 0. (16)

Proposition 3: Consider the system given by equations (5)
and (6), evolving on the configuration submanifoldMconfig

given by equation (4). Corresponding to this system, there is
a reduced system evolving on the shape submanifoldMshape

given by equation (9). LetV be given by equation (12),
and assume that (A2) and (A3) hold, withf(·) Lipschitz
continuous. Then there exist bounded controlsu1, ..., un,
expressible as feedback functions of the shape variables, and
a corresponding positively invariant setΩ ⊂ Mshape of the
reduced dynamics which is a compact sublevel set ofV .
Furthermore, all trajectories starting inΩ converge to the
largest invariant setM of the setE of points in Ω where

V̇ = 0, andM contains an equilibrium of the reduced system
(corresponding toθj − θk = 0, ∀j, k).

Proof: By the hypotheses onh(·), it follows that∑n
j=1

∑
k<j h(|rj − rk|) assumes a minimum value on

Mshape. Without loss of generality (since we can add an
arbitrary constant toV ), we may assume that this minimum
value is zero. It follows that the minimum valueVmin of V
is

Vmin = −
n∑
j=1

∑
k<j

ln(2) = −n(n− 1)
2

ln(2). (17)

We define

Vmax = Vmin + ln(2)− ln(1) = −
(
n(n−1)

2
− 1
)

ln(2),

(18)
and

Ω =
{

(g̃2, ..., g̃n)
∣∣V (g̃2, ..., g̃n) ≤ Vmax

}
, (19)

and we note that the radial unboundedness ofV , along with
the existence ofVmin < Vmax, implies thatΩ is compact.
Then for (g̃2, ..., g̃n) ∈ Ω, we have|θj − θk| ≤ π/2, ∀j, k
(because otherwiseV would necessarily exceedVmax).

Now we turn to the issue of choosinguj so thatV̇ ≤ 0.
We seekuj such thatV̇ takes the form

V̇ = −
n∑
j=1

∑
k 6=j

(
sin(θj − θk)

cos(θj − θk) + 1

)
p(θj , θk), (20)

wherep(θj , θk) is a bounded function of the shape variables
which vanishes at equilibrium shapes, and results inV̇ ≤ 0.
(An example would bep(θj , θk) = sin(θj − θk).) Equating
equations (15) and (20) gives

n∑
j=1

∑
k 6=j

(
sin(θj − θk)

cos(θj − θk) + 1

)
uj

= −
n∑
j=1

∑
k 6=j

(
sin(θj − θk)

cos(θj − θk) + 1

)

×

[
p(θj , θk)+f(|rj−rk|)

(rj−rk)
|rj−rk|

·
(
− sin θj
cos θj

)]
.

(21)

The solution to equation (21) which minimizes
∑n
j=1 u

2
j is

uj =

−

∑
k 6=j

(
sin(θj−θk)

cos(θj−θk)+1

) n∑
l=1

∑
k 6=l

(
sin(θl−θk)

cos(θl−θk)+1

)
qlk


n∑
l=1

∑
k 6=l

sin(θl−θk)
cos(θl−θk)+1

2 ,

(22)
where

qjk = p(θj , θk) +f(|rj − rk|)
(rj − rk)
|rj − rk|

·
(
− sin θj
cos θj

)
. (23)



Fig. 5. Sets defined inProposition 3: Mshape is the manifold on which
the shape variables evolve;Ω is the sublevel set ofV containing the initial
shape;Ω1 is the set (containingΩ) on which condition (25) is satisfied;E
is the set of points inΩ where V̇ = 0; andM is the largest invariant set
contained inE.

However, a necessary condition for equation (22) to be
meaningful is

n∑
j=1

∑
k 6=j

sin(θj − θk)
cos(θj − θk) + 1

2

> 0. (24)

It can be shown that insideΩ, we have∑n
j=1

∑
k 6=j

(
sin(θj−θk)

cos(θj−θk)+1

)2

∑n
j=1

(∑
k 6=j

sin(θj−θk)
cos(θj−θk)+1

)2 < c <∞, (25)

for some constantc > 0.
The hypotheses onh(·), along with the boundedness

assumption onp(·) and condition (25), ensure that theuj
given by equation (22) exist and remain bounded onΩ.
(Furthermore, theuj are easily seen to be functions of shape
variables alone.) Thus, onΩ, trajectories of equations (5) and
(6), with uj given by equation (22), exist and are unique. But
we also haveV̇ ≤ 0 on Ω, so Ω is a positively invariant set
for the (shape) dynamics; i.e., trajectories which start inΩ
remain inΩ for all future time. Then by LaSalle’s Invariance
Principle [17], trajectories which start inΩ converge to the
largest invariant setM contained in the setE of points in
Ω where V̇ = 0 (see figure 5).M includes at least one
equilibrium shape withθj−θk = 0, ∀j, k; namely, the shape
for which V = Vmin is attained.�

V. CONTINUUM FORMULATION

Here we introduce a continuum formulation appropriate
for studying formation control of very large numbers of
vehicles. This formulation naturally extends the approach
we have taken above to then-vehicle problem, and it incor-
porates the unit-speed assumption. The resulting continuum

model evolves on the manifoldG = SE(2), a three-
dimensional manifold, rather than on R2, as do existing con-
tinuum models for planar formations found in the literature
(c.f., [11]).

Instead of treating a very large number of vehicles as
discrete point particles, we define a vehicle density function
ρ(t, r, θ), which describes the density of vehicles as a func-
tion of timet, positionr, and heading-angleθ. The continuity
equation (Liouville equation) is

∂ρ

∂t
= −∇ · (Xρ), (26)

where the vector fieldX is given in coordinates as dr/dt

dθ/dt

 =

 cos θ
sin θ
u

 . (27)

Thus, the continuity equation can be written in coordinates
as

∂ρ

∂t
= −

[
∂(uρ)
∂θ

+
(

cos θ
sin θ

)
· ∇rρ

]
. (28)

Since “matter” is conserved, we may assume (or verify) that∫
G

ρ(t, r, θ)drdθ = 1, ∀t. (29)

The energy functional analogous to equation (12) is

Vc(t) =
1
2

∫
Ω

∫
Ω

[
− ln

(
cos(θ − θ̃) + 1

)
+ h(|r− r̃|)

]
×ρ(t, r, θ)ρ(t, r̃, θ̃)drdθdr̃dθ̃, (30)

where we assume that the support ofρ(t, r, θ) lies inΩ ⊂ Ωc,
where

Ωc =

{
(r, θ) ∈ G

∣∣ cos(θ − θo) ≥
√

2
2
, ∀θ, for someθo

}
,

(31)
and thath(·) is such thatVc(t) is well-defined.

Formally differentiating equation (30) along trajectories of
equation (28) (assuming, e.g., a compact region of integration
Ω ⊂ Ωc with periodic boundary conditions) gives, in analogy
to equation (15),

dV

dt
=
∫

Ω

∫
Ω

[
− ln

(
cos(θ − θ̃) + 1

)
+ h(|r− r̃|)

]
×∂ρ
∂t

(t, r, θ)ρ(t, r̃, θ̃)drdθdr̃dθ̃

=−
∫

Ω

∫
Ω

[
− ln

(
cos(θ − θ̃) + 1

)
+ h(|r− r̃|)

]
×
[
∂(uρ)
∂θ

+
(

cos θ
sin θ

)
·∇rρ

]
ρ(t, r̃, θ̃)drdθdr̃dθ̃

=
∫

Ω

∫
Ω

[
u(t, r, θ)

∂

∂θ

[
− ln

(
cos(θ − θ̃) + 1

)]
+
(

cos θ
sin θ

)
· ∇rh(|r− r̃|)

]
×ρ(t, r, θ)ρ(t, r̃, θ̃)drdθdr̃dθ̃



=
∫

Ω

∫
Ω

(
sin(θ − θ̃)

cos(θ − θ̃) + 1

)

×
[
u(t, r, θ) +

(
− sin θ
cos θ

)
·f(|r− r̃|) (r− r̃)

|r− r̃|

]
×ρ(t, r, θ)ρ(t, r̃, θ̃)drdθdr̃dθ̃.

(32)

Similarly, we may write a formal expression foru(t, r, θ)
which is analogous to equation (22), or to equation (10) or
(14).

One advantage of this type of continuum formulation is
that it only involves two scalar fields: the densityρ(t, r, θ),
and the steering controlu(t, r, θ). The tradeoff is that
the underlying space is three-dimensional instead of two-
dimensional (for planar formations), and there is a multi-
plicative nonlinearity in the Liouville equation (28); i.e.,u
multiplies ρ.

VI. D IRECTIONS FOR FUTURE RESEARCH

We have shown how a Lie group formulation provides
insight into the problem of steering control for planar for-
mations. Our main result,Proposition 3, shows that it is
possible to prove convergence results forn vehicles (although
we have only proved global convergence forn = 2). We have
also shown how a continuum theory emerges naturally from
the analysis of then-vehicle problem. This work is still at
an early stage, and there are many possible directions for
future research, including (1) convergence analysis for the
rectilinear (forn > 2) and circling control laws presented in
section III, (2) further study of the continuum model, e.g., by
including temporal and spatial derivatives in the expression
for the control field u(t, r, θ), and (3) three-dimensional
formation control.
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