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STEFAN PROBLEM FOR

A NONERGODIC FACILITATED EXCLUSION PROCESS

ORIANE BLONDEL, CLÉMENT ERIGNOUX AND MARIELLE SIMON

We consider the facilitated exclusion process, which is a nonergodic, kinetically constrained exclusion
process. We show that in the hydrodynamic limit, its macroscopic behavior is governed by a free boundary
problem. The particles evolve on the one-dimensional lattice according to jump rates which are degenerate,
since they can vanish on nontrivial configurations and create distinct phases: indeed, configurations can
be totally blocked (they cannot evolve under the dynamics), ergodic (they belong to an irreducible
component), or transient (after a transitive period of time they will become either blocked or ergodic).
We additionally prove that the microscopic separation into blocked/ergodic phases fully coincides with
the moving interface problem given by the hydrodynamic equation.

1. Introduction

In statistical physics, various types of (nonlinear) partial differential equations have been derived from
underlying microscopic particle systems which belong to the class of stochastic lattice gases. This
mathematical procedure is called hydrodynamic limit: the macroscopic behavior is obtained via a long-
time and large-space scaling limit; see, for instance, [Kipnis and Landim 1999] for a review on the subject.
In particular, exclusion processes have attracted a lot of interest due to the variety and complexity of
the results which have been obtained in the last decades, despite the simplicity of their description. For
these models, the hydrodynamic equations obtained in the limit describe the evolution of the local density,
which is conserved by the dynamics. These equations become even more interesting when they involve a
phase change in the physical medium: in that case, the process of diffusion is mathematically formulated
as a Stefan problem [Stefan 1890], or a free boundary problem.

Such macroscopic behavior can be naturally expected from kinetically constrained lattice gases, or
KCLGs, in which the configuration of particles must satisfy a local constraint in order for a particle to be
able to jump. For such models, one may predict distinct behaviors of the system at density ρ, depending
on whether the local constraint should typically be satisfied at density ρ. This, however, strongly depends
on the specific mixing mechanisms of the models. According to a standard terminology, there are two
types of kinetically constrained lattice gases (see, e.g., [Cancrini et al. 2010]). In noncooperative KCLGs,
a mobile cluster of particles of a given shape can move autonomously in the system (always respecting
the kinetic constraint), and once it reaches a specific neighborhood of a particle, allow the latter to jump.
The existence of such mobile clusters gives the system good mixing properties, so that their macroscopic

MSC2010: 35R35, 60J27, 60K35.
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behavior is described by diffusive equations with no phase separation. The model considered here, instead,
is cooperative, in the sense that no such mobile cluster exists. This generates intrinsic difficulties, and in
our case distorts the equilibrium measures which are no longer product measures.1

In the first version of this paper, we asked whether it was possible to build a KCLG which would
be at the same time cooperative, gradient (in the sense that the generator is a discrete Laplacian), and
reversible with respect to product measures. The motivation to build such a model came from the fact that
most of the interesting macroscopic phenomenology of KCLGs comes from their cooperative nature, and
also from the effort involved in studying nongradient or nonreversible models (with respect to product
measures). We already knew that

• the Kob–Andersen model [Cancrini et al. 2010] is cooperative and reversible,

• the KCLG whose macroscopic behavior is given by the porous medium equation considered in
[Gonçalves et al. 2009; Blondel et al. 2018] is gradient and reversible,

• the facilitated exclusion process [Rossi et al. 2000] is cooperative and gradient.

The impossibility of combining all three characteristics was proved during the revision process by Shapira
in the appendix of [Shapira 2020].

1A. The facilitated exclusion process. In this paper we consider the last model which has been mentioned
above, namely the facilitated exclusion process, introduced in [Rossi et al. 2000] and further investigated
in [Baik et al. 2018; Basu and Mohanty 2009; Blondel et al. 2020; de Oliveira 2005; Lübeck 2001]. Its
dynamics can be described as follows: on the periodic domain TN , we associate independently with each
site a random Poissonian clock ringing at rate 2. When the clock at site x rings, if the site x is occupied,
the particle chooses one of its neighbors x ±1 to jump to, each one with probability 1

2 . However, the jump
does not systematically occur, but follows two rules, (i) the exclusion principle: if the target site x ± 1 is
already occupied, then the jump is canceled, and (ii) a dynamical constraint: if the other neighbor x ∓ 1
is empty, then the jump is canceled. In other words, a particle, in order to jump, needs to be “pushed” to
an empty site by a neighboring particle.

Contrarily to the vast majority of exclusion processes considered in the literature, the grand canonical
measures of this process are not products of Bernoulli measures: on the one hand, the strong dynamical
constraint creates a phase transition at the critical density 1

2 . Precisely, if the equilibrium density ρ satisfies
ρ > 1

2 , then there is a unique invariant measure πρ , while if ρ 6 1
2 , all the Dirac measures concentrated

on configurations which cannot evolve under the dynamics are invariant. On the other hand, πρ is not a
product measure, but presents nontrivial correlations (which however decay exponentially fast, as proved
in [Blondel et al. 2020, Section 6.3]). Another technical issue is that the facilitated exclusion process
itself is not attractive, though it can be mapped to an attractive zero-range process (see (3-21)).

At the macroscopic level, one naturally expects the same separation of phases. As conjectured in
[Blondel et al. 2020], the macroscopic behavior of this system is described by the free boundary problem

1Historically, KCLG were introduced in the physics literature as reversible dynamics with respect to a product measure
[Kob and Andersen 1993; Ritort and Sollich 2003], to study the effect on relaxation of dynamical constraints as opposed to
(equilibrium) thermodynamic interactions.
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in which the same nonlinear diffusion equation as in [Blondel et al. 2020] governs the evolution of
the density in the supercritical — active — phase

(1
2 , 1

]
, while there is no evolution in the subcritical —

frozen — phase
[
0, 1

2

]
. As the frozen region is progressively filled from the growth of the active region,

the latter grows and the frontier (or free boundary) between the two regions moves. More precisely,
we show that, in the diffusive space/time scaling, the empirical density of particles is governed in the
macroscopic limit by the (weak) solution to the Stefan problem2

∂tρ = ∂2
u (H(ρ)), with H(ρ)= 2ρ− 1

ρ
1{ρ> 1

2 }, (1-1)

where 1{ρ>1/2} is the indicator function which equals 1 on the active phase
(1

2 , 1
]

and 0 on the frozen
phase

[
0, 1

2

]
. The solution to (1-1) has very poor regularity properties, since it is generically discontinuous

at the free boundary. This hydrodynamic limit result (see Theorem 2.4) is the first main outcome of this
article.

1B. Hydrodynamic limit. To derive the Stefan problem as stated in Theorem 2.4, the presence of a phase
transition prevents the use of standard methods, as the ones exposed in [Kipnis and Landim 1999]. Indeed,
the presence of two phases whose stationary measures have disjoint support prohibits using the entropy

method, whose center argument relies on comparing the distribution of the process with a global reference
measure. The finer relative entropy method fails as well, because it requires the hydrodynamic limit to
be smooth, which is not the case for the Stefan problem. Note that the extension of the relative entropy
method to a parabolic differential equation proposed in [Blondel et al. 2018] would also fail, since we are
not able to construct a sufficiently good approximation of the solution to our free boundary problem.

In order to circumvent this difficulty, Funaki [1999], inspired by [Varadhan 1991], exploits the concept of
Young measures. In his model (originally introduced in [Chayes and Swindle 1996]), two types of particles
are present on the discrete lattice, “ice” particles which never move, and “water” particles which evolve
according to a speed-change exclusion process. They form two regions, and they interact only through the
interfaces separating both regions. Funaki derives a Stefan problem by adapting Varadhan’s idea [1991] to
his bi-phased model. One important ingredient to apply his strategy is to give a full characterization of the
infinite volume stationary measures. For simple exclusion processes, this characterization follows from De
Finetti’s theorem ([Liggett 2004, Section 4.3; Billingsley 1995, Theorem35.10, p.473]). In [Funaki 1999],
the supercritical stationary measures are written as a mixture of canonical Gibbs measures using [Georgii
1988]. In our case, Lemma 3.6 is obtained via the mapping to a zero-range process and [Andjel 1982].

Apart from [Funaki 1999], other free boundary problems have been derived from discrete microscopic
models. In [Tsunoda 2015], the author considers a generalized exclusion process with positive jump rates,
reversible with respect to product measures. He then argues that a tagged particle acts as a boundary
between two phases and shows that its rescaled velocity converges to the solution of the implicit equation
satisfied by the free boundary between two similar phases. Carinci et al. [Carinci et al. 2016] investigated
a simple exclusion process with injection and removal of mass at the boundaries, one of which is described

2Uniqueness of the weak solution to (1-1) in the sense of Definition 2.1 follows from the monotonicity of H [Uchiyama 1994,
Theorem 6, p.10].
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as the right-most particle in the system rather than a fixed point in space. In [Landim and Valle 2006], the
system of interest is described by two coupled simple exclusion processes with annihilating interaction at
the contact point. The facilitated exclusion process stands apart because the two phases arise directly
from the dynamics, rather than being implemented from the start in the definition of the model. The
resulting Stefan problem is also more complex because it allows for a so-called mushy region, i.e., the
frozen phase needs not be flat and featureless.

One can also recall from [Gravner and Quastel 2000] that the occupancy set of the so-called internal

DLA grows according to a Stefan problem. The microscopic systems considered there are close to the
zero-range process (3-24) to which the FEP can be mapped, with the difference that the jump rates grow
linearly with the number of particles on a given site.

In [De Masi et al. 2019], the authors derive a two-phase Stefan problem from a system of two exclusion
processes (with different rates) in which particles of different type annihilate at a certain rate when they
are on the same site. Unlike ours, the process has product equilibrium measure and is amenable to the
relative entropy method. Hayashi [2020] generalized the process to allow different killing rates for the
two types of particles, which leads to more complicated behaviors for the limiting PDE.

Let us finally mention the papers [Dembo and Tsai 2019] and [Delarue et al. 2019]. These consider a
somewhat reverse problem: the frozen phase invades a (supercooled) liquid phase. The former grows
when a diffusing particle from the liquid phase comes in contact with the frozen region. The parameters
in the frozen region are irrelevant, so that in the limit we have a one-phase Stefan problem with no mushy
region. On the other hand, since the interface can travel at arbitrary large speeds in the microscopic world,
the macroscopic equation can exhibit blow-up in finite time.

1C. Microscopic phases. As noted in [Blondel et al. 2020], in addition to blocked and ergodic configura-
tions, the facilitated exclusion process also presents transient configurations with mixed features, contrary
to [Funaki 1999]. It is clear that in finite volume they disappear in finite time, but it would be conceivable
that in the hydrodynamic limit the process remains in this undecided state. It turns out that this does not
happen.

In [Blondel et al. 2020], we show that, if the initial density is larger than the critical value 1
2 , after a

subdiffusive transition time of order (log N )α, with high probability the system enters the irreducible
component — if the initial configuration belongs to the class of so-called regular configurations, which
happens with high probability for reasonable initial conditions (see [Blondel et al. 2020, Section 4]).

In the present setting with two macroscopic phases, it is clear that this is no longer true. However, we
can hope for the next best thing: that after a subdiffusive transition time, there is a way to split the system
in two parts, one ergodic and the other blocked, that match the macroscopic super- and subcritical phases.
Since our hydrodynamic limit result is obtained in a weak sense, one cannot extract this information
directly from Theorem 2.4. Therefore, we formulate this in an additional result, Theorem 2.6, which is
the second main outcome of this paper. In order to state the desired property rigorously, we need a good
notion of macroscopic interfaces, derived directly from the PDE (1-1), which is given in Proposition 2.5.
To prove that result, we use PDE techniques as such exposed in [Andreuci 2002; Meirmanov 1992]. The
problems of existence, regularity and uniqueness of solutions to Stefan problems have been investigated
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for years, and always raise obstacles which are overcome by refined approaches: as the literature is huge,
we give here only a partial list of works which treat similar equations as (1-1); see, for instance, [Andreuci
2002; Danielli and Korten 2005; Korten 1996; Korten and Moore 2008; Meirmanov 1992; Meirmanov
and Kaliev 1985].

1D. Outline of the paper. In Section 2 we give a complete description of the microscopic dynamics,
together with its main characteristics (presence of distinct phases), and we state the two main results
(Theorem 2.4 and Theorem 2.6). Section 3 is devoted to the proof of the hydrodynamic limit, following
Funaki’s proof based on Young measures. This strategy needs two main ingredients: the ergodic decom-
position for the stationary measures (given in Lemma 3.6), and a local law of large numbers reminiscent
of the one-block estimate (given in Proposition 3.8). In Section 4 we prove our second main result about
the exact correspondence between the microscopic and macroscopic phases, by using ideas coming from
[Blondel et al. 2020] in order to control the transition period of the microscopic system. We prove in
the Appendix, for the sake of completeness, several technical results, which do not contain important
conceptual novelties, in particular the existence of macroscopic interfaces as stated in Proposition 2.5.

1E. Notation. We collect here notation and conventions that we use throughout the paper. Since some
of the results rely on [Blondel et al. 2020], we will as often as possible keep the same notation.

First, N := {0, 1, 2, . . .} denotes the set of nonnegative integers and N∗ := N\{0} the set of positive
integers. For any finite set 3 we denote by |3| its cardinality.

The parameter N ∈ N∗ is always a scaling parameter and will go to infinity. We let TN := Z/NZ be
the discrete torus of size N , which we will also write as {1, . . . , N }. Similarly, T := R/Z = [0, 1) is the
one-dimensional continuous torus. For an interval 3= [a, b] ⊂ T or 3= [a, b] ⊂ TN of the discrete or
continuous torus, we write min3= a, max3= b, even though the torus is not naturally ordered.

For any ℓ ∈ N we set Bℓ := {−ℓ, . . . , ℓ} as the centered symmetric box of size 2ℓ + 1, which
can be seen as either a subset of TN (if 2ℓ + 1 6 N ), or a subset of Z. More generally, we define
Bℓ(x) := {−ℓ+x, . . . , ℓ+x} to be the box of size 2ℓ+1 centered at x . Similarly, we set3ℓ := {0, . . . , ℓ}
and 3ℓ(x) := {x, . . . , x + ℓ}.

We will consider configurations of particles on discrete sets A, with A either Z, the discrete torus TN ,
or a finite box 3⋐ Z. These configurations are of exclusion type, meaning that no more than one particle
can occupy any site of the lattice. They are generically denoted by η ∈ {0, 1}A. In particular, we denote by
6N := {0, 1}TN the set of periodic configurations and by6 := {0, 1}Z the set of infinite ones. For any x ∈ A

and configuration η ∈ {0, 1}A, we denote by ηx ∈ {0, 1} the particle number at site x . For any 3⊂ TN

(or 3⊂ Z) the configuration η ∈6N (or ∈6) restricted to 3 is denoted by η|3. We say that a function
f : {0, 1}Z → R is local if there exists 3 a finite subset of Z such that f (η) depends only on η|3. For any
probability measure π on {0, 1}3, and f : {0, 1}3→R a measurable function, π( f ) denotes the expectation
of f with respect to the measure π . For any f :6N → R measurable, and x ∈ TN , we denote by τx f the
function obtained by translation as follows: τx f (η) := f (τxη), where (τxη)y = ηx+y , for any y ∈ TN .

More generally, if P is a probability measure on a set E , and f is a measurable function defined on E ,
we denote by P( f ) the expectation of f with respect to P .
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For any sequence (uk)k∈N, possibly depending on parameters other than the index k, we will denote
by Ok(uk) (resp. ok(uk)) an arbitrary sequence (vk)k∈N such that there exists a constant C > 0 (resp. a
vanishing sequence (εk)k∈N) — possibly depending on the other parameters — such that

for all k ∈ N, |vk | 6 C |uk | (resp. |vk | 6 |uk |εk).

We will omit the subscript k when clear from context.
A function f : I × T → R, where I ⊂ R+ is an interval, is in Cα,β(I × T) if it is of class Cα in the

first variable, and of class Cβ in the second variable. If f is defined on a neighborhood of x , we write
f (x+) (resp. f (x−)) for limy→x,y>x f (y)=: limy→x+ f (y) (resp. limy→x,y<x f (y)=: limy→x− f (y)).

2. Model and results

2A. The microscopic dynamics. Let us first introduce the facilitated exclusion process described in the
introduction, which is a Markov process on the set of periodic configurations η ∈6N = {0, 1}TN .

The infinitesimal generator ruling the evolution in time of this Markov process is given by LN , which
acts on functions f :6N → R as

LN f (η) :=
∑

x∈TN

cx,x+1(η)( f (ηx,x+1)− f (η)), (2-1)

where ηx,y denotes the configuration obtained from η by swapping the values at sites x and y, namely
(ηx,y)x = ηy , (ηx,y)y = ηx and (ηx,y)z = ηz if z 6= x, y. Moreover, the jump rates cx,y(η) translate the
exclusion rule (no more than one particle at each site) and dynamical constraint (a particle needs to be
pushed to an empty site) as follows:

cx,x+1(η)= ηx−1ηx(1 − ηx+1)+ (1 − ηx)ηx+1ηx+2. (2-2)

Let us recall the main properties of this model, which have been already detailed in [Blondel et al. 2020]:
first, the dynamics conserves the total number of particles

∑
x∈TN

ηx . Elementary computations yield that
the following local conservation law holds: for any x ∈ TN ,

LNηx = jx−1,x − jx,x+1,

where the instantaneous current jx,x+1 = −cx,x+1(η)(ηx+1 − ηx)= τx h − τx+1h is the discrete gradient
of the local function

h(η)= η−1η0 + η0η1 − η−1η0η1. (2-3)

Since it satisfies this last property, the facilitated exclusion process considered here is a gradient model.
It is also degenerate, since the jump rates can vanish for nontrivial configurations.

Fix an initial density profile ρini : T → [0, 1]. We will consider, as an initial condition, a random
configuration of particles which is distributed according to a nonhomogeneous Bernoulli product measure
on 6N fitting ρini, defined as

µN (η) :=
∏

x∈TN

(
ρini

(
x

N

)
ηx +

(
1 − ρini

(
x

N

))
(1 − ηx)

)
. (2-4)
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x
η ∈ E3

η ∈ E3

Figure 2.1. Example of configurations belonging to the ergodic and frozen sets, with |3| = 10.

The invariant measures of this process have been deeply investigated in [Blondel et al. 2020, Section 6].
Due to the strong dynamical constraint, they are not independent products of homogeneous Bernoulli
measures (as it is often the case for exclusion processes), but they can be made fully explicit. Moreover,
there is a critical density ρ⋆ (given in the next section) such that, if the density is bigger than ρ⋆, then
there is a unique invariant measure, while all the invariant measures are superpositions of atoms if the
density is less than ρ⋆. More details will be given in Section 3C.

Remark 2.1 (on the initial distribution µN ). Proving the hydrodynamic limit result (Theorem 2.4) only
requires the convergence in distribution of the empirical density at initial time, namely,

1

N

∑

x∈TN

ϕ

(
x

N

)
ηx(0)−−−→

N→∞

∫

T

ϕ(u)ρini(u) du,

for any test function ϕ, where the above convergence holds in probability under µN . However, in the
second part, in the investigation of the creation of microscopic fronts (Theorem 2.6), one requires some
sharp decay of the correlations of the initial distribution. For the sake of clarity, we do not aim at having
minimal assumptions on the initial distribution (which is not the main issue here) and choose as initial
distribution the product measure (2-4) throughout the paper.

2B. Ergodic and frozen phases. The facilitated exclusion process displays a phase transition. Indeed,
because of the microscopic jump constraint, pairs of neighboring empty sites cannot be created by the
dynamics. In particular, assuming that initially, at least half of the sites are occupied, particles will diffuse
in the microscopic system until there are no longer two neighboring empty sites. On the other hand, if
initially at least half of the sites are empty, particles will diffuse until the moment when each particle is
surrounded by empty sites and can no longer move. For this reason, given 3⊂ Z or 3⊂ TN , we now
introduce the set of ergodic (resp. frozen) configurations as:

E3 =
{
η ∈ {0, 1}3 : ηx + ηx+1 > 1, for all x ∈3 such that x + 1 ∈3

}
, (2-5)

namely the set of configurations where all empty sites are isolated, resp.

F3 =
{
η ∈ {0, 1}3 : ηx + ηx+1 6 1, for all x ∈3 such that x + 1 ∈3

}
, (2-6)

namely the set of configurations where all particles are isolated. An example of an element belonging to
each set is given in Figure 2.1.

At the macroscopic level, this means that there are two distinct regimes for the behavior of this model.3

Either the macroscopic density is larger than the critical value ρ⋆ := 1
2 , in which case the system behaves

3Note however that E3 ∩ F3 is nonempty since it contains alternated particle/empty site configurations.
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diffusively, or the density is lower than 1
2 , in which case the system remains frozen after a transitive period

during which the particles tend to isolate themselves. The interfaces between these two macroscopic
phases move as particles from the supercritical phase

(
ρ > 1

2

)
diffuse towards the subcritical phase

(
ρ < 1

2

)
.

As we already noted in [Blondel et al. 2020], there are transitive (or transient) configurations, which are
neither ergodic nor frozen (E3∪F3 6= {0, 1}3). However, they are called transient in [Blondel et al. 2020]
because, if3⋐Z is finite, then from these transient configurations the process will evolve toward E3∪F3

after a number of particle jumps which is a.s. finite. More precisely, in [Blondel et al. 2020] we show that, if
the initial configuration of particles is distributed according to µN (defined in (2-4)), with ρini(T)⊂

(1
2 , 1

]

(therefore, the initial density profile is uniformly larger than the critical density), then the microscopic
system of size N needs a subdiffusive time tN = o(N 2) in order to reach the ergodic component.

2C. Free boundary problem. In this section, we turn to the macroscopic point of view, and first give an
explicit free boundary problem, for which we explain what we intend by a solution.

Definition 2.1 (weak solution of the free boundary problem). For any r > 0, define the function

H(r)= 2r − 1

r
1{r> 1

2 },

and denote by 〈 f, g〉 the inner product of f and g in L2(du) on T.
Fix T > 0 and let ρini : T → [0, 1] be a measurable initial profile. We call a measurable function

ρ : (t, u) 7→ ρt(u) a weak solution to the free boundary problem

∂tρ = ∂2
u (H(ρ)) (2-7)

with initial condition ρ0 = ρini, if

• for any (t, u) ∈ [0, T ] × T, ρt(u) ∈ [0, 1],
• and for any test function ϕ ∈ C1,2([0, T ] × T),

〈ρT , ϕT 〉 = 〈ρini, ϕ0〉 +
∫ T

0
〈ρt , ∂tϕt 〉 dt +

∫ T

0
〈H(ρt), ∂

2
uϕt 〉 dt. (2-8)

Remark 2.2. Let us briefly comment on the function H. As pointed out in Section 2A, the generator
of the process acts as a discrete Laplacian, in the sense that Lηx = τx+1h + τx−1h − 2τx h. In the frozen
phase, the function h vanishes. However, in the ergodic phase, and under the equilibrium measure πρ at
density ρ (see Definition 3.2), its average equals

∫
h(η) dπρ(η)= H(ρ).

Intuitively, the configurations evolving according to Definition 2.1 should be separated into two phases:
a region of density above 1

2 , where the macroscopic evolution is given by an elliptic equation, and a
(frozen) region of density below 1

2 which is gradually filled by the spreading of the supercritical region.
Making this picture rigorous is not immediate, given the weakness of the above notion of solution, even
for “simple” initial density profiles, as we explain below.

Proposition 2.3 (uniqueness of weak solutions [Uchiyama 1994]). There exists a unique weak solution

of (2-7) with initial condition ρ0 = ρini, in the sense of Definition 2.1.
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Since H : [0, 1] → [0, 1] is a nondecreasing function, this proposition is already proved, see [Uchiyama
1994, Theorem 6, p.10], and therefore we do not reproduce the proof here.

2D. Main results. As already noted in [Blondel et al. 2020], the macroscopic behavior of the facilitated
exclusion process appears in the diffusive time scale. Therefore, we define {η(t) : t > 0} as the Markov
process driven by the accelerated infinitesimal generator N 2LN and initially distributed as µN (given
in (2-4)). Fix T >0 and denote by PµN the probability measure on the Skorokhod path space D([0, T ], 6N )

corresponding to this dynamics. We denote by EµN the corresponding expectation. We emphasize that,
even though it is not explicit in the notation, P, E and η(t) strongly depend on N : through the size of the
state space, but also through the diffusive time scaling.

Theorem 2.4 (hydrodynamic limit). Let ρini : T →[0, 1] be a measurable initial profile. For any t ∈ [0, T ],
any δ > 0, and any smooth test function ϕ : T → R, we have

lim
N→∞

PµN

[∣∣∣∣
1

N

∑

x∈TN

ϕ

(
x

N

)
ηx(t)−

∫

T

ϕ(u)ρt(u) du

∣∣∣∣> δ
]

= 0, (2-9)

where ρ is the unique weak solution of (2-7) with initial condition ρ0 = ρini, in the sense of Definition 2.1.

In order to prove Theorem 2.4, we adapt a technique used by Funaki [1999], and inspired by [Varadhan
1991], and we exploit the concept of Young measures, as explained in Section 3. One of the drawbacks
of this method, however, is that the hydrodynamic limit is proved in a rather indirect way, which says
nothing about the separation of the microscopic configuration into two phases matching the macroscopic
ones. Therefore, we also prove in Theorem 2.6 that after a subdiffusive time, the microscopic picture
corresponds exactly to the macroscopic one, in two steps: first, with each subcritical or supercritical
macroscopic phase can be associated a connected subcritical or supercritical microscopic box, and second,
the microscopic interface between those two boxes is indeed close to the macroscopic one coming from
the free boundary problem (2-7). We emphasize that this result is not necessary to prove Theorem 2.4; it
is an independent outcome.

For our second theorem, we need two extra assumptions on the initial profile ρini. Let us introduce
C0 := (ρini)−1

({ 1
2

})
⊂ T, the set of critical points of the initial density profile. Assume that

C
0 is a finite set with cardinality c(ρini) ∈ N, (H1)

ρini ∈ C2(T) and ∂uρ
ini(u) 6= 0 ∀u ∈ C

0. (H2)

In this setting, unfortunately, formalizing rigorously the notion of macroscopic interfaces for the solutions
of (2-7), and the corresponding microscopic features, can be rather cumbersome. We will therefore state
and prove all our results in the case

ρini < 1, |C0| = 2 and (ρini)−1([0, 1
2

])
= [0, u∗]. (T1)

In other words, we assume that there are only two critical points: 0≡1 and u∗ ∈ (0, 1), the initial subcritical
phase is the segment [0, u∗], the initial supercritical phase is the complementary segment [u∗, 1], and
at no point in the supercritical phase is density 1 reached. We stress out that this is not necessary for our
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proof to hold, and that both Definition 2.3 and Theorem 2.6 can be straightforwardly extended to any
even integer c(ρini).

Definition 2.2 (two-phased configurations). We say that a configuration η ∈6N is two-phased if there
exists a partition TN = E ⊔ F, such that E, F ⊂6N are (possibly empty) connected subsets, and

η(t)|E ∈ EE and η(t)|F ∈ FF,

where the set of ergodic and frozen configurations were defined in (2-5) and (2-6). We denote by PN the
set of nonergodic two-phased configuration, and for any η ∈ PN , we denote Eη and Fη (the latter must
be nonempty if η is nonergodic) the corresponding ergodic and frozen sets. To ensure uniqueness, we
choose Eη to be maximal for inclusion.

Note that a two-phased configuration remains two-phased or ergodic along the dynamics:

if η(s) ∈ PN , then for all t > s, η(t) ∈ PN ∪ ETN
. (2-10)

Therefore, we can provide the following:

Definition 2.3 (microscopic fronts). Assume that at a time t , η(t) ∈ PN . Then we define

uN
−(t)= min Fη(t) and uN

+(t)= max Fη(t),

which correspond to the position of the microscopic fronts, with the convention that

uN
−(t)= max

s6t
η(s)∈PN

uN
−(s) and uN

+(t)= min
s6t

η(s)∈PN

uN
−(s)

if η(t) ∈ ETN
has already become ergodic. In other words, once the microscopic fronts have merged and

the configuration becomes ergodic, we arbitrarily set the position of the microscopic fronts at the last site
where the frozen set was nonempty.

Theorem 2.6 states that the configuration becomes two-phased in a subdiffusive time with high proba-
bility. It also states that the boundaries of the frozen set (i.e., the microscopic fronts as in Definition 2.3)
are never far from the macroscopic interfaces. To state this result, we need to show that the latter are well
defined. The following result is proved in Appendix D.

Proposition 2.5. Assume (H1), (H2) and (T1). For any T > 0, the weak solution ρ of the free boundary

problem (2-7) admits continuous macroscopic interfaces u−, u+ : [0, T ] → T, respectively nondecreasing

and nonincreasing, satisfying u−(0)= 0, u+(0)= u∗. Moreover, there exists τ ∈ R+ ∪ {∞} such that

(1) for any t < τ , u−(t) 6= u+(t), and

ρt(u)

{
< 1

2 if u ∈ (u−(t), u+(t)),

> 1
2 if u ∈ (u+(t), u−(t));

(2) if τ <∞ then u−(τ )= u+(τ );

(3) for any t > τ , ρt >
1
2 on T, and moreover u+, u− are constant: u+(t)= u−(t)= u−(τ ).

We are now ready to state our second main result.
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Theorem 2.6. Assume (H1), (H2) and (T1).

(1) Creation of fronts: Letting tN = N−1/4,

lim
N→∞

PµN (η(tN ) ∈ PN )= 1,

i.e., in a time of order N−1/4, the microscopic configuration is two-phased with high probability.

(2) Macroscopic match: For any t ∈ (0, τ ] ∩ R+,

lim
N→∞

PµN

(∣∣∣∣
1

N
uN

±(t)− u±(t)

∣∣∣∣ > ε
)

= 0,

where τ, u+, u− are defined in Proposition 2.5 and uN
± in Definition 2.3.

The result actually also holds for tN = N−m for any m < 2
3 , but in order to focus on the important

points of the proof, we choose simpler exponents in the required estimates, so that taking tN = N−1/4 is
convenient. As will be shown in Section 4F, point (2) is actually a simple consequence of (1) and the
hydrodynamic limit result (Theorem 2.4).

Remark 2.7 (on assumption (H2)). The regularity of the initial profile ρini at the critical points is crucial
to our proof. However, away from the critical points, the regularity assumption could be weakened. To
focus on the important points of the proof, we settle for assumption (H2).

3. Proof of Theorem 2.4: Young measures and hydrodynamic limit

We prove in this section the hydrodynamic limit result stated in Theorem 2.4, following the strategy given
in [Funaki 1999].

3A. Empirical measure. For any t ∈ [0, T ], let us define

m N
t (du)= m N (η(t), du) := 1

N

∑

x∈TN

ηx(t)δx/N (du), (3-1)

the empirical measure of the process, where δa(du) stands for the Dirac measure on T at point a ∈ T.
The measure m N

t is an element of the set M+(T) of positive measures on the torus T, which we endow
with the weak topology. We slightly abuse our notation for the inner product in L2(T), and also denote
by 〈m, ·〉 the integral on T with respect to any measure m(du).

Let us denote by PN the pushforward measure of PµN by the mapping m N , namely PN :=PµN ◦(m N )−1.
Then, PN is a probability measure on the path space D([0, T ],M+(T)), endowed with the Skorokhod
topology. In order to prove Theorem 2.4, we are reduced to proving the convergence of the sequence (PN )

towards the Dirac probability measure concentrated on the solution of (2-7).
We already know some properties of the sequence (PN ), which are quite standard in the literature:

Proposition 3.1 (absolute continuity with respect to the Lebesgue measure). The sequence (PN ) is weakly

relatively compact in D([0, T ],M+(T)), and any of its limit points P∗ is concentrated on trajectories of



138 ORIANE BLONDEL, CLÉMENT ERIGNOUX AND MARIELLE SIMON

measures {mt(du) : t ∈ [0, T ]} which are

(1) continuous in time, i.e.,
P

∗(t 7→ mt is continuous)= 1, (3-2)

(2) and whose marginal at time t is absolutely continuous with respect to the Lebesgue measure on T,
i.e.,

P
∗(∀ t ∈ [0, T ], ∃ ρt : T → [0, 1], s.t. mt(du)= ρt(u)du

)
= 1. (3-3)

In particular, these two assertions prove that

P
∗(∀ t ∈ [0, T ], ∃ ρt : T → [0, 1] continuous in t, s.t. mt(du)= ρt(u)du

)
= 1.

This proposition will be proved in Appendix A for the sake of completeness, but it is standard. In many
models, the proof of the hydrodynamic limit can be completed from there by using the entropy method.
However, for this model, this standard strategy fails because of the presence of supercritical and subcritical
phases on which the time invariant measures are distinct and not absolutely continuous with respect to
one another. For that reason, we now introduce the concept of Young measures, as given in [Funaki 1999].

3B. Young measures and sketch of the proof. Given a configuration η, let us denote by

ρℓx = ρℓx(η) := 1

2ℓ+ 1

∑

y∈Bℓ(x)

ηy (3-4)

the local density in the box Bℓ(x) of size 2ℓ+1 around x (defined in Section 1E). When x = 0, to simplify
notation, we denote ρℓ = ρℓ0 . When η is a time trajectory, and the density is observed at time t , we denote
for the sake of clarity ρℓx(t)= ρℓx(η(t)) and ρℓ(t)= ρℓ(η(t)).

Definition 3.1 (Young measure). Let us fix an integer ℓ. The Young measure π N ,ℓ on T × [0, 1] is given
for any configuration η of particles by

π N ,ℓ(du, dr)= π N ,ℓ(η, du, dr) := 1

N

∑

x∈TN

δx/N (du) δρℓx (dr).

For any measure π on T × [0, 1], any function ξ defined on T, and any function ψ defined on [0, 1], we
denote by 〈〈π, ξ ·ψ〉〉 the integral of the function (ξ ·ψ)(u, r) := ξ(u)ψ(r) with respect to the measure π .

Similarly as before, let us define, for time trajectories,

π
N ,ℓ
t := π N ,ℓ(η(t)).

Remark 3.2. Observe that, for any smooth function ξ defined on T, and taking ψ(r)= r , an integration
by parts shows that there exists a constant C(ξ) > 0 such that

∣∣〈m N
t , ξ〉 − 〈〈π N ,ℓ

t , ξ · r〉〉
∣∣ 6 C(ξ)

ℓ

N
. (3-5)

We now define PN ,ℓ as the pushforward measure of PµN by the mapping

((m N )−1, (π N ,ℓ)−1),
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namely for any measurable set B,

PN ,ℓ({mt , πt }t∈[0,T ] ∈ B)= PµN ({m N
t , π

N ,ℓ
t }t∈[0,T ] ∈ B),

which is a probability measure on D([0, T ],M+(T)×M+(T ×[0, 1])). We first state a technical lemma.

Lemma 3.3. The sequence (PN ,ℓ)16ℓ6N is weakly relatively compact, and any of its limit points P
∗

as

N → ∞ then ℓ→ ∞4 satisfies

P
∗
(

∀ t ∈ [0, T ], ∃ ρt(·), pt(·, dr), s.t.

{
mt(du)= ρt(u)du

πt(du, dr)= pt(u, dr)du

)
= 1. (3-6)

Proof of Lemma 3.3. Since the first marginal of PN ,ℓ is PN , the fact that P
∗
-a.s., mt(du) is time continuous

and absolutely continuous at every time t with respect to the Lebesgue measure is a direct consequence
of Proposition 3.1. Moreover, P

∗
-a.s., this is also the case of πt(du, dr), since one can easily check after

passing to the limit in 〈〈π N ,ℓ
t , ξ · 1〉〉 that, for any smooth function ξ on T

∫

T

∫

[0,1]
πt(du, dr)ξ(u)6

∫

T

ξ(u) du,

which proves (3-6). Note that all those estimates are deterministic, in the sense that the only used property
is the exclusion rule (at most one particle per site is allowed in the configuration). For this reason, the
quantifier “for all t ∈ [0, T ]” can be inserted inside the probability, thus concluding the proof. �

We are now ready to state the main result of this section.

Proposition 3.4. The sequence (PN ,ℓ)16ℓ6N is weakly relatively compact, and any of its limit points P
∗

as N → ∞ then ℓ→ ∞ satisfies

P
∗(∀ (t, u) ∈ [0, T ] × T, pt

(
u,

[
0, 1

2

])
= 1, or pt(u, dr)= δρt (u)(dr)

)
= 1, (3-7)

where pt and ρt were defined P∗-a.s. by (3-6).
In other words, Young measures in r either only charge the subcritical range of densities, or are trivial

and given by a Dirac at ρt(u). Here, by limit point, we mean that we take any convergent subsequence as

N → ∞, and then any convergent subsequence as ℓ→ ∞.

Note that this proposition does not say anything about the function ρt(u). However, we prove at the
end of this section that it is the weak solution of (2-7).

Proposition 3.4 is a consequence of the following lemma.

Lemma 3.5. Any limit point P
∗

as N → ∞, ℓ→ ∞ of the sequence (PN ,ℓ)16ℓ6N satisfies

P
∗
(∫ T

0

∫

T

∫

[0,1]
H(r)

(
r −

∫

[0,1]
r ′ pt(u, dr ′)

)
pt(u, dr) dudt

)
= 0, (3-8)

where P
∗
(· · ·) denotes the expectation with respect to P

∗
.

4More precisely, by this expression we mean that we take limits of convergent subsequences as N → ∞ for fixed ℓ, then take
a convergent subsequence of these objects as ℓ→ ∞.
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We postpone the proof of this lemma; see Section 3E for the conclusion. Before proving it, we show
that Proposition 3.4 follows, and then we prove Theorem 2.4.

Proof of Proposition 3.4. We now show (3-7). Since for any fixed (t, u) ∈ [0, T ] × T, pt(u, ·) is a
probability measure on [0, 1], and since H(r)= 1

r
(2r − 1)1{r>1/2} is nondecreasing on [0, 1], we have

∫

[0,1]
H(r)

(
r −

∫

[0,1]
r ′ pt(u, dr ′)

)
pt(u, dr)

>

∫

[0,1]
H(r ′)pt(u, dr ′)

∫

[0,1]

(
r −

∫

[0,1]
r ′ pt(u, dr ′)

)
pt(u, dr)= 0.

This follows from the inequality
∫ ∫

( f (x)− f (y))(g(x)−g(y)) dµ(x)dµ(y)>0, valid for any measureµ
on R if f, g are nondecreasing. When ( f (x)− f (y))(g(x)− g(y)) = 0 a.e., we have equality in the
above inequality. In our case, this means that H should be constant on the support of pt(u, dr).

Therefore, from (3-8), we obtain that almost everywhere with respect to the Lebesgue measure in
[0, T ] × T, either

• pt

(
u,

[
0, 1

2

])
= 1 (if pt(u, dr) ◦H−1 = δ0), or

• pt

(
u,

[
0, 1

2

])
= 0 and there exists bt(u) ∈

(1
2 , 1

]
such that pt(u, dr) = δbt (u)(dr) (because H is

one-to-one on
(1

2 , 1
]
).

In the second case, since under P
∗
, for any smooth function ξ on T, we have 〈mt , ξ〉 = 〈〈πt , ξ · r〉〉 (recall

(3-5) and pass to the limit), one finally obtains that almost everywhere in [0, T ] × T, we must further
have bt(u)= ρt(u), which proves Proposition 3.4. �

We now conclude with the proof of the hydrodynamic result, namely (2-9) stated in Theorem 2.4.

Proof of Theorem 2.4. Define the discrete laplacian 1N , acting on functions ϕ : T → R, as

1Nϕ(u)= N 2
(
ϕ

(
u + 1

N

)
+ϕ

(
u − 1

N

)
− 2ϕ(u)

)
. (3-9)

Recall from (3-1) the definition of the empirical measure m N . We first write, by Dynkin’s formula, for
any ϕ ∈ C1,2([0, T ] × T),

〈m N
T , ϕT 〉 − 〈m N

0 , ϕ0〉 −
∫ T

0
〈m N

t , ∂tϕt 〉 dt −
∫ T

0

1

N

∑

x∈TN

1Nϕt

(
x

N

)
τx h(η(t)) dt = M

ϕ,N
T ,

where M
ϕ,N
T is a martingale whose quadratic variation can be written explicitly (see, e.g., [Kipnis and

Landim 1999, Appendix 1.5]) as

[Mϕ,N ]t = N 2
∫ t

0

(
LN (〈m N

s , ϕs〉2)− 2
〈
m N

s , ϕs

〉
LN

〈
m N

s , ϕs

〉)
ds

= 1
2

∫ t

0

∑

x∈TN
|y−x |=1

(
ϕs

(
x

N

)
−ϕs

(
y

N

))2

cx,y(η(s)) ds.
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Since the function ϕ is smooth, [Mϕ,N ]t 6 tC(ϕ)/N and vanishes as N → ∞. Using this, the local
ergodicity proved in Proposition 3.8, and the fact that replacing τx h by

1

2ℓ+ 1

∑

y∈Bℓ

τx+yh

in the integral leads to a term which is bounded by Cℓ/N (where C > 0 is a constant), we obtain

lim
ℓ→∞

lim sup
N→∞

EµN

[∣∣∣∣〈m
N
T , ϕT 〉 − 〈m N

0 , ϕ0〉 −
∫ T

0
〈m N

t , ∂tϕt 〉 dt

−
∫ T

0

1

N

∑

x∈TN

1Nϕt

(
x

N

)
H(ρℓt (x)) dt

∣∣∣∣
]

= 0. (3-10)

Theorem 2.4 is now a consequence of Proposition 3.4 above. Indeed, the expectation in the left-hand side
of (3-10) rewrites as

PN ,ℓ

(∣∣∣∣〈m
N
T , ϕT 〉 − 〈m N

0 , ϕ0〉 −
∫ T

0
〈m N

t , ∂tϕt 〉 dt −
∫ T

0
〈〈π N ,ℓ

t , 1Nϕt ·H〉〉 dt

∣∣∣∣
)
,

where the short notation 1Nϕ ·H stands for (u, r) 7→ H(r)1Nϕ(u) (recall Definition 3.1). In particular,
as N → ∞ then ℓ→ ∞, we obtain according to Proposition 3.4 that for any limit point P

∗
of PN ,ℓ,

P
∗
(∣∣∣∣〈ρT , ϕT 〉 − 〈ρ0, ϕ0〉 −

∫ T

0
〈ρt , ∂tϕt 〉 dt −

∫ T

0
〈H(ρt), ∂

2
uϕ〉 dt

∣∣∣∣
)

= 0,

which yields as wanted that P
∗

is concentrated on trajectories mt(du)= ρt(u)du such that ρ is a weak
solution to (2-7), in the sense of Definition 2.1. �

The remainder of the section is dedicated to proving Lemma 3.5. For that purpose, we need to state and
demonstrate two important results: first, we investigate the grand canonical measures of the process and
we prove an ergodic decomposition of any infinite volume stationary measure à la De Finetti (Section 3C,
Lemma 3.6); and second, we obtain a local law of large numbers analogous to the well-known one-block

estimate (Section 3D, Proposition 3.8). The end of the proof is given in Section 3E.

3C. Canonical and grand canonical measures. Let us define the infinite volume generator associated
with our dynamics (recall (2-1)), which acts on local functions f : {0, 1}Z → R, as

L∞ f (η) :=
∑

x∈Z

cx,x+1(η)( f (ηx,x+1)− f (η)). (3-11)

In this section, we investigate the measures on {0, 1}Z which are stationary for L∞. One of the main
ingredients needed to apply the same arguments as in Funaki’s proof [1999] is to prove that any stationary
measure for the generator L∞, once restricted to the active phase

{
ρ > ρ⋆ = 1

2

}
, admits a decomposition

along spatially ergodic measures.
Let us first introduce the grand canonical measures πρ for the facilitated exclusion process, which

have been studied in detail in [Blondel et al. 2020]:
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Definition 3.2 (grand canonical measures).

• For any ρ ∈
(1

2 , 1
)
, and any local configuration σ = (σ0, . . . , σℓ) on 3ℓ, we define

πρ(η|3ℓ = σ)= 1{σ∈E3ℓ
}(1 − ρ)

(
1 − ρ
ρ

)ℓ−p(2ρ− 1

ρ

)2p−ℓ−σ0−σℓ
, (3-12)

where p = p(σ ) :=
∑

y∈3ℓ σy is the number of particles in σ , and E3ℓ was defined in (2-5) as the
set of local ergodic configurations.

• For any ρ ∈ [0, 1
2 ], we define

πρ = 1
2δ◦• + 1

2δ•◦ , (3-13)

where ◦• (resp. •◦) is the configuration in which there is a particle at x if and only if x is odd
(resp. even), and δη is the Dirac measure concentrated on the configuration η.

• For ρ = 1, let π1 = δ1, where 1 denotes the configuration identically equal to 1.

We know from [Blondel et al. 2020, Section 6] that the measures πρ are invariant for the generator L∞.
Here we prove important additional properties of theses measures. The main result of this section is the
following:

Lemma 3.6 (ergodic decomposition of stationary measures). Let µ be a translation invariant, infinite vol-

ume measure on {0, 1}Z, which is stationary for L∞, i.e., such that for any local function f , µ(L∞ f )= 0.

Then, there exist λ ∈ [0, 1], a probability measure µF with support included in FZ (the set of frozen

configurations; see (2-6)), and a probability measure ̟(dρ) on
[ 1

2 , 1
]
, such that

µ(·)= λµF (·)+ (1 − λ)
∫

[ 1
2 ,1]

̟(dρ)πρ(·). (3-14)

Proof of Lemma 3.6. We first discard the degenerate case, where the translation invariant measure µ
satisfies µ(η0 = 1)= 1: in this case, by translation invariance, µ= π1 = δ1. Then the result is trivially
true.

Fix now a translation invariant measureµ on {0, 1}Z which is stationary with respect to the generator L∞,
and such that µ(η0 = 1) < 1 (i.e., µ(η0 = 0) > 0). Recall from (2-5) and (2-6) the definition of the sets
of infinite ergodic and frozen configurations EZ and FZ. We first claim that, since µ is stationary, we
must have

µ({0, 1}Z \ (EZ ∪ FZ))= 0, (3-15)

i.e., µ charges configurations which are either completely ergodic, or completely frozen. To expose the
argument as clearly as possible, let us indicate the occupied sites by •, and the empty sites by ◦, and any
local configuration η by a finite sequence of • and ◦. Since µ is translation invariant, there will be no
need to specify the support of the configurations in the following argument. We further use the notation

[•◦]k := • ◦ · · · • ◦︸ ︷︷ ︸
2k sites

and [◦•]k := ◦ • · · · ◦ •︸ ︷︷ ︸
2k sites

.
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We are going to show that for any k > 0,

µ(◦ ◦ [•◦]k • •)= µ(• • [◦•]k ◦ ◦)= 0, (3-16)

the box where the configuration is observed being arbitrary, but fixed. Since any configuration which is
not in EZ nor in FZ must contain either ◦ ◦ [•◦]k • • or • • [◦•]k ◦ ◦ for some k, this will prove (3-15).
For k = 0, we write by definition and using the translation invariance of µ,

µ(L∞1{◦◦})= −µ(◦ ◦ • •)−µ(• • ◦ ◦)= 0,

since µ is stationary. Therefore both probabilities on the right-hand side, which are nonnegative, must be
equal to 0. This proves (3-16) for k = 0. Assume now that (3-16) holds for any ℓ < k; then write (more
explanations on the following identity are given right below):

0 = µ(L∞1{◦◦ [•◦]k−1••})

= −µ(• • ◦ ◦ [•◦]k−1 • •)−µ(◦ ◦ [•◦]k−1 • •) (3-17)

−µ(◦ ◦ [•◦]k−1 • •◦)+µ(◦ ◦ [•◦]k • •) (3-18)

+
k−3∑

ℓ=0

µ(◦ ◦ [•◦]ℓ • • ◦ ◦ [•◦]k−ℓ−3 • •) (3-19)

+
k−2∑

ℓ=0

µ(◦ ◦ [•◦]ℓ ◦ • [•◦]k−ℓ−2 • •). (3-20)

Let us comment briefly on the identity above: the only terms that give a nonzero contribution to
L∞1{◦◦ [•◦]k−1••} are:

(1) The jumps that can happen in the configuration ◦ ◦ [•◦]k−1 • • (giving contributions with the minus
sign). There are three possibilities: first, if there are two extra particles to the left, then the first pair
of empty sites may be broken by a particle coming from the left,

• • ◦ ◦ [•◦]k−1 • • 7→ • ◦ • ◦ [•◦]k−1 • •,

and this gives the first term in (3-17). Similarly, the transitions corresponding to the second term in
(3-17) and first term in (3-18) are given respectively by

◦ ◦ [•◦]k−2 • ◦ • • 7→ ◦ ◦ [•◦]k−2 • • ◦ •
and

◦ ◦ [•◦]k−1 • • ◦ 7→ ◦ ◦ [•◦]k−1 • ◦ •.

(2) Then, there are the jumps that, starting from another configuration, lead to ◦ ◦ [•◦]k−1 • • (giving
the three contributions with the plus sign). The corresponding transitions are depicted below:

◦ ◦ [•◦]k−1 • ◦ • • 7→ ◦ ◦ [•◦]k−1 • • ◦ •,
◦ ◦ [•◦]ℓ • • ◦ ◦ [•◦]k−ℓ−3 • • 7→ ◦ ◦ [•◦]ℓ • ◦ • ◦ [•◦]k−ℓ−3 • •,

◦ ◦ [•◦]ℓ ◦ • [•◦]k−ℓ−2 • • 7→ ◦ ◦ [•◦]ℓ • ◦ [•◦]k−ℓ−2 • •.
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x

0 z
etc.

Figure 3.1. An example of configuration η+ with support N.

Note that all terms in (3-19) contain • • ◦◦, and all terms in (3-20) contain ◦◦•• and therefore vanish.
Since we assumed that (3-16) holds for any ℓ 6 k − 1, all terms in the right-hand side (3-17)–(3-18)
vanish, except µ(◦ ◦ [•◦]k • •). Therefore the latter must vanish as well. An analogous computation for
µ(L∞1{••[◦•]k−1◦◦}) proves the second identity, so that (3-16) holds for any k.

Now, let λ = µ(FZ) ∈ [0, 1] be the total mass of frozen configurations. Note that any translation
invariant measure with support included in FZ is necessarily stationary for L∞. In particular, in order
to prove Lemma 3.6, we only need to treat the decomposition of µ restricted to the ergodic component.
Without loss of generality, we can therefore assume that λ= 0, i.e., µ(EZ)= 1. Let us also put aside the
case where µ gives positive weight to 1 and assume µ(1) = 0. Let us define the set of configurations
with infinitely many zeros both right and left of the origin:

6∞ :=
{
η ∈ {0, 1}Z :

∑

x>0

(1 − ηx)=
∑

x60

(1 − ηx)= ∞
}
.

We claim that, since we assumed µ(η0 = 0) > 0 and µ(1) = 0, we must have µ(6c
∞) = 0. To prove

this claim, fix a semi infinite configuration η+ on N with a finite number of empty sites (see Figure 3.1),
denote c = µ(η|N = η+). If η+ 6= 1, denote z its rightmost empty site, and define the set

Ek :=
{
η ∈ {0, 1}Z : η|{k(z+1),··· } = τ−k(z+1)η

+}
.

By translation invariance of µ, we have µ(Ek) = c for any k ∈ N, and the sets Ek are disjoint by
construction, because

Ek ⊂
{
η ∈ {0, 1}Z :

∑

x>k(z+1)

(1 − ηx) > 0 and
∑

x>(k+1)(z+1)

(1 − ηx)= 0

}
,

therefore in particular, we must have c = 0. Since there are countably many configurations with a finite
number of empty sites to the right of the origin, and since we just proved that their probabilities vanish,
making the same statement for configurations to the left of the origin yields as wanted µ(6c

∞)= 0.
To prove the ergodic decomposition (3-14), we use a classical mapping between the facilitated exclusion

process and a zero-range process, introduced in [Basu and Mohanty 2009] and already exploited in [Blondel
et al. 2020]. For simplicity, we define this mapping on the set

60
∞ := {η ∈6∞ : η0 = 0}

of configurations with an empty site at the origin. Then, given η∈60
∞, for any integer k> 0 (resp. −k< 0)

we denote xk(η) (resp. x−k(η)) the position of the k-th empty site to the right (resp. to the left) of the
origin, and let x0 = 0. We then define, for any k ∈ Z and η ∈60

∞,

ω
η

k := xk+1(η)− xk(η)− 1.
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0
η

0
ωη

Figure 3.2. An exclusion configuration η with an empty site at the origin and its corre-
sponding zero-range configuration ωη.

In other words, ωη ∈ NZ is the zero range configuration such that the number of particles on site k > 0
(resp. −k < 0) is the number of particles between the k-th and (k+1)-th empty site to the right (resp. to
the left) of the origin in η (see Figure 3.2).

We first note that for any ergodic configuration η ∈60
∞ ∩EZ, we must have ωη ∈ NZ

∗ . Let us denote by
5 the one-to-one mapping

5 : 60
∞ ∩ EZ → NZ

∗ ,
η 7→ ωη .

(3-21)

Recalling that we assume µ(EZ) = 1 and µ(η0 = 0) > 0, we now define a measure ν on the set NZ
∗ of

infinite zero-range configurations,

ν(F) := µ(ωη ∈ F | η0 = 0), F ⊂ N
Z

∗ measurable. (3-22)

In particular, for any E ⊂ EZ measurable,

µ(η ∈ E | η0 = 0)= ν(5(E ∩60
∞)). (3-23)

Define the infinite volume zero-range generator LZR
∞ which acts on local functions f : NZ → R

L
ZR
∞ f (ω) :=

∑

x∈Z

∑

δ=±1

1{ωx>2}( f (ωx,x+δ)− f (ω)), (3-24)

with ωx,x+δ representing the zero-range configuration where one particle in ω was moved from x to
x + δ, i.e.,

ωx,x+δ
y =





ωx − 1 if y = x,

ωx+δ + 1 if y = x + δ,
ωy else.

One easily checks that for any α > 1 the geometric product homogeneous measures να with marginals

να(ω0 = p)= 1{p∈N,p>1}
1

α

(
1 − 1

α

)p−1

(3-25)

are reversible for LZR
∞ , and that α = Eνα (ω0) then represents the average particle density per site. We

claim the following.
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Lemma 3.7. The measure ν defined by (3-22) on NZ
∗ is translation invariant, and stationary with respect

to the zero-range generator LZR
∞ . In particular from [Andjel 1982], there exists a probability measure

̟ZR on [1,+∞), such that

ν(·)=
∫

[1,+∞)

̟ZR(dα)να(·). (3-26)

Before proving this result, we show that Lemma 3.6 follows. For any event E ⊂60
∞ ∩EZ, we can now

write according to Lemma 3.7 and using (3-23),

µ(E | η0 = 0)=
∫

[1,+∞)

̟ZR(dα)να(5(E)),

for some measure ̟ZR(dα) on [1,+∞). Define G(α)= α/(1+α), which is an increasing bijection from
[1,+∞) to

[ 1
2 , 1

)
. Given the explicit expressions (3-25) and (3-12) for να and πρ , one easily checks that

πG(α)(E | η0 = 0)= να(5(E)).

We now define the measure ˜̟ on
[1

2 , 1
)

as the pushforward of ̟ZR by G

˜̟ = ϕZR ◦G−1,

which yields after a change of variables

µ(E | η0 = 0)=
∫

[ 1
2 ,1)

˜̟ (dρ)πρ(E | η0 = 0).

Finally, let

̟(dρ)= µ(η0 = 0)

πρ(η0 = 0)
˜̟ (dρ),

and we obtain

µ(E ∩ {η0 = 0})=
∫

[ 1
2 ,1)

̟(dρ)πρ(E ∩ {η0 = 0}).

Since by assumption µ(6∞)= 1, for any event E ⊂ EZ we can write

µ(E)=
∞∑

k=0

µ(E ∩ {η0 = · · · = ηk−1 = 1, ηk = 0})

and similarly with πρ for any ρ ∈
[1

2 , 1
)
. Using the translation invariance of both µ and πρ in these

identities, we obtain µ(E)=
∫
[1/2,1)̟(dρ)πρ(E) as wanted, which concludes the proof of Lemma 3.6. �

We now prove Lemma 3.7.

Proof of Lemma 3.7. It was proved by Andjel [1982, Theorem 1.9] that any translation invariant, stationary
measure for the zero-range process with constant jump rate can be decomposed as

∫

[1,+∞)

̟(dα)ν̃α(·), (3-27)

where ν̃α is the product measure on NZ with marginals ν̃α(ω0 = p) = 1
α

(
1 − 1

α

)p
. We can couple this
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zero-range process (which lives on NZ) with the process generated by LZR
∞ and restricted to configurations

in NZ
∗ by simply adding a particle at every site. The decomposition (3-27) then yields (3-26) for any

translation invariant measure on NZ
∗ which is stationary with respect to the zero-range generator LZR

∞ .
We therefore only need to prove the first two claims, namely the translation invariance and stationary
properties.

(i) Translation invariance. Recall that we denote 3ℓ = {0, . . . , ℓ}. To prove that ν is translation invariant,
fix ℓ> 0 and consider a local zero-range configuration σ ℓ = (σ0, . . . , σℓ) ∈ Nℓ+1

∗ . We are going to prove
that for any x ∈ Z,

ν(ω|x+3ℓ = σ ℓ)= ν(ω|3ℓ = σ ℓ),

where we shortened x + E = {x + y, y ∈ E}. To prove it, first note that by definition

ν(ω|x+3ℓ = σ ℓ)= µ(η0 = 0)−1 µ(ω
η

|x+3ℓ = σ ℓ and η0 = 0).

Assume that x 6= 0 (otherwise the statement is trivial), and first consider the case where 0 ∈ x +3ℓ, so
that in particular we must have x 6 −1. In this case, denote k := k(σ ℓ)=

∑−x−1
y=0 (1 + σy), and note the

following: for any configuration η ∈60
∞ (with an empty site at the origin),

if ωη|x+3ℓ = σ ℓ then η−k = 0,

since −k is the position of the (exclusion) x-th empty site in η, corresponding to the (zero-range) site x

in ωη. In particular, we can write

µ(ω
η

|x+3ℓ = σ ℓ and η0 = 0)

= µ(ω
η

|x+3ℓ = σ ℓ and η−k = 0 and η0 = 0)

= µ(ω
τkη

|x+3ℓ = σ ℓ and η0 = 0 and ηk = 0)

= µ

(
η0 = 0 and ∀ y ∈

{
1, . . . ,

ℓ∑

z=0

(1 + σz)

}
, ηy = 0 ⇔ ∃ i ∈3ℓ, y =

i∑

z=0

(1 + σz)

)

= µ(ω
η

|3ℓ = σ ℓ and η0 = 0).

To establish the second identity, we use the translation invariance of µ and make the change of variable
η = τkη

′. To establish the third (resp. fourth) identity, we simply write down what the configuration
ω
τkη

|3ℓ+x
(resp. ωη|3ℓ) means for η. This proves the translation invariance, assuming that 0 ∈ x +3ℓ.

We now consider the case x > 0. The case x < −ℓ being strictly analogous, we will not detail it
here. For two zero-range configurations σ k and σ ℓ defined respectively on 3k and 3ℓ, denote σ kσ ℓ the
concatenated configuration (defined on 3k+ℓ+1)

σ kσ ℓ = (σ k
0 , . . . , σ

k
k , σ

ℓ
0 , . . . , σ

ℓ
ℓ ).

Fix x > 0, and write

µ(ω
η

|x+3ℓ = σ ℓ and η0 = 0)=
∑

σ x−1∈(N∗)x

µ(ω
η

|3x+ℓ
= σ x−1σ ℓ and η0 = 0).
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As in the first case, define k =
∑x−1

y=0(1 + σ x−1
y ), and rewrite for any fixed σ x−1 ∈ (N∗)x :

µ
(
ω
η

|3x+ℓ
= σ x−1σ ℓ and η0 = 0

)
= µ(ω

η

|3x+ℓ
= σ x−1σ ℓ and η0 = 0 and ηk = 0)

= µ(ω
τ−kη

|3x+ℓ
= σ x−1σ ℓ and η−k = 0 and η0 = 0)

= µ(ω
η

|−x+3ℓ = σ x−1σ ℓ and η0 = 0),

where the third identity is derived as above. Summing over all σ x−1 ∈ (N∗)x , one finally obtains as
wanted

µ(ω
η

|x+3ℓ = σ ℓ and η0 = 0)= µ(ω
η

|3ℓ = σ ℓ and η0 = 0).

This proves that the measure ν is translation invariant.

(ii) Stationarity. We now prove that ν is stationary for the zero-range generator LZR
∞ as well. To do so, it

is sufficient to prove that for any ℓ> 0 and any local configuration σ ℓ ∈ Nℓ+1
∗ ,

ν(LZR
∞ 1{ω|3ℓ=σ ℓ})= 0. (3-28)

Proving this identity is a matter of elementary, though lengthy, computations; to facilitate reading, we
will only write it for ℓ= 1 and let the reader check that this identity also holds for ℓ= 0 and ℓ > 1. In
order not to burden the notation, we now omit the exponent ℓ= 1 in the configuration σ . Fixing a pair of
integers (σ0, σ1) ∈ N2

∗, we can write

L
ZR
∞ 1{ω0=σ0, ω1=σ1} = 1{ω−1>2}(1{ω0=σ0−1, ω1=σ1} − 1{ω0=σ0, ω1=σ1})

+ 1{ω0>2}(1{ω0=σ0+1, ω1=σ1} + 1{ω0=σ0+1, ω1=σ1−1} − 21{ω0=σ0, ω1=σ1})

+ 1{ω1>2}(1{ω0=σ0, ω1=σ1+1} + 1{ω0=σ0−1, ω1=σ1+1} − 21{ω0=σ0, ω1=σ1})

+ 1{ω2>2}(1{ω0=σ0, ω1=σ1−1} − 1{ω0=σ0, ω1=σ1}). (3-29)

Analogously, for η ∈ EZ,

L∞1{η0=0, ωη0=σ0, ω
η

1=σ1}

= 1{η0=0}

[
−1{ωη−1>2, ωη0=σ0, ω

η

1=σ1}

+ 1{ωη0>2}(1{ωη0=σ0+1, ωη1=σ1−1} − 21{ωη0=σ0, ω
η

1=σ1})

+ 1{ωη1>2}(1{ωη0=σ0, ω
η

1=σ1+1} + 1{ωη0=σ0−1, ωη1=σ1+1} − 21{ωη0=σ0, ω
η

1=σ1})

+ 1{ωη2>2}(1{ωη0=σ0, ω
η

1=σ1−1} − 1{ωη0=σ0, ω
η

1=σ1})

]

+1{η1=0, ω
τ1η
−1 >2, ω

τ1η
0 =σ0−1, ω

τ1η
1 =σ1} + 1{η−1=0, ω

τ−1η
0 =σ0+1, ω

τ−1η
1 =σ1}. (3-30)

The last two terms rewrite as

τ11{η0=0, ωη−1>2, ωη0=σ0−1, ωη1=σ1} + τ−11{η0=0, ωη0=σ0+1, ωη1=σ1}. (3-31)

In particular, since µ was assumed to be translation invariant, the expectation of (3-31) with respect to µ
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is also equal to the expectation of

1{η0=0, ωη−1>2, ωη0=σ0−1, ωη1=σ1} + 1{η0=0, ωη0=σ0+1, ωη1=σ1} .

Using this, and taking the µ-expectation in both identities (3-29) and (3-30) we obtain as wanted:

µ(L∞1{η0=0, ωη0=σ0, ω
η

1=σ1})= µ
(
1{η0=0}(L

ZR
∞ 1{ω0=σ0, ω1=σ1})(ω

η)
)

= µ(η0 = 0) ν(LZR
∞ 1{ω0=σ0, ω1=σ1}).

Since µ is stationary for L∞, the left-hand side above vanishes, therefore so does the right-hand side. As
seen previously, we assumed that µ(η0 = 0) > 0, which proves ν(LZR

∞ 1{ω0=σ0, ω1=σ1}) = 0, and in turn
(3-28). This concludes the proof of Lemma 3.7. �

3D. Local ergodicity. We now turn to the second brick necessary to prove Lemma 3.5. Let µN
t denote

the distribution on 6N of η(t), and define the space-time average

µN
T := 1

T N

∫ T

0

∑

x∈TN

µN
t ◦ τ−1

x dt. (3-32)

Recall definition (3-4) of ρℓx and recall that we set ρℓ = ρℓ0 . We are now ready to state the following
result, which, although proved differently, is analogous to the so-called one-block estimate (see [Kipnis
and Landim 1999, Section 5.4]).

Proposition 3.8 (local law of large numbers in the supercritical phase). Recall that πρ was defined for

any ρ ∈ [0, 1] in Definition 3.2 and that Bℓ = {−ℓ, . . . , ℓ}. Recall also from (2-3) the definition of the

function h. Then we have

lim
ℓ→∞

lim sup
N→∞

µN
T

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρℓ(h)
∣∣∣∣
)

= 0. (3-33)

Proof of Proposition 3.8. Thanks to the work of the previous section, and the correlation decay for the
grand canonical measures πρ proved in [Blondel et al. 2020, Section 6.3], we are able to prove this
proposition using the same arguments as in [Funaki 1999]. Therefore, we simply sketch out the proof
here. First, note that for any ρ ∈ [0, 1],

πρ(h)= 2ρ− 1

ρ
1{ρ> 1

2 } = H(ρ). (3-34)

Recall the infinite volume generator L∞ introduced in (3-11). By periodically extending the configurations,
one can see µN

T as a measure on the set of infinite exclusion configurations, namely {0, 1}Z. For any local
function f defined on this set, any x ∈ TN , and any t > 0, we can then write

dµN
t (τx f )

dt
= µN

t (N
2
LN τx f )= N 2µN

t (τxL∞ f )

for any N large enough (depending on the support of f ). In particular, averaging over x ∈ TN and over
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the segment [0, T ], the identity above rewrites

1

N 3T

∑

x∈TN

(µN
T (τx f )−µN

0 (τx f ))= µN
T (L∞ f ).

Since f is a local function, it is in particular bounded, therefore the left-hand side above vanishes as
N → ∞. As a consequence, any limit point µT of µN

T is stationary for the infinite volume generator L∞,
and to obtain (3-33) it is sufficient to prove that

lim
ℓ→∞

µT

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρℓ(h)
∣∣∣∣
)

= 0, (3-35)

for every measure µT which is stationary and translation invariant. According to Lemma 3.6, we can
decompose µT as

µT = λµT
F + (1 − λ)

∫

[ 1
2 ,1]

̟ T (dρ)πρ,

where λ ∈ [0, 1], where the support of µT
F

is included in FZ (recall (2-6)), and ̟ T (dρ) is a probability
measure on

[ 1
2 , 1

]
.

If η∈FZ is a frozen configuration, then it cannot contain two neighboring particles, therefore ρℓ(η)6 1
2 ,

and both h(η) and πρℓ(η)(h) vanish a.s. Hence (3-35) trivially holds with µT
F

instead of µT .
Similarly, π1-a.s. we have 1/(2ℓ+ 1)

∑
y∈Bℓ

τyh −πρℓ(h)= 0. We now prove

lim
ℓ→∞

∫

[ 1
2 ,1)

̟ T (dρ)πρ

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρℓ(h)
∣∣∣∣
)

= 0.

To do so, fix ε > 0, and split the integral in ρ over
[1

2 , 1
)

as a first contribution over
[ 1

2 ,
1
2 + ε

)
and a

second over
[ 1

2 + ε, 1
)
:

• If ρ ∈
[ 1

2 + ε, 1
)
, one can straightforwardly show using the same proof as in [Blondel et al. 2020,

Corollary 6.6], that the correlations under the measures πρ between two boxes at distance ℓ decay
exponentially as e−Cℓ, uniformly in ρ ∈

[ 1
2 + ε, 1

)
. Using the Lipschitz continuity of ρ 7→ πρ(h),

one easily obtains that there exists a constant C = C(ε) > 0 such that

πρ

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρℓ(h)
∣∣∣∣
)
6 πρ

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρ(h)
∣∣∣∣
)

+πρ
(

|πρ(h)−πρℓ(h)|
)

= Oℓ(e
−Cℓ), (3-36)

which vanishes as ℓ→ ∞ uniformly in ρ ∈
[ 1

2 + ε, 1
)
.

• If ρ ∈
[1

2 ,
1
2 +ε

)
, we use the exact same bound, namely (3-36), and the fact that πρ(h)= (2ρ−1)/ρ.

Moreover, ρℓ > 1
2 a.s. under πρ , since πρ only charges configurations without consecutive empty

sites. In particular, for any ρ 6 1
2 + ε, the second term in (3-36) can be estimated for any K > 0 by

πρ(|πρ(h)−πρℓ(h)|)6 8K ε+πρ
(
ρℓ − 1

2 > K ε
)
.



STEFAN PROBLEM FOR A NONERGODIC FACILITATED EXCLUSION PROCESS 151

By Markov inequality, the second term in the right-hand side is less than 1/K . Therefore, letting
ℓ→ ∞, then ε → 0 and then K → ∞, proves that the second term in (3-36) vanishes uniformly
as ℓ→ ∞ and ε → 0. The correlations, however, no longer decay uniformly. But we can write,
recalling the expression (2-3) for the function h,

πρ

(∣∣∣∣
1

2ℓ+ 1

∑

y∈Bℓ

τyh −πρ(h)
∣∣∣∣
)
6 2πρ(|h|)6 6πρ(η0η1)6 12ε,

uniformly in ρ ∈
[ 1

2 ,
1
2 + ε

)
.

This proves Proposition 3.8. �

3E. Proof of Lemma 3.5. We now closely follow Funaki’s proof [Funaki 1999]. Recall that to prove
Lemma 3.5, one needs to show the following: any limit point P

∗
as N → ∞ then ℓ→ ∞ of the sequence

(PN ,ℓ)16ℓ6N satisfies

P
∗
(∫ T

0

∫

T

∫

[0,1]
H(r)

(
r −

∫

[0,1]
r ′ pt(u, dr ′)

)
pt(u, dr)dudt

)
= 0, (3-37)

with H(r)= (2r − 1)/r1{r> 1
2 } and pt defined by (3-6).

For u ∈ 1
N

TN , t ∈ [0, T ], we let H N : t, u 7→ H N
t (u) be the solution of the discrete heat equation on

1
N

TN with N particles initially at the origin, that is,
{
∂t H N

t (u)=1N H N
t (u), u ∈ 1

N
TN , t ∈ [0, T ],

H N
0 (u)= N 1{u=0}, u ∈ 1

N
TN ,

(3-38)

where 1N is the discrete laplacian defined in (3-9). One obtains straightforwardly (see [Funaki 1999,
p. 589]) an explicit expression for H N

t (x/N ): for any x ∈ TN ,

H N
t

(
x

N

)
= 1 − 1{N is even}e

−4t N 2
cos(πx)+ 2

N/2∑

k=1

e−tλN
k cos

(
2kπx

N

)
, (3-39)

where

λN
k := 4N 2 sin2

(
kπ

N

)
.

For any time τ > 0, let us now introduce

V
N ,ℓ
τ := EµN

[∫ T

0

1

N 2

∑

y∈TN

H N
τ

(
y

N

) ∑

x∈TN

(ρℓx+y(t)+ ρℓx−y(t))H(ρ
ℓ
x(t))dt

]
(3-40)

= T µN
T

(
1

N

∑

y∈TN

H N
τ

(
y

N

)
(ρℓy + ρℓ−y)H(ρ

ℓ
0)

)
, (3-41)

where in the last identity we used the definition of µN
T given in (3-32).

For convenience’s sake, we assume that the sequence PN ,ℓ converges to P
∗

as N → ∞ then ℓ→ ∞
(in particular the intermediate limits as N → ∞ for fixed ℓ exist). At any moment this assumption
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can be dropped by taking an arbitrary convergent subsequence instead. We prove two important results
about VN ,ℓ

τ :

Lemma 3.9. First, we have

lim
2→∞

lim
ℓ→∞

lim
N→∞

V
N ,ℓ

2/N 2 = 2P
∗
(∫ T

0

∫

T

∫

[0,1]
rH(r)pt(u, dr) dudt

)
. (3-42)

Lemma 3.10. Second,

lim
θ→0

lim
ℓ→∞

lim
N→∞

V
N ,ℓ
θ = 2P

∗
(∫ T

0

∫

T

∫

[0,1]
H(r)pt(u, dr)

∫

[0,1]
r ′ pt(u, dr ′) dudt

)
. (3-43)

The proofs of Lemmas 3.9 and 3.10 are straightforward adaptations of Lemmas 5.5 and 5.6 in [Funaki
1999].

Proof of Lemma 3.9. We first consider H N
2/N 2(y/N ) sampled at a large microscopic time 2/N 2. Roughly

speaking, H N
2/N 2 converges to a macroscopic Dirac measure at 0, so that convoluted with H N

2/N 2 , we
get: as N → ∞, ρℓt (x ± y)≃ ρℓt (x) for ℓ large enough, which yields the identity in the lemma. More
precisely, we use the second expression of VN ,ℓ

2/N 2 given in (3-41), and we split the sum in y in two parts,
depending on whether |y| 62 or |y|>2:

• In the second case |y| > 2, H N
2/N 2(y/N ) is small: more precisely, consider a continuous time

random walk X t initially at site 0, and jumping at rate N 2 on each of its neighbors on TN . By the
Feynman–Kac formula, we can write

∑

|y|>2

1

N
H N
2/N 2

(
y

N

)
= P(|X2/N 2 |>2)= O(e−2),

where the second identity comes from a standard estimate on symmetric random walks. In particular,
since µN

T (ρ
ℓ
y) is uniformly bounded in y, the contribution of the sum |y|>2 vanishes as N → ∞,

then ℓ→ ∞, and then 2→ ∞.

• In the first case |y| 62, |ρℓy − ρℓ0| 6 22/(2ℓ+ 1).

Therefore, the left-hand side in (3-42) rewrites as

lim
ℓ→∞

lim
N→∞

T µN
T (2ρ

ℓ
0 H(ρℓ0)),

which is also equal to (recalling Definition 3.1, and also (3-32) and (3-4))

lim
ℓ→∞

lim
N→∞

∫ T

0

∫

T×[0,1]
2rH(r) π

N ,ℓ
t (du, dr) dt.

Thanks to Lemma 3.3 we get the result (3-42). �

Proof of Lemma 3.10. We now consider a sample of H N
θ at a small macroscopic time θ . Denote hs(u) the

heat kernel on T, namely,

hs(u)= 1 + 2
∞∑

k=1

e−sk cos(2πku).
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Since EµN [H(ρℓx(t))] is bounded uniformly in N , x ∈ TN , and t 6 T , we obtain from Lemma 3.3,

lim
θ→0

lim
ℓ→∞

lim
N→∞

EµN

[∫ T

0

1

N 2

∑

y∈TN

H N
θ

(
y

N

) ∑

x∈TN

(ρℓx+y(t)+ ρℓx−y(t))H(ρ
ℓ
x(t)) dt

]

= lim
θ→0

lim
ℓ→∞

lim
N→∞

2EµN

[∫ T

0

1

N 2

∑

x,y∈TN

H N
θ

(
x − y

N

)
ηy(t)H(ρ

ℓ
x(t)) dt

]

= lim
θ→0

2P
∗
(∫ T

0
dt

∫

T

du

∫

T

dv hθ (u − v)ρt(v)

∫

[0,1]
H(r)pt(u, dr)

)
,

which converges as θ → 0 to the wanted quantity since hθ (v)dv converges to a Dirac at the origin, and
since ρt(v)=

∫
[0,1] r ′ pt(v, dr ′). �

To end the proof of Lemma 3.5, we now need to show that both limits (3-42) and (3-43) are equal.
For a configuration η ∈6N , we define the averaged empirical measure on TN , where the density at each
point is averaged out over a large microscopic box of size ℓ> 1, namely,

m N ,ℓ(du)= m N ,ℓ(η, du) := 1

N

∑

x∈TN

δx/N (du)ρℓx(η),

where ρℓx(η) was defined in (3-4) as the density in a box of size ℓ around x . Once again, when η
depends on time, we shorten m

N ,ℓ
t = m N ,ℓ(η(t)). Note in particular that for any function ξ on T, we have

〈m N ,ℓ, ξ〉 = 〈〈π N ,ℓ, ξ · r〉〉, where the Young measure π N ,ℓ was introduced in Definition 3.1, and r is the
short notation for the identity application on [0, 1]. For any 1 6 ℓ6 N and any time s > 0, we introduce

R
N ,ℓ
s := EµN [〈m N ,ℓ

T ,m
N ,ℓ
T ∗ H N

s 〉 − 〈m N ,ℓ
0 ,m

N ,ℓ
0 ∗ H N

s 〉], (3-44)

where the convolution ∗ between a measure m and a function ξ N on 1
N

TN is defined as the function
(m ∗ ξ N )(u) = 〈m, ξ N (u − ·)〉 for any u ∈ 1

N
TN . In particular, for any times t , s we have (recall

Definition 3.1)

〈m N ,ℓ
t ,m

N ,ℓ
t ∗ H N

s 〉 = 1

N 2

∑

x,y∈TN

H N
s

(
y

N

)
ρℓx−y(t)ρ

ℓ
x(t).

We need the following two results.

Lemma 3.11. We have

lim
θ→0

lim
2→∞

lim
ℓ→∞

lim
N→∞

∫ θ

2/N 2
R

N ,ℓ
s ds = 0 .

Lemma 3.12. For any θ > 0,

lim
2→∞

lim
ℓ→∞

lim
N→∞

∫ θ

2/N 2
(RN ,ℓ

s − T
N ,ℓ

s )ds = 0,

where

T
N ,ℓ

s := EµN

[∫ T

0

1

N 2

∑

y∈TN

1N H N
s

(
y

N

) ∑

x∈TN

(ρℓx+y(t)+ ρℓx−y(t))H(ρ
ℓ
x(t))dt

]
.
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Since we now have all the ingredients to do so, before turning to the proof of Lemmas 3.11 and 3.12,
we conclude the proof of Lemma 3.5.

Proof of Lemma 3.5. Since by definition 1N H N
s = ∂s H N

s , we have

∫ θ

2/N 2
T

N ,ℓ
s ds = V

N ,ℓ
θ −V

N ,ℓ

2/N 2,

where VN ,ℓ
τ was defined in (3-40). As a consequence of Lemmas 3.11 and 3.12, we have

lim
θ→0

lim
2→∞

lim
ℓ→∞

lim
N→∞

∫ θ

2/N 2
T

N ,ℓ
s ds = 0,

which proves

lim
2→∞

lim
ℓ→∞

lim
N→∞

V
N ,ℓ

2/N 2 = lim
θ→0

lim
ℓ→∞

lim
N→∞

V
N ,ℓ
θ . (3-45)

In particular, Lemma 3.5 follows from Lemmas 3.9 and 3.10. �

It remains to prove Lemmas 3.11 and 3.12.

Proof of Lemma 3.11. This is immediate: since H N
s is nonnegative, for any t we have

EµN [〈m N ,ℓ
t ,m

N ,ℓ
t ∗ H N

s 〉] 6
(

1

N

∑

y∈TN

H N
s

(
y

N

))
EµN [ sup

x∈TN

(ρℓx(t))
2] 6 1.

In particular, RN ,ℓ
s is uniformly bounded. Since we integrate it over a time segment s ∈ [2/N 2, θ] whose

length vanishes in the limit, this concludes the proof. �

We now turn to the proof of Lemma 3.12, for which we need the following two technical lemmas.

Lemma 3.13. For any function ξ N on 1
N

TN ⊂ T, we have the identity

N 2
LN (〈m N ,m N ∗ ξ N 〉)

= 1

N 2

∑

x,y∈TN

1N ξ N

(
y

N

)
(ηx+y + ηx−y)τx h(η)

+1
N ξ N (0)

N 2

∑

x∈TN

(ηx+1 + ηx−1 − 2ηx)τx h(η).

Lemma 3.13 follows from rather elementary computation; we give its proof for the sake of completeness
in Appendix B.

Lemma 3.14 (equivalent formula for RN ,ℓ
s ). Let us introduce, for any 1 6 ℓ6 N and x ∈ TN , and any

function ξ N defined on 1
N

TN , the average function

ξ N
N ,ℓ

(
x

N

)
= 1

(2ℓ+ 1)2
∑

y1,y2∈Bℓ

ξ N

(
x + y1 + y2

N

)
, (3-46)
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and recall from (3-1) the definition of the empirical measure m N
t . Then, seeing m N

t as a measure on 1
N

TN ,
we have

R
N ,ℓ
s = EµN [〈m N

T ,m N
T ∗ H N

s

N ,ℓ〉 − 〈m N
0 ,m N

0 ∗ H N
s

N ,ℓ〉] (3-47)

= EµN

[∫ T

0

(
1

N 2

∑

y∈TN

(1N H N
s )

N ,ℓ
(

y

N

) ∑

x∈TN

(ηx+y + ηx−y)(t)τx h(η(t))

+ (1N H N
s )

N ,ℓ
(0)

N 2

∑

x∈TN

(ηx+1 + ηx−1 − 2ηx)(t)τx h(η(t))

)
dt

]
. (3-48)

Proof of Lemma 3.14. The first identity (3-47) is an easy integration by parts. The second one is obtained
by first writing Dynkin’s formula, and then using Lemma 3.13. �

We are now ready to prove Lemma 3.12.

Proof of Lemma 3.12. From (3-39) one can easily obtain

∥∥(1N H N
s )

N ,ℓ∥∥
∞ 6 ‖1N H N

s ‖∞ 6 2
N−1∑

k=0

λN
k e−sλN

k .

One first estimates the contribution to
∫ θ
2/N 2 R

N ,ℓ
s ds of the second term in the right-hand side of (3-48):

this contribution can be crudely bounded from above for any ℓ6 N by

∣∣∣∣
∫ θ

2/N 2
EµN

[∫ T

0

(
(1N H N

s )
N ,ℓ
(0)

N 2

∑

x∈TN

(ηx+1 + ηx−1 − 2ηx)(t)τx h(η(t))

)
dt

]
ds

∣∣∣∣

6
4T

N

N−1∑

k=0

e−2λN
k N−2 −−−→

N→∞
4T

∫ 1

0
e−42 sin2(uπ)du,

and therefore vanishes as N → ∞ then 2→ ∞.
Furthermore, by integrations by parts, one can rewrite the quantity appearing in the first term of (3-48),

namely
∑

y∈TN

(1N H N
s )

N ,ℓ
(

y

N

) ∑

x∈TN

(ηx+y + ηx−y)(t)τx h(η(t)),

as ∑

y∈TN

1N H N
s

(
y

N

) ∑

x∈TN

(ρℓx+y(t)+ ρℓx−y(t))
1

2ℓ+ 1

∑

z∈Bℓ

τx+zh(η(t)).

In order to prove Lemma 3.12, it is therefore enough to show that

1

N 2
EµN

[∫ T

0

∑

x∈TN

∑

y∈TN

(∫ θ

2/N 2
1N H N

s

(
y

N

)
ds

)
(ρℓx+y(t)+ ρℓx−y(t))

×
(

1

2ℓ+ 1

∑

z∈Bℓ

τx+zh(η(t))−H(ρℓt (x))

)
dt

]
(3-49)
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vanishes in the limit of the statement. As before, we first rewrite the integral in s as
∫ θ

2/N 2
1N H N

s

(
y

N

)
ds = H N

θ

(
y

N

)
− H N

2/N 2

(
y

N

)
.

The absolute value of (3-49) is thus bounded from above by the sum of the terms

A+
θ + A−

θ + A+
2/N 2 + A−

2/N 2,

where A±
τ is given by the expression

EµN

[
1

N 2

∫ T

0

∑

x∈TN

∑

y∈TN

H N
τ

(
y

N

)
ρℓx±y(t)

∣∣∣∣
1

2ℓ+ 1

∑

z∈Bℓ

τx+zh(η(t))−H(ρℓx(t))

∣∣∣∣dt

]
,

which is bounded uniformly in τ from above by

TµN
T

[∣∣∣∣
1

2ℓ+ 1

∑

z∈Bℓ

τzh(η)−H(ρℓ0)

∣∣∣∣
]
,

since ρℓx±y ∈ [0, 1] and N−1 ∑
y∈TN

H N
τ (y/N )= 1. Proposition 3.8, together with (3-34), then conclude

the proof. �

4. Proof of Theorem 2.6: Creation of the microscopic interfaces

4A. Creation of the microscopic fronts. By definition of the initial measure for our process, the su-
percritical macroscopic phase

{
ρini > 1

2

}
can contain neighboring empty sites at the microscopic level,

whereas the subcritical macroscopic phase
{
ρini 6 1

2

}
can contain nonfrozen particles (i.e., neighboring

particles). Because of the indirect way it proves the hydrodynamic limit using Young’s measures, Funaki’s
scheme (which we have adapted here) does not provide any information on the microscopic structure of
the free boundary problem.

In this section, we prove Theorem 2.6, i.e., that under reasonable assumptions on the initial profile ρini,
after a macroscopic time of order tN = o(1), the microscopic structure of the configuration matches the
macroscopic one.

Recall that we now make the following assumptions on ρini:

(ρini)−1([0, 1
2

])
= [0, u∗], ρini < 1, (H1-T1)

ρini ∈ C2(T) and ∂uρ
ini(0), ∂uρ

ini(u∗) 6= 0. (H2)

We emphasize once again that the assumptions on the number of critical points (only two), and on the
initial density which never hits 1, are purely for the simplicity of the presentation, and are not required
for the proof. Indeed, most of the work of this section concerns the study of the critical interfaces, since
the supercritical region (in which the density is larger than, and bounded away from the critical value
ρc = 1/2) has already been thoroughly studied in [Blondel et al. 2020]. In particular, the technical issues
specific to the case where the density hits 1 are solved therein. In order not to burden this section with
analogous results we assume (H1-T1).
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4B. Mapping with the zero-range process. To prove Theorem 2.6, we will once again exploit the
mapping with the zero-range process. Given a configuration η ∈6N , define K (η)= N −

∑
x∈TN

ηx to be
the number of empty sites in the exclusion configuration η, and, for K < N , define

60
N ,K = {η ∈6N : η0 = 0 and K (η)= K }.

We define on 60
N ,K the finite volume counterpart 5N ,K of (3-21), namely,

5N ,K : 60
N ,K → NTK ,

η 7→ ωη,
(4-1)

where, as before, for any k ∈ TK (η), ω
η

k is the number of particles between the k-th and (k+1)-th empty
site (to the right of 0) in η.

Given a trajectory η(t) of the exclusion process, define K0 = K (η(0)) the initial number of empty
sites in the configuration. Mark the first empty site in η(0) to the right of site 0 if it exists. We keep track
of the motion of this empty site and denote X (t) its position5 at time t . We then denote by

η̃(t)= τX (t)η(t) ∈60
N ,K0

the exclusion configuration seen from the marked empty site.
We now denote by ω̃(t)= ωη̃(t) =5N ,K0(η̃(t)) the associated zero-range configuration. If η(0)≡ 1

(the constant configuration with particles at each site), which happens with vanishing probability, then we
let, by convention, ω̃(0) equal N ∈ NT1 , the zero-range configuration with only one site and N particles
on this site.

Then, as detailed in [Blondel et al. 2020, Section 3], {ω̃(t)}t>0 is a Markov process, initially in the state
ω̃(0)=ωη̃(0), and driven by the generator N 2LZR

K0
(recall also (3-24) for the infinite volume version), where

L
ZR
K f (ω) :=

∑

x∈TK

∑

δ=±1

1{ωx>2}( f (ωx,x+δ)− f (ω)). (4-2)

As already noted, for any α > 1 one can define an equilibrium (grand canonical) distribution νK
α of the

zero-range generator LZR
K on TK , as the geometric product homogeneous measure

νK
α (ω0 = p)= 1{p∈N,p>1}

1

α

(
1 − 1

α

)p−1

, (4-3)

which satisfies the detailed balance condition with respect to LZR
K . We then denote by ν∗

α the product
measure on the set NN of semi infinite zero-range configurations with marginals given by (4-3).

Given an integer K and an initial zero-range configuration ω ∈ NTK , we denote by QK ,ω the probability
distribution on the path space D([0, T ],NTK ) of the zero-range process started from a fixed configuration ω,
and driven by the nonaccelerated zero-range generator LZR

K .

5If X (t−)= x and a particle jumps from x ± 1 to x at time t , then X (t)= x ± 1.
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Remark 4.1. If η(0) is distributed according to the initial measure µN fitting ρini, then the distribution
of ω̃(0)= ωη̃(0) can also be associated with a profile in the following way. For u ∈ T, define

v(u)=
∫ u

0
(1 − ρini(u′))du′, v = v(1) > 0, (4-4)

and αini : [0, v)→ R+ such that, for any v = v(u) ∈ [0, v),

αini(v)= ρini

1 − ρini
(u). (4-5)

Then one could prove that, for any δ > 0 and any smooth test function φ,

PµN

(∣∣∣∣
v

K0

K0∑

x=1

φ

(
xv

K0

)
ω̃x(0)−

∫ v

0
φ(v)αini(v)dv

∣∣∣∣> δ
)

−−−→
N→∞

0. (4-6)

We will not need this result, but a weaker version can be found in the first section of Appendix C.

Note that by assumption (T1), we have ρini < 1, therefore αini is well defined. Under this mapping, if
(T1) holds, the two critical points 0 and u∗ are mapped respectively to 0 and v∗ := v(u∗) ∈ (0, v], which
satisfy (αini)−1([0, 1])= [0, v∗].

The main advantage of working with the zero-range process is the following monotonicity property

(see, e.g., [Kipnis and Landim 1999, Chapter 2, Section 5]). Consider two trajectories {ω(t)}t∈[0,T ] and
{ω′(t)}t∈[0,T ] driven by the generator LZR

K , respectively started from two configurations ω6ω′. Then, one
can couple both processes ω and ω′ in such a way that at any positive time t , ω(t)6 ω′(t). In particular,
given an event E ⊂ NTK increasing in the configuration, and if ω 6 ω′, for any t > 0,

QK ,ω(ω(t) ∈ E) 6 QK ,ω′(ω′(t) ∈ E). (4-7)

4C. Typical zero-range configurations. In this section we define a set TK of typical zero-range configu-

rations. Define ℓK = K 3/4, and denote

BK := {ℓK , . . . , k∗ − ℓK } and AK = TK \ BK , (4-8)

where k∗ := ⌊Kv∗/v⌋ is the microscopic site corresponding to the macroscopic critical point v∗. The
set BK is the set of sites in the subcritical phase at distance at least ℓK of the macroscopic critical
points {0, v∗}. Note that for any fixed K , the sets AK and BK only depend on the initial macroscopic
profile ρini.

Given a zero-range configuration ω and a set 3, we denote by

α3(ω)= 1

|3|
∑

x∈3
ωx (4-9)

the empirical density of ω in the set 3. Define

c∗ = 4vmin{−∂uρ
ini(0) : ∂uρ

ini(u∗)}
= vmin{−∂vαini(0) : ∂vαini(v∗)}> 0, (4-10)
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and introduce

αK = 1 + c∗
ℓK

K
> 1 and 3+

K = {1, . . . , 10ℓK }.

Throughout, we will not burden the notation and write for example αK ℓK instead of ⌊αK ℓK ⌋. We further
define

cK (ω)=
∑

x∈3+
K

ωx(x − 5ℓK ), (4-11)

which sums the arithmetic distances between particles in 3+
K and the center of 3+

K . We now introduce
the subset �+

K ⊂ NTK given by

�+
K =

{
ω ∈ N

TK : α3+
K
(ω)= αK , cK (ω)6 0, and ∀ x /∈3+

K , ωx = 0
}
.

Note that in the last definition we slightly abused our notation, and by α3+
K
(ω)= αK , we actually mean

that
∑

3+
K
ωx = ⌊αK |3+

K |⌋.
We denote by�−

K the set of configurations such that the configuration ω′
x =ω−x (obtained by symmetry

with respect to the origin) is in �+
K . In other words, configurations in �±

K have slightly more than one
particle per site in a box of size 10ℓK to the left/right of the origin, and those particles, on average, are
closer to the origin than to the other extremity of the box.

Definition 4.1. We call a configuration ω ∈ NTK typical if it meets the following two conditions:

(i) For any x ∈ BK , and any connected set3⊂ BK containing x such that |3|> ℓK , we have α3(ω)6 1.

(ii) For any x ∈ AK , there exists ω′ ∈�+
K ∪�−

K (depending on x) such that ω > τ−xω
′.

We denote by TK ⊂ NTK the set of typical configurations.

The first condition states that no large subcritical box has an abnormally large density. The second one
states that for any site x close enough to the supercritical phase, one can always find a neighboring large
box x +3K , containing at least αK > 1 particle per site on average. In ω′, we keep only the particles
closest to x , which will ensure that cK (ω

′)6 0 with high probability. Then, with high probability, at least
one of those excess particles will eventually exit the box through site x .

Lemma 4.2. Recall that K0(η) is the number of empty sites in the exclusion configuration η(0), which is

distributed according to µN . We have

lim
N→∞

PµN
(K0 /∈ IN or ω̃(0) 6∈ TK0)= 0,

where IN = {vN − log2 N , . . . , vN + log2 N }.

The proof of this lemma requires assumption (H2). It is fairly technical but poses no significant
difficulty; we give it in Appendix C.

Remark 4.3. Theorem 2.6 holds for initial measures different from µN , as long as they satisfy the analog
of Lemma 4.2.
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4D. Bound on the maximum of the zero-range process. Because the jump rate per site is always 1
(provided that the constraint ωx > 2 is satisfied), the facilitated zero-range process can be interpreted as a
family of random walks, where each random walker jumps “independently” at a rate 1/k, where k is the
number of other random walkers on the same site, assuming the random walker is not alone on the site,
in which case it remains there. With this in mind, we prove a technical lemma, giving a uniform bound
on the number of particles at any site in ω(t), which will be useful to bound from below the jump rate of
each individual particle.

Lemma 4.4. Let TK = K 7/4. Then, the following limit holds:

lim
N→∞

PµN
(G̃c

N )= 0,

where

G̃ N =
{
∀ x ∈ TK0, ∀ t 6 TK0 N−2, ω̃x(t) < log2 K0

}
. (4-12)

Proof of Lemma 4.4. Let us denote by Q
eq
K ,α the distribution of the zero-range process generated by LZR

K ,
started from its equilibrium distribution νK

α on TK (recall (4-3)). We first claim that, letting ρ∗ =
supT ρ

ini < 1 and α∗ = ρ∗/(1 − ρ∗), we have

PµN
(G̃c

N )6 PµN
(K0 6∈ IN )+ sup

K∈IN

Q
eq
K ,α∗(G

c
K ), (4-13)

where GK is defined as
GK = {∀ x ∈ TK , ∀ t 6 TK , ωx(t) < log2 K }. (4-14)

Indeed, one can prove by standard arguments that there exists a coupling between ω̃(0) and a semi-
infinite zero-range configuration ω∗ with distribution ν∗

α∗ such that ω̃(0)6 ω∗
|TK0

(identifying TK0 with
{1, . . . , K0}).

In particular, by monotonicity of the zero-range process (4-7),

PµN
(G̃c

N )6 PµN
(K0 6∈ IN )+

∑

K∈IN

PµN
(G̃c

N ∩ {K0 = K })

6 PµN
(K0 6∈ IN )+ sup

K∈IN

Q
eq
K ,α∗(G

c
K ), (4-15)

where to establish the second bound we used both the coupling above and the fact that the event Gc
K is

increasing in the initial configuration.
We now estimate the equilibrium probability Q

eq
K ,α∗(G

c
K ). The process {ω(t)}t>0 can be constructed as

a time-change of a discrete-time Markov chain on (N∗)TK , where N∗ = {1, 2, . . .} is the set of positive
integers. Consider the transition matrix given by

p(ω, ω′)=
{

1
2K

if there exist x ∈ TK and δ ∈ {±1} s.t. ω′ = ωx,x+δ and ωx > 2,

0 else.

Let us denote by {ωd(n)}n∈N this discrete-time Markov chain with initial distribution ν∗
α∗ . Then

{ω(t)}t
(d)= {ωd(Nt)}t ,
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where {Nt }t>0 is a standard Poisson process independent of ωd. Moreover, ωd is reversible with respect
to ν∗

α∗ . Therefore, writing P for the joint distribution of ωd and N ,

Q
eq
K ,α∗(G

c
K )=

∞∑

n=0

P(NTK
= n)P

(
∃ i 6 n, ∃ x ∈ TK s.t. ωd

x (i)> log2 K
)

6 K

∞∑

n=0

n P(NTK
= n)ν∗

α∗(ω0 > log2 K )

6 K E[NTK
]
(

1 − 1

α∗

)log2 K−1

= K 11/4
(

1 − 1

α∗

)log2 K−1

.

Since K > vN − log2 N for any K ∈ IN , we obtain

lim
N→∞

sup
K∈IN

Q
eq
K ,α∗(G

c
K )= 0.

Combining this with (4-15) and Lemma 4.2, we conclude the proof of the lemma. �

4E. Front creation for the zero-range process.

4E1. Typical ZR configurations become two-phased in subdiffusive time.

Definition 4.2 (two-phased zero-range configurations). A zero-range configuration ω ∈ NTK is called
two-phased if there exists a partition TK = A ⊔ B, where A and B are both connected subsets of TK , and
ω|A > 1 and ω|B 6 1.

We denote by PZR
K ⊂ NTK the set of two-phased zero-range configurations. Note that a zero-range

configuration ωη is two-phased if and only if an associated exclusion configuration η also is (regardless
of the marked empty site chosen in the exclusion configuration).

The main ingredient to prove Theorem 2.6 is an analogous result for the zero-range process started
from a typical configuration. Recall that QK ,ω denotes the distribution of the nonaccelerated zero-range
process with initial configuration ω and infinitesimal generator LZR

K .

Proposition 4.5 (hitting time of PZR
K ). Recall TK = K 7/4,

lim
K→∞

sup
ω∈TK

QK ,ω(GK ∩ {ω(TK ) 6∈ PZR
K })= 0,

where GK has been defined in (4-14).

Proposition 4.5 is a consequence of Lemmas 4.6 and 4.7, which are proved respectively in Sections
4E3 and 4E4. Recall the definition (4-8) of the sets AK and BK .

Lemma 4.6. With high probability the set AK becomes supercritical before time TK , precisely:

lim
K→∞

max
ω∈TK

QK ,ω(GK ∩ {∃ x ∈ AK , ωx(TK )= 0})= 0. (4-16)

Lemma 4.7. With high probability, after time TK , there is a unique subcritical connected set, precisely:

lim
K→∞

max
ω∈TK

QK ,ω

(
GK ∩

{
∃ x < y < z ∈ BK , ωx(TK )= ωz(TK )= 0 and ωy(TK ) > 1

})
= 0. (4-17)
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First, we prove that these two lemmas imply the result stated in Proposition 4.5.

Proof of Proposition 4.5. One can choose

B = max
{
{x, . . . , z} ⊂ BK , ωx(TK )= ωz(TK )= 0

}
,

where the max is taken for the inclusion. The configuration ω(TK ) is subcritical on B according to
Lemma 4.7, and supercritical on A := TK \ B with high probability, according to Lemma 4.6. �

4E2. Stuck zero-range. In this section we introduce an auxiliary process which will be used to prove both
Lemmas 4.6 and 4.7. Fix a box 3⊂ TK , and define its exterior boundary ∂3= {x ∈ TK , d(x,3)= 1}
and set 3=3∪∂3. In what follows, we will couple ω with an auxiliary process χ where the particles in
3 copy exactly the jumps performed by ω, but any jump occurring from a site y /∈3 is canceled. Under
this coupling, particles in χ behave as those in ω up to the time when they leave 3, where they get stuck.
Defined in this way, the process {χ(t)}t is a Markov process, driven by the generator Lst

3, defined as

L
st
3 f (χ) :=

∑

x∈3
|x−y|=1

1{χ(x)>2}( f (χ x,y)− f (χ)).

We denote by Q
st
3,ω the distribution of the process {χ(t)}t started from ω and driven by the generator Lst

3

above, and we denote by

T3
χ = inf

{
t > 0 : sup

x∈TK

χx(t) > log2|3| or χy(t)6 1, ∀ y ∈3
}

the time at which either the number of particles became too high at some site, or all the particles got stuck
(either by leaving 3 or by remaining alone on a site).

The following result is analogous to Lemma 4.4 of [Blondel et al. 2020], and is proved in the same
way:

Lemma 4.8. For any θ > 0, there exists λ0(θ) such that for any sequence of sets 3(K )⊂ TK satisfying

log2 K |3(K )|2+θ ≪ K 2, and |3(K )| > λ0(θ) for all K large enough,

Q
st
3(K ),ω

(
T3(K )
χ > log2 K |3(K )|2+θ)

6 log2 K e−|3(K )|θ/2 .

Proof of Lemma 4.8. The proof is based on a coupling argument and can be obtained with small
modifications from the proof of [Blondel et al. 2020, Lemma 4.4]. We sketch here its more salient points.
Let us fix K and write 3 :=3(K ).

The first step consists in coupling the process χ with another process σ , namely a system of independent
symmetric random walks that jump at rate 1/ log2 K inside 3 and get stuck when they exit it. Letting

T3
σ = inf

{
t > 0 : sup

x∈TK

σx(t) > log2|3| or σy(t)6 1, ∀ y ∈3
}
,

standard arguments allow us to show that T3
χ 6 T3

σ .
It then remains to prove Lemma 4.8 with T3

σ in place of T3
χ , which follows from standard estimates

on random walks (see, e.g., [Varadhan 2001] p. 173). Note that before T3
σ , there are at most log2 K |3|

particles to consider. �
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4E3. Supercritical phase; proof of Lemma 4.6. We will simply sketch the proof of Lemma 4.6, since
given the definition of typical configurations it is analogous to Proposition 4.1 in [Blondel et al. 2020].
To prove Lemma 4.6 it is enough to show

sup
ω∈TK
x∈AK

QK ,ω

(
GK ∩ {ωx(TK )= 0}

)
= o(K −1). (4-18)

Fixing x ∈ AK , any typical configuration ω satisfies condition (ii) in Definition 4.1. Assume for example
that there exists ω′ ∈ �+

K such that ω > τ−xω
′; the other case is treated in the exact same way. Then,

since the event GK ∩ {ωx(TK )= 0} is decreasing in the configuration, translating the problem back to the
origin, to prove (4-18) it is sufficient to prove that

lim sup
K→∞

K sup
ω∈�+

K

QK ,ω(GK ∩ {ω0(TK )= 0})= 0.

As outlined in Section 4E2, we now couple ω with the auxiliary zero-range process χ with generator Lst
3∗

K
,

where 3∗
K = {1, . . . , 10ℓK }. Let us introduce the event

G
χ

K = { sup
x∈3∗

K

sup
t6TK

χt(x) < log2 K },

which is GK ’s counterpart for χ .
Fix ω ∈�+

K . We can write

QK ,ω(GK ∩ {ω0(TK )= 0})6 Q
st
3∗

K ,ω
(G
χ

K ∩ {χ0(TK )= 0}). (4-19)

We shorten Tχ = T
3∗

K
χ . Choose θ = 1

4 and recall that ℓK = K 3/4,

TK = K 7/4 ≫ log2 K ℓ2+θ
K .

Therefore, according to Lemma 4.8, for any K large enough,

Q
st
3∗

K ,ω
(Tχ > TK )6 e−K 1/16

. (4-20)

In particular, in order to prove Lemma 4.6, it is enough to prove

lim sup
K→∞

K sup
ω∈�+

K

Q
st
3∗

K ,ω

(
{χ0(Tχ )= 0} ∩G

χ

K ∩ {Tχ 6 TK }
)
= 0. (4-21)

On the event GχK ∩ {Tχ 6 TK }, we have χ(Tχ )6 1 on 3∗
K . In particular,

Tχ = T ′
χ := inf{t > 0 : χy(t)6 1, ∀y ∈3∗

K }.
Therefore, we only have to prove

lim sup
K→∞

K sup
ω∈�+

K

Q
st
3∗

K ,ω
({χ0(T

′
χ )= 0})= 0. (4-22)

First recall that any configuration ω ∈�+
K has 10ℓK (1 + c∗ℓK /K ) particles. Denote by t j the jump times

0 = t0 < t1 < · · ·< tL = T ′
χ of the process χ before time T ′

χ , and define for any j 6 L ,

Z j =
10ℓK +1∑

x=0

χx(t j )(x − 5ℓK ).
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Since ω ∈�+
K , recalling (4-11), we have Z0 6 0. Furthermore, at time T ′

χ , at least 10c∗ℓ2
K /K particles

have exited 3∗
K , and if none is at site 0, all those particles got stuck at site 10ℓK + 1 and it is therefore

straightforward to show that

χ0(T
′
χ )= 0 ⇒ ZL > 50c∗ℓ

3
K /K ,

because then the minimal value for ZL is the case where

χ(T ′
χ )|3∗

K
≡ 1 and χ10ℓK +1(T

′
χ )= 10c∗ℓ

2
K /K .

Recall that there are less than 20ℓK particles initially in 3∗
K , and each of those particles either gets

stuck or exits 3∗
K in O(ℓ2+θ

K ) jumps with probability 1 −O(e−ℓθK ). Elementary computations yield that

sup
ω∈�+

K

Q
st
K ,ω(L > ℓ3+θ

K )= O(e−ℓθ/2K ).

Moreover, the process {Z j } j is distributed as a discrete time, nearest-neighbor, symmetric random walk
up to time L , so that

sup
ω∈�+

K

Q
st
K ,ω

(
χ0(Tχ )= 0 and L < ℓ3+θ

K

)
6 P( sup

06 j6ℓ3+θ
K

X j > 50c∗ℓ
3
K /K )= O(e−Cℓ3−θ

K /K 2
),

for some positive constant C depending on c∗ where P is the distribution of a discrete time random
walk X initially at the origin. Since ℓK = K 3/4, the last two bounds together finally yield for θ = 1

4 that

K sup
ω∈�+

K

Q
st
K ,ω(χ0(T

′
χ )= 0)= O(K e−K 1/16

).

The right-hand side vanishes as wanted as K → ∞, which proves (4-21) and then Lemma 4.6.

4E4. Subcritical phase; proof of Lemma 4.7. Denote by E the event inside brackets in (4-17), and define

Ex,y,z =
{
ωx(TK )= ωz(TK )= 0, ωy(TK ) > 1 and ω j (TK )> 1, ∀ j ∈ {x + 1, . . . , z − 1}

}
,

which yields straightforwardly

E =
⋃

x<y<z∈BK

Ex,y,z.

Since |BK | 6 K for K large enough, it suffices to show that K 3QK ,ω(GK ∩ Ex,y,z) vanishes uniformly in
x < y < z ∈ BK .

Assume first that z − x > ℓK and set 3= {x + 1, . . . , z − 1}. If ω is a regular configuration, it satisfies
condition (i) in Definition 4.1, and in particular, we must have α3(ω)6 1. However, no particle can cross
an empty site, so that on the event Ex,y,z we also have

α3(ω(TK ))= α3(ω)6 1.

By definition, on the event Ex,y,z we have α3(ω) > 1, because an extra particle is at site y, so that, finally
for any z − x > ℓK , and any regular configuration ω, QK ,ω(Ex,y,z)= 0.

We can therefore assume that z − x 6 ℓK . Now set 3 = {x + 1, . . . , x + ℓK }. On Ex,y,z , there is at
least one free (still able to move) particle in 3. However, on Ex,y,z this particle must have remained in 3
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from time 0 to TK because sites x and z are still empty at time TK . In particular, couple as in Section 4E2
on 3 the process ω with the stuck zero-range in 3. Then, by Lemma 4.8,

QK ,ω(GK ∩ Ex,y,z)6 Q
st
3,ω(T

3
χ > TK )= O(e−ℓ1/8

K ).

Finally,
QK ,ω(GK ∩ E)6 K 3 sup

x<y<z∈BK

QK ,ω(GK ∩ Ex,y,z)= O(e−K 1/16
),

which vanishes as wanted as K → ∞ and proves Lemma 4.7.

4F. Proof of Theorem 2.6. Let us show point (1) of Theorem 2.6. Choosing tN = N−1/4, we first write,
using Lemmas 4.2 and 4.4

PµN (η(tN ) 6∈ PN )= PN (ω̃(tN ) 6∈ PZR
K0
)

= PµN

(
{K0 ∈ IN } ∩ {ω̃(0) ∈ TK0} ∩ G̃N ∩ {ω̃(tN ) 6∈ PZR

K0
}
)
+ oN (1)

6 max
K∈IN
ω∈TK

PµN

(
G̃N ∩ {ω̃(tN ) 6∈ PZR

K0
} | K0 = K and ω̃(0)= ω

)
+ oN (1).

Note that for N large enough, for any K ∈ IN , TK = K 7/4 6 N 2tN , therefore the probability in the
right-hand side above is less than QK ,ω(GK ∩ {ω(TK ) 6∈ PZR

K }). This yields

PµN (η(tN ) 6∈ PN )6 max
K∈IN
ω∈TK

QK ,ω(GK ∩ {ω(TK ) 6∈ PZR
K })+ oN (1).

For K ∈ IN , K → ∞ as soon as N → ∞. Therefore, letting N → ∞, the right-hand side vanishes
according to Proposition 4.5.

It remains to show point (2) of Theorem 2.6. Fix t ∈ R+ ∩ (0, τ ]; we give to uN
±(t) the arbitrary value 0

if the configuration never became two-phased before time t (which, according to point (1), occurs with
vanishing probability). Recall Definition 2.3 and (2-10), which ensure that uN

±(t) are well defined. Let
us start with the leftmost interface at position u−(t). Note that, by Proposition 2.5, u− can be identified
without any ambiguity with a continuous nondecreasing function from R+ to [0, 1). We first show that,
for any ε > 0, and any t < τ ,

PµN

(
1

N
uN

−(t)− u−(t)> ε

)
−−−→
N→∞

0.

The other cases can be treated in the exact same way and are left to the reader. In the following we
denote Iε(t) := [u−(t), u−(t)+ ε] and we take ε small enough such that Iε(t)⊂ [u−(t), u+(t)). We also
introduce its microscopic counterpart

I N
ε (t)= {⌊Nu−(t)⌋, . . . , ⌊N (u−(t)+ ε)⌋}.

As before, for the sake of clarity we omit integer parts ⌊·⌋ in all that follows. By definition (recall
Definition 2.3),

PµN

(
1

N
uN

−(t)− u−(t)> ε

)
6 PµN (η(t)|I N

ε (t)
∈ EI N

ε (t)
)+ εN ,
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where the error term εN comes from the (very unlikely) scenario where

1

N
uN

−(t)> u−(t)+ ε >
1

N
uN

+(t)> u−(t).

Since according to Lemma C.1, uN
+(0) is at distance at most log2 N of Nu∗, and given the respective

monotonicities of uN
±, u±, the error term εN vanishes as N → ∞.

We now estimate PµN (η(t)|I N
ε (t)

∈ EI N
ε (t)

). Let us choose ϕ : T → [0, 1] as a smooth test function
which satisfies

1[u−(t)+δ,u−(t)+ε−δ] 6 ϕ 6 1Iε(t),

where δ satisfies (recall Proposition 2.5)
∫

T

ρt(u)ϕ(u)du 6

∫

Iε(t)

ρt(u)du <
ε

2
− 2δ. (4-23)

Moreover, on the event {η(t)|I N
ε (t)

∈ EI N
ε (t)

}, we have (recall (2-5))

1

N

∑

x∈TN

ϕ

(
x

N

)
ηx(t)>

1

N

N (u−(t)+ε−δ)∑

x=N (u−(t)+δ)
ηx(t)>

ε

2
− δ. (4-24)

We conclude by using Theorem 2.4.

Appendix A: Proof of Proposition 3.1

We start by proving tightness of (PN ) and assertion (1). To do so, first note that since only one particle
per site is permitted,

PN (sup
t>0

〈mt , 1〉> 1)= 0,

therefore we only need to show (see Theorem 1.3 and Proposition 1.6, p. 51 in [Kipnis and Landim 1999])
that for any limit point P∗, the following is satisfied: for any function ξ ∈ C2(T) and for any positive ε,

P
∗(∃ C(ξ) > 0 s.t. sup

|t−s|6ε
|〈mt , ξ〉 − 〈ms, ξ〉| 6 C(ξ)ε

)
= 1. (A-1)

To prove (A-1), we can rewrite for any fixed N , by Dynkin’s formula,

〈m N
t , ξ〉 − 〈m N

s , ξ〉 =
∫ t

s

N
∑

x∈TN

ξ

(
x

N

)
LNηx(τ )dτ + M

N ,ξ
t − M N ,ξ

s , (A-2)

where M
N ,ξ
t is a martingale with respect to the filtration σ(η(τ), τ 6 t). Since the model is gradient, and

recalling (2-3), the first term in the right-hand side can be rewritten as
∫ t

s

1

N

∑

x∈TN

1N ξ

(
x

N

)
τx h(η(τ ))dτ, (A-3)
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where

1N ξ

(
x

N

)
= N 2

(
ξ

(
x + 1

N

)
+ ξ

(
x − 1

N

)
− 2ξ

(
x

N

))
= ∂2

uξ

(
x

N

)
+ oN (1).

Since both h and ∂2
uξ are bounded, (A-3) is bounded from above by C(t − s) as wanted. The quadratic

variation of the martingale M
N ,ξ
t can be explicitly computed (see [Kipnis and Landim 1999, Lemma 5.1,

p. 330]), and is given by

[M N ,ξ ]t = N 2
∫ t

0

(
LN (〈m N

τ , ξ〉)2 − 2〈m N
τ , ξ〉LN 〈m N

τ , ξ〉
)
dτ = ON

(
1

N

)
,

where the last estimate comes from elementary and classical computations, using the fact that the function ξ
is smooth. In particular, the martingale terms in (A-2) vanish as well, which proves (A-1) and assertion (1).

We now prove assertion (2), which is immediate because only one particle is allowed per site. This
yields in particular that any limit point P∗ of (PN ) satisfies

P
∗
(

∀ t ∈ [0, T ], ∀ ξ ∈ L1(T), 〈mt , ξ〉 6
∫

T

ξ(u)du

)
= 1,

which proves the assertion.

Appendix B: Proof of Lemma 3.13

Let us compute explicitly

LN (〈m N ,m N ∗ ξ N 〉)= 1

N 2

∑

x,y∈TN

ξ N

(
y

N

)
LN (ηx−yηx)=: I + II,

where I and II respectively correspond to the cases where y /∈ {1, N − 1, N } and y ∈ {1, N − 1}. Note
that the contribution of the terms for y = N vanishes because

∑
x∈TN

LNη
2
x = LN

(∑
x∈TN

ηx

)
= 0, since

the dynamics is conservative.
More precisely, shortening F(x)= τx h(η), and defining its discrete Laplacian as

δN F(x) := F(x + 1)+ F(x − 1)− 2F(x),

elementary computations yield

I = 1

N 2

∑

x∈TN

N−2∑

y=2

ξ N

(
y

N

)
(ηx−y δ

N F(x)+ ηx δ
N F(x − y))

= 1

N 2

∑

x∈TN

N−2∑

y=2

ξ N

(
y

N

)
(ηx+y + ηx−y)δ

N F(x)

and

II =
ξ N

( 1
N

)
+ ξ N

(
N−1

N

)

N 2

∑

x∈TN

(ηx+1 + ηx−1 + ηx)δ
N F(x).
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Finally,

I + II = 1

N 2

∑

x,y∈TN

ξ N

(
y

N

)
(ηx+y + ηx−y)δ

N F(x)+ 1N ξ N (0)

N 4

∑

x∈TN

ηx δ
N F(x).

Successive summations by parts in x and y in the first sum, and in x in the second one, prove the lemma.

Appendix C: Proof of Lemma 4.2

Law of large numbers for the positions of zeros. We first check that the microscopic and macroscopic
mappings defined respectively in (4-1) and (4-4)–(4-5) match in the limit.

For any k 6 Nv, denote uk the solution of N
∫ uk

0 (1 − ρini(u)) du = k, and for k > Nv, we let uk = 1.
Note in particular that

uk = v−1(k/N ), (C-1)

where the function v(u) was introduced in (4-4). From the law of large numbers, we expect that the k-th
empty site yk ∈ TN in the initial configuration η(0) should be close to the site Nuk .

Lemma C.1. We have

lim
N→∞

PµN
(EN )= 0, (C-2)

where

EN := {|K0 − vN | > log2 N or max
k6K0

|yk − Nuk |> log2 N }.

Proof. This estimate is a simple consequence of the facts that

if yk − Nuk > log2 N then
Nuk+log2 N∑

x=0

(1 − ηx(0))6 k µN -a.s.,

if yk − Nuk < log2 N then
Nuk−log2 N∑

x=0

(1 − ηx(0))> k µN -a.s.,

together with standard large deviation estimates for sums of independent variables. �

Throughout the rest of the proof, we now assume that Ec
N holds, we are going to show that conditions

(i) and (ii) of Definition 4.1 hold as well for any N large enough, which will prove Lemma 4.2.

Subcritical phase. We first deal with condition (i). By assumption (H2), there exists c0 = c0(ρ
ini) > 0

such that for N large enough, for any discrete interval {k1, . . . , k2} ⊂ BK0 (recall (4-8)), we have on the
event Ec

N ,

[uk1, uk2+1] ⊂
[

c0
ℓK0

K0
, u∗ − c0

ℓK0

K0

]
. (C-3)

Recall that ω̃(0) denotes the zero-range configuration mapped from the initial exclusion configuration η(0).
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Fix 3= {k1, . . . , k2} ⊂ BK0 with cardinality |3| = k2 − k1 + 1 > ℓK0 . By definition (4-9),

α3(ω̃(0))= 1

k2 − k1 + 1
(yk2+1 − yk1 − (k2 − k1 + 1)).

On Ec
N , we have yk2+1 − yk1 6 N (uk2+1 − uk1)+ 2 log2 N . Moreover, using (C-3) and assumption (H2),

there exists c1 = c1(ρ
ini) > 0 such that

k2 + 1 − k1 = N

∫ uk2+1

uk1

(1 − ρini(u))du > N (uk2+1 − uk1)

(
1
2

+ c1ℓK0

K0

)
.

Putting those bounds together, we obtain that on Ec
N ,

α3(ω̃(0))6

(
1
2

+ c1
(vN − log2 N )3/4

vN + log2 N

)−1

− 1 + 2 log2 N

(vN − log2 N )3/4
.

For N large enough, the right-hand side above is less than 1, therefore condition (i) of Definition 4.1
holds.

Supercritical phase. We now prove that condition (ii) of Definition 4.1 holds. With k∗ = K0v∗/v (the
microscopic site corresponding to the macroscopic critical point v∗), note that on the event Ec

N , we have

uk∗ ∈ [v−1(v∗ − log2 N/N ), v−1(v∗ + log2 N/N )].

Therefore, by assumption (H2), there exists c2 = c2(ρ
ini) such that |uk∗ − u∗| 6 c2 log2 N/N . To prove

that condition (ii) holds, we need to consider sites in

AK0 = {0, . . . , ℓK0} ∪ {k∗ − ℓK0, . . . , K0}.

The case where x0 sits in the bulk of AK0 , i.e., when there is a macroscopic region around x0/N in which
the density in ω̃(0) is larger that 1 + ε for some ε > 0, follows from the same arguments as in [Blondel
et al. 2020, Lemma 4.10]. This is the easiest case and we do not detail it here. The hardest case is when
x0 is close to the interface, so the density around is close to 1 and particles are not as much in excess.
To avoid burdensome notation, we will only detail the proof that site x0 := k∗ − ℓK0 satisfies (ii), which
would adapt straightforwardly to other sites in AK0 . We therefore prove that there exists τx0ω ∈�+

K0
such

that ω 6 ω̃(0).

Lemma C.2. Let 3+ := {x0 + 1, . . . , x0 + 10ℓK0} and G N = {α3+(ω̃(0))> αK0}. Then

lim
N→∞

PµN
(G N )= 1.

Proof. From (C-2), it is enough to prove that PµN
(G N ∩ Ec

N )→ 1 as N → ∞. There exists C > 0 such
that, on Ec

N ,

|yx0 − Nv−1(v∗ − ℓvN/N )| 6 C log2(N ),

|yx0+10ℓK0+1 − Nv−1(v∗ + 9ℓvN/N )| 6 C log2(N ).
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Furthermore,

α3+(ω̃(0))=
yx0+10ℓK0+1 − yx0 − 10ℓK0

10ℓK0

,

and, developing the function v−1 at v∗, we obtain

v−1(a)= u∗ + 2(a − v∗)+ 4∂uρ
ini(u∗)(a − v∗)

2 +O((a − v∗)
3). (C-4)

Recalling that we must have v > 1
2 , the four equations and bounds above together yield on Ec

N , since
K0 > N/2 +O(log2 N ),

α3+(ω̃(0))= 1 + 24∂uρ
ini(u∗)

ℓK0

N
+O((ℓK0/N )2)

> 1 + 12∂uρ
ini(u∗)

ℓK0

K0
+O((ℓK0/N )2)

> αK0

for N large enough. �

Assuming we are on G N , we define ω by keeping from ω̃(0) only the n̂ := 10ℓK0αK0 particles closest
to site x0 in 3+. This configuration obviously satisfies both

∑
x∈3+ ωx = |3+|αK0 and ω6 ω̃(0), so that

we only need to check ∑

k∈3+

ωk(k − 5ℓK0 − x0)6 0,

i.e., that those particles are on average closer to x0 than they are to the other extremity of 3+. Denote
k̂ > x0 the zero-range site where the n̂-th particle to the right of x0 is found (i.e., in the exclusion
configuration, there are k̂ empty sites between the empty site yx0 and the n̂-th particle to the right of yx0).

To prove (ii) it is enough to show that with probability going to 1, one has

k̂∑

k=x0

ω̃k(0)(k − 5ℓK0 − x0)6 0. (C-5)

We are on the event Ec
N , therefore each empty site is at most at a distance log2 N of its expected position

in the initial exclusion configuration. Since ω̃k(0)= yk+1 − yk − 1,

k̂−1∑

k=x0

(yk+1 − yk − 1)6 n̂ 6

k̂∑

k=x0

(yk+1 − yk − 1),

which rewrites, on Ec
N ,

0 6 n̂ − (y
k̂
− yx0 − (k̂ − x0))6 y

k̂+1 − y
k̂
6 2 log2 N + N sup

k

(uk+1 − uk). (C-6)

Recall that ℓK0 6 ℓN = N 3/4, then using (C-1) and (C-4) yields that for any k ∈3+ ∪ {x0},

uk = u∗ + 2

(
k

N
− v∗

)
+ 4∂uρ

ini(u∗)

(
k

N
− v∗

)2

+O(N−3/4).
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For any integer j , shortening j ′ = j − k∗ = j − Nv∗ +O(log2 N ), on Ec
N , the identity above yields

yk − yk∗ = 2k ′ + c0
k ′2

N
+O(N 1/4), (C-7)

where c0 = 4∂uρ
ini(0) > 0 by assumption (H2).

Using (C-7), we now rewrite the left-hand side of (C-5),

k̂∑

k=x0

ω̃k(0)(k−5ℓK0−x)=
k̂∑

k=x0

(yk+1−yk−1)(k ′−5ℓK0−x ′
0)

=
k̂∑

k=x0

k ′(yk+1−yk−2)−(5ℓK0+x ′
0)n̂+(k̂

′−x ′
0)(k̂

′+x ′
0)

2
+O(ℓN )

= c0

N

k̂′∑

k=x ′
0

k(2k+1)−(5ℓK0+x ′
0)n̂+(k̂

′−x ′
0)(k̂

′+x ′
0)

2
+O(ℓN )

= 2c0

N

k̂′∑

k=x ′
0

k2−(5ℓK0+x ′
0)n̂+(k̂

′−x ′
0)(k̂

′+x ′
0)

2
+O(ℓN ). (C-8)

Note that by definition, x ′
0 = −ℓK0 . Using equations (C-6) and (C-7), one can easily check that n̂ =

(k̂ ′ − x ′
0)(1 + c0(k̂

′ + x ′
0)/N )+O(N 1/4), so that by Taylor expansion

k̂ ′ = x ′
0 + n̂ − c0n̂

N
(2x ′

0 + n̂)+O(N 1/4)= 9ℓK0 − c1
ℓ2

K0

K0
+O(N 1/4),

where we denoted c1 = 80c0v− 10c∗ > 70c0v by definition (4-10) of c∗. After elementary computations,
the dominant terms of order O(ℓ2

K0
) in (C-8) cancel out, so that only the terms in O(ℓ3

K0
/K0) remain,

which rewrite
k̂∑

k=x0

ω̃k(0)[k − 5ℓK0 − x] = 2c0v

3K
(k̂

′3 − x
′3)− (4c∗ + 9c1)

ℓ3
K0

K0
+O(ℓN )

6 c0v
(
2 · 38 + 1

3 − 9 · 70
)ℓ3

K0

K0
+O(ℓN ).

Since the constant in parenthesis is negative, and since ℓ3
K0
/K0 ≫ ℓN , this proves the result.

As already pointed out, we will not detail the general cases x ∈ AK0 , we simply sketch out why the
problem is the same. Consider a macroscopic point v ∈ [v∗, v] and consider the zero-range configuration
in a mesoscopic box of size 10ℓK0 to the right of site Kv/v. If v ∈ (v∗, v) then the zero-range density
αv = 1/(1 − ρini(u(v))) in a mesoscopic box 3v,K0 of size 10ℓK0 is strictly larger than 1. In particular,
since on Ec

N , αK0 ≃ αvN = 1 + o(1), the majority of the n̂ = 10ℓK0αK0 particles closest to x to its right
are closer to x than to the other extremity of 3v,K0 . The only problematic cases are therefore close
to the boundaries 0, v∗. We treated the most extreme of those cases, in which the site x considered is
in the subcritical phase, and at a distance ℓK0 of the supercritical phase, the other cases can be treated
analogously.
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Appendix D: Existence of macroscopic interfaces: proof of Proposition 2.5

In this section, we lay out the proof for the existence of macroscopic interfaces for the weak solution (in
the sense of Definition 2.1) of (2-7). The proof we present here is adapted from [Meirmanov 1992] to our
periodic setting. It contains no significant mathematical novelty with respect to [Meirmanov 1992]; we
include it here for the sake of completeness. The main difficulty of the proof is that the interface speeds
diverge as t → 0+. To solve this issue, we approximate the initial profile ρini by

ρini,n(u)= ρini(u)

[
1 − 1

n
1{ρini(u)< 1

2 }

]
, n ∈ N, n > 3.

We first claim that, thanks to the discontinuity of the density at the interfaces, the Stefan problem with
initial condition ρini,n admits a classical solution.

Lemma D.1. Let ρ̃ini : T → [0, 1] such that

• ρ̃ini is C2 on (0, u∗) and [u∗, 0] with bounded derivatives,

• ρ̃ini 6 1
2 − δ on (0, u∗) for some δ > 0,

• ρ̃ini > 1
2 on [u∗, 0].

Then there exists a classical solution (ρ, u−, u+) to the Stefan problem (2-7) with initial data ρ̃ini, i.e.,
ρ : R+ × T → [0, 1], u± : R+ → T such that

(1) u− (resp. u+) is nondecreasing (resp. nonincreasing), with u−(0)= 0 and u+(0)= u∗;

(2) there exists τ ∈ R+ ∪ {∞} such that u−(t) = u+(t) if and only if t > τ , and u± are constant on

[τ,∞); the time τ is called the merging time;

(3) H ◦ ρ is Lipschitz;

(4) for any t ∈ R+, if u ∈ (u−(t), u+(t)), then ρt(u)= ρ̃ini(u);

(5) if {t 6 τ and u ∈ (u+(t), u−(t))} or if t > τ , then

ρt(u) >
1
2 and ∂tρt(u)= ∂2

uH(ρt(u));

(6) if t ∈ (0, τ ), then

u′
±(t)= − 4∂uρt(u±(t)±)

1
2 − ρ̃ini(u±(t))

.

We defer the proof of Lemma D.1 to see how this result can lead us to Proposition 2.5. Let us denote
by (ρn, un

−, un
+) the classical solutions6 provided by Lemma D.1 when ρ̃ini = ρini,n . We will show that

the interfaces un
± converge, and that the limits satisfy the properties required in Proposition 2.5. To that

end, we exploit a monotonicity property of the interfaces defined by Lemma D.1:

6It is easy to check that classical solutions are also weak solutions in the sense of Definition 2.1, and the uniqueness of ρn is
therefore guaranteed by Proposition 2.3.
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Lemma D.2. Let ρini,>, ρini,< two initial profiles satisfying the assumptions of Lemma D.1, such that

ρini,< 6 ρini,>.

Let (ρ>, u>−, u>+), (ρ
<, u<−, u<+) be the associated classical solutions with merging times τ>, τ< re-

spectively.

Then ρ< 6 ρ> and [u>−, u>+] ⊂ [u<−, u<+] (in particular τ> 6 τ<).

A consequence of Lemma D.2 is that ρn, un
−, un

+ are monotone in n. Since they are also bounded, they
have limits which we call ρ, u−, u+ respectively. The monotone convergence theorem straightforwardly
yields that ρ, thus defined, is the weak solution of Definition 2.1 with initial profile ρini. Letting
τ := inf{t > 0 : u+(t)= u−(t)}, the properties of Proposition 2.5 are simple consequences of the above
construction. Following [Meirmanov 1992, Theorem 2, p. 151], one can actually show that (ρ, u−, u+)

is also a classical solution with initial profile ρini, however since we do not require it here, we will not
expand further.

We now conclude by giving the proofs of Lemmas D.1 and D.2.

Proof of Lemma D.1. This is very close to [Meirmanov 1992, Lemma 3, p.151] and seems to be a standard
result for free boundary problems. We sketch here a proof for completeness, mainly taken from [Andreuci
2002] and adapted to our periodic setting. Part of the statement is that the derivatives in (5) and (6) are
well defined. The main idea is to construct the interfaces as solutions to a fixed point problem.

Fix T > 0 and let M = sup{|(ρ̃ini)′(u)|, u ∈ T \ {0, u∗}}. Let U be the space of functions u−, u+ :
[0, T ] → T which satisfy the following conditions:

• u± are Lipschitz-continuous, with Lipschitz constant bounded by M .

• u− (resp. u+) is nondecreasing (resp. nonincreasing).

• u−(0)= 0, u+(0)= u∗, and u− 6 u+.

Any such function is differentiable almost everywhere in [0, T ]. With a slight abuse of notation, we
denote by ‖u′

±‖∞ 6 M the maximal Lipschitz constant of u±. Note that U is a convex compact subset of
the Banach set C([0, T ])× C([0, T ]) endowed with the norm

|||u−, u+||| := max{‖u+‖∞, ‖u−‖∞, ‖u′
+‖∞, ‖u′

−‖∞}.

For any (u−, u+) ∈ U, let

τ := inf{t > 0 : u−(t)= u+(t)}

and let ρ : [0, T ] × T → [0, 1] be defined as follows: first, ρ0(u)= ρ̃ini(u) for any u ∈ T, and

• if t 6 τ , 



∀ u ∈ (u+(t), u−(t)), ∂2
uH(ρt(u))= ∂tρt(u),

∀ u ∈ (u−(t), u+(t)), ρt(u)= ρ̃ini(u),

and ρt(u±(t))= 1
2 ,

(D-1)

• if t > τ ,

∀ u ∈ T, ∂2
uH(ρt(u))= ∂tρt(u) .
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Note that up to time τ , assuming u± are fixed, ρ is the solution to a Dirichlet problem (D-1) with
moving boundaries. It is then standard to show (see [Andreuci 2002, Lemma 4.1] for instance) that ρ is
well defined, and that its spatial derivatives are continuous up to the boundaries {(t, u±(t)), t ∈ (0, T )}.
Consider the transformation T : U → U defined as follows: first, let

T
1(u−, u+)(t) := −

∫ t

0

4∂uρs(u−(s)−)
1
2 − ρ̃ini(u−(s))

ds,

T
2(u−, u+)(t) := u∗ −

∫ t

0

4∂uρs(u+(s)+)
1
2 − ρ̃ini(u+(s))

ds,

and define

τ ∗ := inf{t > 0 : T 1(u−, u+)(t)= T
2(u−, u+)(t)}.

Then, let

T (u−, u+)(t)=
{
(T 1(u−, u+)(t), T 2(u−, u+)(t)) for t 6 τ ∗,

(u−, u+)(t) for t > τ ∗.

Then a fixed point for this transformation also yields the desired classical solution to our Stefan problem.
By Schauder’s fixed point theorem, it is therefore enough to show that T is continuous with respect
to ||| · |||. In turn, by regularity of ρ̃ini, and since ρ̃ini is bounded away from 1

2 in (u−, u+), it is enough to
show that the application

(u−, u+) ∈ U 7→
{

t ∈ [0, T ] 7→
(∫ t

0
∂uρs(u−(s)

−)ds,

∫ t

0
∂uρs(u+(s)

+)ds

)}

is continuous.
To that end, let t 6 T , fix (u−, u+) ∈ U, and define

gt(u) := u − u+(t)

u−(t)− u+(t)
1{u∈[u+(t),u−(t)]} ∈ [0, 1], (D-2)

where u−(t)− u+(t) ∈ [1 − u∗, 1] is the length of the diffusive phase, so that in particular

g0(u)= u − u∗
1 − u∗

1{u∈[u∗,1]}.

Since gs(u+(s))= 0, gs(u−(s))= 1, by the divergence (or Gauss–Ostrogradsky) theorem,

0 =
∫ t

0

∫ u−(s)

u+(s)
gs(u)[∂tρs(u)− ∂2

uH(ρs(u))] du ds

= −
∫ t

0
∂uH(ρs(u−(s)

−)) ds +
∫ t

0

∫ u−(s)

u+(s)
∂ugs(u)∂uH(ρs(u)) du ds

−
∫ t

0
ρs(u−(s))u

′
−(s) ds −

∫ t

0

∫ u−(s)

u+(s)
ρs(u)∂t gs(u) du ds

−
∫ 0

u∗
g0(u)ρ̃

ini(u) du +
∫ u−(t)

u+(t)
gt(u)ρt(u) du.
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Since H(ρs(u+(s)))= H(ρs(u−(s)))= 0 and ∂2
u gs(u)= 0, a second integration by parts shows that the

second term in the right-hand side vanishes. Consequently, recalling that ∂uH(ρs(u)) = 4∂uρs(u) and
ρs(u−(s))= 1

2 , we have
∫ t

0
∂uρs(u−(s)

−) ds

= − 1
4

∫ 0

u∗
g0(u)ρ̃

ini(u)du + 1
4

∫ u−(t)

u+(t)
gt(u)ρt(u) du −

∫ t

0

∫ u−(s)

u+(s)
ρs(u)∂t gs(u) du ds − 1

8 u−(t).

First, we prove that ρt(u) is continuous with respect to ||| · |||. Given (u−, u+), (ũ−, ũ+) two elements
of U and denoting by (ρ, τ ), (ρ̃, τ̃ ) the associated solutions to (D-1), we first claim that, assuming for
example u−(s)6 ũ−(s),

|ρs(u−(s))− ρ̃s(u−(s))| = |ρ̃s(ũ−(s))− ρ̃s(u−(s))| 6 M |u−(s)− ũ−(s)|.

The first identity follows from the fact that ρs(u−(s))= ρ̃s(ũ−(s))= 1
2 , whereas the second follows from

the maximum principle applied to ∂u ρ̃ in the moving boundary domain {(t, u), t 6 T, u ∈ [u+(t), u−(t)]}.
We can now apply the maximum principle to ρ− ρ̃ in the domain

3t := {(s, u) : s ∈ (0, t), u ∈ (u+(s), u−(s))} ∩ {(s, u) : s ∈ (0, t), u ∈ (ũ+(s), ũ−(s)},

to obtain that for all (s, u) ∈3t ,

|ρs(u)− ρ̃s(u)| 6 M max{|u−(s)− ũ−(s)|, |u+(s)− ũ+(s)|}.

Denote by g, g̃ the functions given by (D-2) resp. for (u−, u+), (ũ−, ũ+). In particular, since |ρs(u)|6 1,
|gs(u)| 6 1 and gs(u) is uniformly continuous in (u−, u+), we obtain as wanted that

∣∣∣∣
∫ u−(t)

u+(t)
gt(u)ρt(u) du −

∫ ũ−(t)

ũ+(t)
g̃t(u)ρ̃t(u) du

∣∣∣∣ 6 M ′ max{‖u− − ũ−‖∞, ‖u+ − ũ+‖∞},

so that
∫ u−

u+
gt(u)ρt(u)du is continuous in (u−, u+) with respect to ||| · |||. Since ∂t g is also continuous with

respect to ||| · |||, one obtains straightforwardly that
∫ t

0

∫ u−(s)
u+(s)

ρs(u)∂t gs(u) du ds also is. This, together
with (D-3), proves that

∫ t

0 ∂uρs(u−(s)−) ds is continuous in (u−, u+). An analogous argument with

gt(u)= u−(t)− u

u−(t)− u+(t)
1{u∈[u+(t),u−(t)]}, (D-3)

proves that
∫ t

0 ∂uρs(u+(s)+) ds also is, and concludes the proof. �

Proof of Lemma D.2. This is a simpler case of [Meirmanov 1992, Theorem 10, p.30]; we give it for the
sake of completeness. Define ρini = ρini,> − ρini,<, as well as

ρt = ρ>t − ρ<t and χt = H(ρ>t )−H(ρ<t )

ρ>t − ρ<t
1{ρ>t 6=ρ<t }.
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Since classical solutions of (2-7) are also weak solutions, for any smooth function ϕ ∈ C1,2([0, T ] × R),
we have

〈ρT , ϕT 〉 = 〈ρini, ϕ0〉 +
∫ T

0
〈ρt , ∂tϕt +χt∂

2
uϕt 〉dt. (D-4)

Fix T > 0 and ε > 0, and a bounded nonnegative function g : T → [0,+∞); we define ψε as the classical
solution to the elliptic equation {

∂tψ
ε
t = (χT −t + ε)∂2

uψ
ε
t ,

ψε0 = g.
(D-5)

Since the initial profile g is nonnegative, by maximum principle so is ψεt for any t 6 T , so that (D-4)
yields, choosing ϕt = ψεT −t ,

〈ρT , g〉 > −ε
∫ T

0
〈ρt , ∂

2
uψT −t 〉dt. (D-6)

where we used that ρini > 0. Assume now that g ∈ C2(T); multiplying the first line of (D-5) by ∂2
uψ

ε
t ,

and integrating over [0, T ] × T, yields

1
2

∫

T

(∂ug)2du = 1
2

∫

T

(∂uψ
ε
T )

2du +
∫ T

0

∫

T

(χT −t + ε)(∂2
uψ

ε
t )

2 du dt,

so that in particular

ε〈∂2
uψ

ε
T , ∂

2
uψ

ε
T 〉 6 1

2〈∂ug, ∂ug〉,

and by Hölder’s inequality, (D-6) yields

〈ρT , g〉 > −
√

2ε
∫ T

0
〈ρt , ρt 〉1/2〈∂ug, ∂ug〉1/2dt > −T

√
2ε〈∂ug, ∂ug〉1/2.

Letting ε→ 0, we obtain that 〈ρT , g〉 > 0 for any nonnegative g ∈ C2(T). We now choose nonnegative
functions gk ∈ C2(T) converging in L2(T) to 1{ρT<0} as k → ∞, to obtain that ρT > 0 a.e., which
concludes the proof. �
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