
S t e f a n  P r o b l e m  w i t h  a K i n e t i c  Condi t ion  

at t h e  F r e e  B o u n d a r y  (*). 

A. VISl~TIN 

Summary. - I n  the one-dimensional two-phase Ste/an problem, the standard equilibrium condi- 

tion 0 = 0 at the ]ree bouuc~ary x = s(t) is replaced by the kinetic law 

(1) s'( t)  = ~(O(s( t ) ,  t ) )  ; 

here fl is a continuous and increasing Junction R ---> R and fl(O) = O. This introduces super- 

cooled and superheated states. Existence o] at least one solution is proved. Then (1) is re- 

placed by 

(2) s'~(t) :=  fl(O~(s~(t), t)) (e constant < 0), 

and it is shown that as e --> 0 -~ a subsequence o] the corresponding solutions (0~, s~) converges 

to a so~tion (0, s) o/the reduced problem, which is characterized by the free boundary condition 

(3) # ( O ( s ( t ) , t ) )  = o .  

Then the case o] a radially symmetric multidimensional system is dealt with, taking also 

account o/the sat]ace tension e]]eet. Denoting by s(t) the radial co-ordinate o] the/tee boundary, 

the /ollowing linearized[ kinetics is considered /or a water ball surroundev~ by ice 

A 
(4) ls'(t) + ~ )  = O(s(t), t ) ,  where s(t) < O. 

A n  existence result is proved ]or the problem obtained by coupling (4) with the heat equation, 

1. - Introduction and presentation of  the model.  

1). At  first we consider a two-phase  Stefan p rob lem in one dimension of 

space. Le t  a, T, e, k, I~ be posi t ive constants ,  s~ [0, a]. Le t  gl, g~: [0, T] - + R  an4 

0~ [0, a ] - + R  be given (~smooth ~) functions.  We set Q : :  ]0, a [ x ] 0 ,  T[. We  look 

for a couple of (( smooth  ~) functions 0: Q -~ R and  s: [0, T] -+ [0, a] such ~hut, so~ting 

s :=  {(~(t), t)) t e ]0, r[}, 

~0 b~O 
(1.1) e ~ - -  k~-y~= 0 in @\8 

(*) Entrata in Redazione il 15 ottobre 1985. 
Indirizzo dell'A.: Istituto di Analisi Numerica del C.N.R., Corso C. Alberto 5 - 27100 

Pavia, Italia. 
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(1.2) O(s(t), t) = 0 in ]0, T[ 

[~o ao ] 
(1.3) k -~x (s(t) d- O, t) ---~x ( s ( t ) - -O,  t) = Ls ' ( t )  on 8 m Q  

~0 "o (1.4) k -~x ( ' t) -~ g~(t) in ]0, ~T[ 

~0 
(1.5) k ~x (a, t) = g~(t) in ]O, T[ 

(1.6) O(x, O) = O~ in ]0, a[ 

( 1 . 7 )  , ( o )  = s o . 

Here 0 denotes the difference between the actual temperature and the equilibrium 

phase transition temperature; 0 < x < s(t) corresponds to the liquid and s(t) < x < a 

to the solid (water and ice, ssy); o is the product between the specific heat and the 

density, k the termic conductivity and Z the product of the lstent heat oi phase 

transition by  the density. Iu  a more precise formulation, e and k change across the 

interphase 8. I a  the usual form of the 8tefan problem, supercooled and superheated 

states are exduded:  

(1.s) O(x, t )>O for 0 < x < s ( t ) , 0 < t <  ~/', 

O(x , t )<O for s( t )< x < a , O <  t <  I ;  

accordingly, in the standard model the following compatibility conditions are re- 

qtfired for the data 

(1.9) 
0~ if x <  s~176 

g~(t), g~(t)<O in ]0 , / ' [ .  

if x > s ~ , 

As general references for Stefan-typo problems, we quote the proceedings [11, 14, 

15, 24]. 

2) The condition (1.2) corresponds to the case in which the interphase is at 

equilibrium, without supercooling and superheating effects. Now it happens that  

the phase transition is triggered by a non-vanishing interphase temperature: <~ If the 

interface is not ut the equilibrium temperature, then either melting or solidificatiot~ 

occurs at a rate that  increases with the difference between the actual temperature 

and the equilibrium temperature. For small departures from equilibrium, the rate 

is approximately proportional to the departure ~)([6, p. 91]). Here melting and 

solidification con'espond to s(t) increasing and decreasing, respectively. 

Thus  the supercooling and superheating effects drive the phase transition. For high 

transition rates, these effects appear also on a macroscopic scale [4, pp. 222-223; 8]. 
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Taking account of this physical picture, we replace (1.2) by the conditions 

(1.10) 

(1.11) 

0 is continuous on 8 

8'(t) = ~(o(8(t), t ) ) ,  w h e r e  0 < 8(t) < a ,  m ]0, T[ (~) ; 

here fl ~ C~ fl(O)= 0 and fl is increasing. (1.11) represents relaxation towards 

the equilibrium condition (1.2); this introduces supercooled and superheated states, 

corresponding to water regions at negative temperature and ice zones at posi%ive 

temperature, respectively. 

In section 2 we introduce a variational problem equivMent to the system (1.1), 

(1.3), ..., (1.7), (1.10), (1.11); then we prove that this problem has at least one solu- 

tion. There the only assumption on fl is that  it be Lipsehitz-continuous; since the 

function fl is not required to be monotone, this existence result can also be applied 

to a model for glass formation, described later on. The uniqueness of the solution 

is all open question. 

Besides the variational approach, also other techniques could be used for proving 

the existence of a solution of the previous boundary and initial value problem. As 

for the standard one-dimensional Stefan problem, one could use for instance layer 

potentials to reduce the problem to an integral equation, or apply a procedm'e of 

approximation step by  step in time. 

In section 3 we extend the existence result to the case in which the specific heat 

and the conductivity depend on both the temperature and the phase. 

3) In many practical cases the relaxation towards equilibrium at the inter- 

face is very fast, that  is the function fl has a high slope near 0. This ca~ be 

represented by (1.11) with a function fl of the form 

[ y ~  if 0 # 0  (y ,e :  constants, r > 0 , 1 <  ~ < 2 )  
~(0) 

! 0 if 0 = 0 ;  

this is compatible with the assumptions of the existence theorem. Another pos- 

sibility is to replace (1.11) by  

(1.12) ~8:(t) = ~(o~(8~(t), t ) ) ,  where o < ~(t) < ~ ,  in ]o, r [  

and to take e ~ 0 +. In  section 4 we show that, possibly extracting a subsequence, 

the solutions (0~, s~) converge to a solution of the reduced problem, which is charac- 

(1) l~ore precisely, taking account of the constraint acting on s(t), (1.11) should be rep- 
laced by the following variational inequality: 

O<~s(t)<~a; V~ e [0, a] 

(1 11') [~'(t) - ~(o(s(t), t))] .  [ ~ -  ~(t)] > 0 .  
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terized by  the usual equilibrium condition (1.2). This problem coincides with the 

s tandard two-phase Stefan problem if and only if no supercooled nor superheated 

states appea~ in the interior of each phase. Thus the <~ relaxed Stefan problem ~) 

corresponding to (1.12) can also be regarded as a physically justified approximation 

of the s tandard two-phase Stefan problem. 

The Stefan problem with supercooling has been recently studied by DI BE~v.- 

1)E~TO and FI~IED:~AN [9] in the case of several space dimensions. 

4) In  the multidimensional ease, a more precise interphase condition takes 

account of the sur]aee tension effect. 2~ccordingly, (1.2) is replaced by the classical 

Gibbs-Thomson Saw (el. [6], chapter 3) 

(1.13) 0 ---- -- ~u on $ ; 

here k is a positive physical constant  and ~ denotes the local mean curvature of 8, 

assumed (< smooth ,>. The sign of u is determined by  assuming tha t  it  be positive 

for an ice ball surrounded by water;  thus for a planar interface n = 0 and (1.13) 

degenerates into the usual condition 0 ----- 0 on $. We stress t ha t  (1.13) is an equi- 

librium condition, like (1.2). 

For  general geometries, it  does not  seem easy to work with (1.13). The case 

of a radially symmetric  system is much easier, since one can use a single space 

variable, namely the radial coordinate; we denote this by  x and the interphase by  

x - ~  s(t). For a water  ball, 0-<<x< s(t) corresponds $o water and s ( t )<  x<<.a to ice; 

the local mean curvature is then  --1/s(t)  and (1.13) becomes 

2 
(1.24) 0(8(t), t) = ~ ) ,  where s(t) > 0, in ]0, T[ .  

Thus here the interface is superheated even at  equilibrium. Here (1A) and (1.1) 

are replaced by  

(1.15) 80 (0, t) ----- 0 in [0, T] 
8x 

80 k 8 [ ~v 1 30\ 
(1.16) e 8t x ~-~ ~xx Ix - x-7! = 0 in Q \ ox/  

(N being the number  of space dimensions). 

Here we replace the equilibrium condition (1.13) by (1.10), joint with the fol- 

lowing linearized kinetic condition 

(1.17) 1 = O(s(t), t) where 0 < s(t) < a, in ]0, T[ ; 

here 1 is a positive constant (el. [4], pp. 222-223). 
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As discussed b y  CHAL~IERS in [6, p. 64], the  surface tension causes the instabil i ty 

of the  interphase 8 in the  nucleation process; we notice tha t  the characteristic space 

scale of tha t  phenomenon is so small tha t  the tempera ture  can be  assumed constant  

in space. _~-ow we check that  (1.17) accounts for the  instabili ty.  Assume tha t  at  

some t ime to the  equilibrium condition (1.14) holds. If  later 0 increases, then b y  

(1.17) s'(t) becomes positive, hence ~/s(t) decreases; consequently,  still b y  (1.17), 

s'(t) increases even more and s(t) becomes larger and larger. Conversely if 0 decreases, 

then b y  (1.17) s(t) becomes smaller and smaller and it vanishes after a finite time. 

For  instance if for t > O the tempera ture  at  the interphase is mantained at 0, i.e. 

O(s(t), t) = O, then solving (1.16) we get 

8( t )=  ~ -  , Vt>o, 

hence the water  phase vanishes at t = s~l/2k. 

So far for the space scale of the nucleation process. For  larger space scales: 

instead, the whole system (1.15), (1.3), (1.17) must  be considered and it appears 

then tha t  the surface tension has a stabilizing effect on planar interfaces [5]. 

If  an ice ball  surrounded b y  water  is considered, namely if 0 < x  < s(~) corresponds 

to ice and s(t) < x < a  to water,  then the curvature of 8 is positive and (1.13) becomes 

(1.18) 0(s($), ~) : s($)' where  s(t) > 0, in ]0, T [ .  

The corresponding relaxation kinetics is 

). 
(1.19) ls'(t) d- ~ )  = - -  0(s($), $), where  0 < s(~) < a, in ]0, T [ .  

In  this case in (1.3) /~ must  be replaced with--Z.  

Both  (1.17) and (1.19) are included in the following law 

(1.20) s'(t) d- ~ )  = fl(O(s(t), t ) ) ,  where 0 < s(t) < a, in ]0, T[ ; 

here ~ : :  i~/l, f l e  C~ and fl(O) : 0. 

As pointed out b y  :RoGErS in [16, p. 226], (1.!4) is not compatible with the 

physical  proper ty  that  the tempera ture  must  be bounded  from below. The kinetic 

condition (1.20) does not  eliminate this difficulty. However ,  in the opinion of the 

present author,  the la t ter  is essentially due to the linearizgtions involved in the  

Gibbs-Thomson law, which holds just  for small 10 I. Hence here it shottld be quite 

convenient to have maximxm and minimum principles at  disposal. 

In  order to eliminate the  degeneracy of (1.17) ior s(t) = O, we mult ip ly  it b y  

s(t)~ for some p > l .  In  section 5 we shall take  p = _~Y--1, gett ing 

1 d N 
(1.21) ~ ~[s( t ) ]  d- ~[s(t)] s-~ = Os((t), t ) .s( t)  ~v-~ , where  0 < s(t) < a, in ]0, T[ ; 
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we prove that the corresponding vaa'iational problem h~s at least one solution. Also 

for this problem the uniqueness of the solution is an open question. 

5) in  the c~se of several space dimeusious, denoting by  Z e [0, 1] the water 

concentration, the analog of the kinetic condition (1.11) is 

~Z 
(1.22) ~ Jr-H-~(Z)~fl(O) in Q (H-~: inverse of the ]~eaviside graph) 

this was studied in [19]. As discussed in [23], even in the case of a single dimension 

of space, (1.11) and (1.22) correspond to two different phase transition modes. (1.11) 

corresponds to the movement of a sharp interface, whereas (1.22) entails the forma- 

tion of mushy regions. In extending (1.11) to several dimensions of space, diffi- 

culties arise in forcing g to attain just the values 0 and i a.e. in Q. However in [20] 

a model was proposed for phase transitions with no mushy regions in multi-dimen- 

sional homogeneous systems; this model takes also account of the surface tension 

effect and of metastablo sta~es. 

Non-equilibrittm interphase conditions for phase transitions in heterogeneous 

systems are dealt by  the present author in [22]; the mlmerical aspects of a problem 

of that  sol% were studied by  C~OWL~,V in [8]. 

A Stefan-type problem in one space dimension with a kinetic condition at the 

free bolmdury was proposed and studied by  ASTa~!TA and SA~TI [2, 3] aS a model 

of some polymer phenomena; more mathematical aspects of this problem were 

studied by  I~iSANO, MEYE~ and Pl~I:i~I(3Et~IO [10] and by  Co.~ARI~I and t~IccI [7]. 

There a one-phase problem was considered. We notice that  such an approach intro- 

duces z diseontinmty for the unknown function (our 0) at the free boundary, a 

possibility we esclndo here (see (1.10)); thus that  model cannot be regarded as the 

one-phase problem corresponding to the two-phase problem of the presen~ paper. 

The resltlts of the present paper were announced in [23]. 

2.  - P r o b l e m  i n  o n e  s p a c e  d i m e n s i o n .  

lvfi.stly we assume that  c, J5 and k are positive constants. We denote by  H the 

Heavisido function: 

0 i f ~ < 0  
H(~):= 

1 if ~ > 0 ,  

we set W : =  Z~(0, a), V :=  Hi(0, a) and 

v,<Au, v>v : =  kju'(x).v'(x) dx , 
o 

V~ v ~ V .  
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We assume that  

(2.1) f le  C~ 

(2.2) f e Z~(0, T; V ' ) ,  0~ V', s~ [0, a] 

and introduce a variat ional  problem: 

PI~OBLE~ (P1). - Find 0 e Z~(0, T; V) and s 6 W1.1(0, T) such that 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

leo + L H ( s ( t ) -  x)] + AO -~ f in V', a.e. in ]0, T[ 

a.e. in ]0, T [ ,  O<s(t)<a and  V~e[0,  a] 

[s,(t)- ~(o(s(t), t))]. E~-,(t)l ~ o 

0]~= o = 0 ~ in V' 

s ( 0 )  = s o . 

I~E~'V.AI~I~S.- (i) (2.3) yields cO + . 5 t t ( s ( t ) -  x )e l l1 (0 ,  T; V'); moreover H ( s ( t ) -  

-- x) e C~ T]; W); hence 0 e C~ T]; V') and this gives a meaning to (2.5). 

(ii) For  any  v e q)(Q), sett ing 8 : =  {(s(t), t): 0 < t < T}, we have 

T 

0 

ff v q =- - - e  O--dx  dt + vl~= , (odx+k - - . - - d x  ----- 
~t J J  ~x ~x dt 

Q 8 Q 
T 

= elf g~-~ at + 4v(s(t), t )s ,( t)at-qf  dx 
Q\8 o QN8 

T 

_~f[~ J L~ (~(~/+ o, t ) - ~  (~(t/-o,,/] .~(s(t/, t/dr. 
Q 

Hence if 

(2.8) v,(](t), v}v = g~(t)v(a) -- gl(t)v(O) , Yv e V, a.e. in ]0, T[ , 

then (2.3) corresponds to (1.1), (1.3) and (1.10). Thus we can s tate  the  following 

result 

PROPOSITION 1. - I f  (2.8) holds~ then (P1) is equivalent to the following strong 

formulation; 
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P~OBLE~ (P"~). - Find 0 e C~ and s e W14(0, T) such that 0 < s ( t ) < a  and (1.1), 

(1.3), ..., (LT), (1.11)' hold. [] 

I f  instead distributed heat  som'ces are present, then  mushy regions m a y  ~ppear 

and consequently the wr ia t iona l  problem (P1) is no longer equivalent to the classical 

formulation (P1). 

(iii) H (2.8) holds, then  no maximum nor minimum can appear in the interior 

of any  I phase, if not  existing for t = 0. Hence if (1.9) holds then  the highes~ super- 

cooling and superheating values are a t ta ined at  ~he interface. 

(iv) (2.3) can be rewrit ten in the equivalent form 

(2.9) ~ Ov e~ + ~s,(t).v(s(t)) + kl'j~. ~ a ~ ~ ~  Ov 

0 0 

= ~'(l, v}~, 

Vv e V, a.e. in ]0~ T[ .  

LE~:~A 1. - For  any  e > 0 there exists a constant  C(s) > O such that ,  for any  

0 e F a n d  r e [ 0 ,  a], 

(2.10) [o(~)p < f [~o,(y)~ § v(~)0(y)~] ay. 
0 

r 

a 

PROOF. -- Let  ~ e [0, a] be such tha% 0(~) = 1/afO(y) dy. We have 
0 

f, (02(y))'dy< O(y) dy § 20(y)O'(y)[  dy< 

o 

0 

[] 

Henceforth by  C~ we shall denote generic positive constants. 

TttEO~E~ 1. -- Assume that (2.1) and (2.2) hold and that 

(2.11) i~(~)]<oi1~1 § ~ ,  v e e r  

(2.12) 0 -~ e.W . 

Then problem (P1) has at least one solution such that 

(2.13) 0 e Zr T; W) ,  s e Hi(0, T) .  

PI~OOF. - (i) .Faedo-Galerkin approximation. 
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Let {V,~}~N be a sequence of finite dimensional subspaees filling up V and let 

{]~e V~ T]; V')~+N}, / ~ - + /  strongly in J52(0, T; V') 

(o ~ lz 

m~ 

+~(~):= 0 

m(~--a) 

0. ~ -+ 0 ~ strongly in W 

i f ~ < 0  

if 0~<~<a 

if ~ > a .  

For any m we introduce the following approximated problem: 

PI~OBI,E~ (P1)~. - 2'ind 0~: [0, T[ -+ Y~ and s,~: [0, T[ -+ R such that, setting 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

0 

~ ( t )  : =  s~(t) 

a 

a 

j [ e - ~ - v  -~- -~-~x " ~mJ + Ls'~(t).v(~(t)) 

0 

s:<t) + = t)) 

0,~(~:, o )  = O ~ ( x )  

s . , (O )  = s o . 

if a,~(t) < 0 

if O<.<s~(t)<a , 

if sm(t) > a 

= ~,</~(t), v>~, 

Yv e V~, in ]0, T[ 

in ]0, T[ 

a.e. in ]0, a[ 

This problem is equivalent to a Cauchy problem for a system of a finite number 

of ordinary differential equations and has at least one solution in [0, T~[, for a 

suitable T~ e ]0, T]. 

(ii) A priori estimates. 

We take v ~ Om in (2.14), multiply (2.15) by  s,~(t), sum and integrate in ]0, ~[, 

for a generic ~e ]0, T.~[. We notice that  by  lemma 1 

o o o 
t a 

~0~ 

0 0 0 
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i 
~or a n y  e > o; ~he *erm ffl(Om(g,~(t), t)).s'~(t) dt can be es%imated similarly, by (2.11). 

Then we get o 

(2.18) g [O,~(x,t)~--O,~(x,O)~]ex+I~[etr[~Om~ex+ s;(t)2dt+ 
J J \Ox/  

0 0 0 0 

8 ~ 0 

0 0 0 

Applying Gronwall's lemma, we obcain T = T~ for any m and 

s~(t) 

(2.19) ] f 
80 

~<Cons~an~ (independen~ of m);  

hence by comparison in (2.14) we get 

(2.20) 

Moreover (2.19) also yields 

(2.2z) (s~(t) - a ) + -  s , ( t ) -  ~ o a.e. in ]0, T[ .  

(iii) Zimit procedure. 

By ~he previous a priori estimates, there exist 0 and s such ~hat 

(2.22) 0m-+ 0 weakly star in Z~(0, T; W) (3 L2(0, T; V) c3 H~(0, T; V') 

(2.23) sm ~ s weakly in /~(0,  T) ; 

hence by Aubin's compactness lemma (see [13], p. 57) 

0,~ ~ 0 sfrongly in Z~-(0, T; H~-~(0, a)) ,  V3 > 0 ; 

then for any Q e ]0, �89 

Jio.~(a~.(t). t)  - o(8(t) ,  t ) II . (o .T)< 

< II0~(~(t), t) - O,~(s(t), t)I[~=<o,T)+ I]O~(s(t), t) - -  O(8(t), t)ilL=(o,~)< 

If < Lt~ Oz (e, t) d~ ~,(o,~)+ Constant.  ll0,,,- 0ll~2(o,z;n~+o(o,~))~ o 
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tha t  is 

O~(~(t), t) ~ O(s(t), t) strongly in Z;(O, T) ; 

hence 

fi(O~(~(t), t)) § fl(O(s(t), t)) weakly in Z~(0, T) .  

Thus taking m ~ eo in (2.14) we get (2.3). 

Multiplying (2.15) by ~ -  s~(t) for a generic ~ e [0, a], we have 

[ ~ : ( t )  - Z(o~(~(t), t ) ) ) ] .  [~ - s , , ( t ) ]  = - r  [~ - s . , ( t ) ]  > o 

and taking m - +  ~ we get (2.4). [] 

]=~EMAI~I~. - -  Since in theorem 1 the function fl is not required to be Lipschitz- 

continuous, it is allowed tha t  fl be very steep near 0 = O; for instance 

(2.2~) 

f 

y.  ~ -  if 0 V= 0 (Y, e: constants ,y  
8(0) / 0 if 0----0. 

> 0 ~ 1 <  ~ <  2) 

In  this case the supercooling and superheating amounts  at  the interface have a 

higher order of infinitesimum than  the interface velocity; hence the smaller is this 

velocity the bet ter  is the approximation given by the usual  equilibrium condition. 

A model el glass ]ormation. - (~ At extremely rapid cooling rates~ say 10s-10 e ~ 

ra ther  than  forming solid crystal~ a glass is produced. An important  consequence 

of this is tha t  under these conditions no latent  heat  of solidifica~ion needs to be 

dbsorbed ~> (Szl~_ELu [17]). This technique allows to produce even meta l  glasses. 

We propose to represent this phenomenon by  means of the kinetic condition 

(1.11)~ with  a function fl of the following form 

[ fie C~ fl(0) = 0; there  exists 0 < 0 such t h a t  
(2.25) 

1 / / -= 0 in ] - - ~ ,  0], fi(O)< 0 in ]•, 0[, 8(0) > 0 in R + (see fig. 1) .  

According to this model,  there is crystallization only if the interface temperature  

is comprised between 0 and 0; if it drops under  O, then  no latent  heat  is delivered 

and a .glassy phase is formed. 

Theorem 1 can be applied for a fmletion fi as in (2.25). 
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J , )  

0 

Figure 1 - Kinetic law for the glass formation model. 

P~OPOSITION 2 (Maximum principle). - Assume that (2.1) and (2.2) hold and that 

there exists an M e R such that 

(2.26) ~ ($ )>0  , V~j>M 

(2.27) O ~  O~ a.e. in ]0, a[ 

(2.28) / < O  in ~D'(Q). 

Thena ny solution o/ (P1) /ul/ills the condition 

(2.29) 0 < M a.e. in Q .  

P~ooF.  - I t  is sufficient to  t ake  v - -  (0 - -  M) + in (2.9) and  to in tegra te  in t ime.  

Similarly,  a m i n i m u m  principle can  be established.  

[] 

3 .  - G e n e r a l i z a t i o n s .  

Unti l  now we have  assumed the  physical  coefficients e, Z and  k to  be  constant ;  

ac tual ly  these  quant i t ies  depend on the  t e m p e r a t u r e  0 and  on the  phase  var iable  X, 

which represent, s the  wa te r  concentra t ion (thus g = 0 in the  solid; g = 1 in the  
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liquid; 0 < g < 1 in mushy regions, namely mixtures of water and ice). Although 

in this paper we are concerned with sharp interphases, at this point it is convenient 

to discuss shortly the general case. The heat equation has the form 

(3.1) ~(0, z ) ~ / +  L ( 0 ) ~ 7 - ~  ~(0, z ~ j  = / in Q, 

in the sense of distributions; of course we assume that the functions 8, L and )~ 

sre sufficiently smooth. Since 8(0, Z) dO d- L(O) d g = de (differential o~ the enthalpy 

density), the following compatibihty condition must be fulfilled 

(3.~) 8(0, z) = - ~ L 0 ) ,  v(0, z) e R • [o, 1]. 

We shall distinguish two cases: 

(i) L is constant. - Then by (3.2) ~ is independent of )/ and the Kirchhoff's 

transformation can be used. We set 

then (3.1) becomes 

o 

0(x, t ) : =  ~(O(x, t)) in Q ; 

~(~-~(v), z) vv e R, vz e [o, 1]; $(v, z) . -  e(~-~(~)) 

in the sense of distributions. In the one-dimensional case we can formulate a problem 

similar to (e l )  for (0, s), with k replaced by  k(O, H ( s ( t ) -  x)); assuming that $ is 

continuous and apperly and lowerly bounded by  positive constants, an existence 

result of the type of theorem 1 can be proved. 

(ii) Z = L(0). - We also assume that this dependence is linear; then by  (3.2) 

w e  h a v e  

(3.4) 
c = 8(0, Z) ---- c1(0) -4- YZ ( c 1 >  o,  c ,-t-  y > O) 

.~ = L(o) = k(o)  + r e .  

For obvious physical reasons, it is required that  L(0)>0;  thus 0 must be upporly 

or lowerly bounded, depending on the sign of F. For definiteness we assume that 

y >  0; then ~(0)>0  if and only if 0>- -L(0 ) / ? ;  hence it will be quite convenient 
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to have a minimum principle at  disposal. 

so that  

We set 

~(~) :=fe~(~) dr l , V~ e R ,  
0 

de = [c~(O) + 9,Z] dO + [L(o) + 9,0] dz = d[~(O) + .t,(O) Z]. 

set 

We consider the case of a single dimension of space, wi~h Z = H(s(t) -- x), and 

a 

v,<A(O,x)u,v>v:=f&o,x)u'.v'dx, V0eR, gge[o,  1], Vu, v e V  
0 

obo :=  ~(0 o) + 9,0 o . / / ( so_  x) + L(o ) . / / ( s  o -  x) in ]O, a[ ; 

we assume that  (2.1) and (2.2) hold, tha t  ob~ V' ~n4 introduce a variationM problem: 

P~OBT,E~ (P2). - ~in] 0 E.5~'(O, T; V) and s ~ Win(O, T) such that (2.4), (2.6) hold 

and 

0 [g(0) + L(0) .H(s( t )  - -  x)] -~- A(O, H(s(t) - -  x))O = ] in V', d.c. in ]0,/~[ (3.5) 

(3.6) [~(o) + L ( O ) . H ( s ( t )  - x)],=o = ob~ i~ v ' .  

We notice tha t  (2.4) ]ormally yields 

a 

f v(s(,)) (3.7) [~(o) + r H ( s ( t )  - -  x)] .  ~7"v d~ + . = 

0 a 

f 00 0v + ~(0, H ( s ( t ) - - x ) ) . ~ .  ~ d x  = v,</,v>v, W e  V, a.e. i ,  ]0, Z[;  

O 

but  this is not  rigorous, as a priori ~0/8t is just  a distribution. 

The interpretat ion of (P2) as a boundary  and initial value problem for an equa- 

tion of the  form of (3.1) is situilar to tha t  of (P1). 

We prove an existence result  

T]~EO~E~ 2. - Assume that (2.1) holds and that 

(3.s) 

(3.9) 

(3.1o) 

O~ W ,  

I#(~)]<e~, v~> L(o) 

Y 

0~ - L ( 0 )  ~.e. in ]0, a [ ; / > 0  in ~D'(Q) 
9, 

~ e  CI(R) ; ~.'~>e~: constant  > 0 .  
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Then problem (P2) has at least one solution such that 

( 3 . 1 1 )  0 e Zc~ T; W) ~'~ H1/2-~(O, T; W) , V~ > O] S ~ HI(0, ~ )  

(3.12) L ( 0 ) : :  L(0) + ? 0 ~ 0  a.e. in Q.  

I~E~RK. -- A maximum principle can be easily proven; hence (3.8) is not too 

restrictive. 

P~ooF. - At first we replace L(0) b y  L(0) + in (3.5) and (3.6); this modified 

problem (P~'2) has at  least one solution, as can be proved by  a procedure similar to 

tha t  of theorem 1; we just  point  out  the  essential modifications. We set 

H~(~):= 

0 

m~+l 

1 

1 
if $ < - - - -  

m 

1 1 
if - - - -  < $ <  - -  

m m 

1 
if ~>  -- 

and in the  approximate  problem we replace (2.14) by  

(3.13) 

@ 

f ~0~ [~'(0~) + yH.(L(O~)) 'H~(s~(t)  - -  x ) ] - ~  v ax + 

0 a 

+ L(oo(~(t),t))§ ~(oo, Ho(so(t)-x)). ~-~. 
0 

-= v,(J~(t), v}v , Vv e V, in ]0, T [ .  

Hero we take  v = L(0~) ( =  L ( O ) ~  y0~) a~d integrate in ]0, t[; we notice that ,  

sett ing B~(~) := fH~(~)~  d~ for any ~ e R,  we have 
0 

r f at f H~( L(O~) ). Ho(s~(t) -- x). 30~ " L(O,,) dx -= f dt f H~(s~(t) -- x) " ~tB~(O~) dx 
0 0 a 0 0 a 

> ~.~(so(~)- ~)~o~(oo(% ~)) dx - f . o ( ~ o -  x)~o(o:) ~x - 
0 "t a 0 

0 0 

For each t, the  support  of H'(s~(t)  -- x) is contained in [2~(t), 2:(t)], whore ).'~(t):= 

: =  max  (s.,(t) -- lira, O), ~ ( t )  : =  min (s~(t) + l /m,  0) therefore H'.~(sm(t) -- x) does not  
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vanish identically only if -- 1Ira < sin(t) < a -b 1 /m  and this entails qS~(s,~(t) ) = O. Hence  

using (2.15), (3.8) an4 xtotieing ~hat B,~(O~)~ 0 entails Z ( O ~ ) > -  1/m~ we have~ 
! I! 

for a suitable &~(t) e [~m(t), 2~(t)], 

0 0 0 

< o4~4o~(~o(~), t))dt + ~(m)< (by lomm~ 1) 
0 

0 

where a(m), ~(m) --> 0 as m ~ ~ ;  moreover by (3.8) and by ]emma 1 

]fL(oo(~o(t), ~))+ r ~)) dt < 
o 

<fl~(oo(~(~), t))l{[L(o) + ~oo(~o(t), t)]+}, et< 
0 t 

< ~ofEz(o). + r=(~llO,~llg + c(~)llO.tl~)] at. 
0 

Also here Gro~wall's lemma can be applied, yielding the a priori esimato (2.19), 

whence 

(3a~) llL(o~(g~(t), t)) . sAt)lIL,(o,T ) < Constant. 

Here i% does not  seem possible r deduce (2.20) by comparison in (3.13); we shall 

est imate %he t ime regulari ty of 0~ by means of a technique essentially due %0 AL~ 

x O,,(x, t -t- h) in Q. We take and LVCK~[AVS [1]. For  any  h ~ ]0, T[ we set 0~( , t) : =  

v = 0 ~  0~ i~ (3.13) and i~egra%e in ]0, T ~  hi; we notice t ha t  for any  m, as 

h -~ 0 + we have 

~0~ 0~-- 0,~ -+ 0 strongly in L~(0~ Z;  V).  m h ~ - 

Hence, using also (2.19), we have 

T - - h  a 

f f,0. 0,, (3.15) el dt , ,, ~1 dx 
h 

0 0 
T - - h  a 

< at [~'(O,~)-t-ylt ,~(L(O,~)).g,~(x--s~(t))]. .-~ .( m - - O ~ ) a x + ~ (  ) < 

0 0 

< Constant .  ll0~-- 0~IIL'(o,T-h; V) < Constang (independent of h) i 
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here ~(h) -+ 0 as h -+ 0 +. We also notice t ha t  for any  ~ > 0 and for any  u ~ H�89 
one has  (el. [18, p. 190]) 

Ilull,J-~(-)= I lul l , ( - )+ \ 3 J  I t -  ~?-" 
= H.ll.,.)§ f a .o f 

R + R 

(notice thatRf+dhh2~-l ~ + c~). Thus (3.15) yields 

(3.i6) I]O~[Ist-0(0,~; w) < Constant ,  V~ > 0 .  

These a priori estimates allow to take the limit in the approximated problem and 

to get the existence of a solution (0, s) oi the modified problem (P2). Then mul- 

t iplying the 0-equation by  -- L(0)-, it  is not d i~cu l t  to cheek tha t  L(0)- = 0; tha t  

is (0, s) solves problem (]?2) and (3.12) is fulfilled. [] 

Finally we notice tha t  the previous developments can be extended to the case 

in which c~ Z, k and fi depend explicitely on (x, t )~  Q, assuming tha t  these de- 

pendences are regular enough. 

4.~- Vanishing relaxation time. 

We assume tha t  c, L and k are constant  and tha t  (2.1) and:l (2.2) hold. For  any 

s ~ 0 we consider the follo~ving problem 

PROBLE~ (P1)~. -- ~ind O~e.5~(O, T; V) and sse W1'1(0, T) such that 

(4.1) ~t[cO~+ ZH(s~(t)--x)] + AO~= / in V', a.e. in ]0, T[ 

a.e. in ]0, T [ ,  O<s~(t)<a and  Y~e[0, a] 

[ss:(t)- t))]. o 

(a.3) 0,J~o---= 0 ~ in V' 

(4.4) s~(O) = s o . 

TttEOlCE~ 3. - Assume that (2.1), (2.2) hold and that 

(4.5) 8(0) = o 

(4.6) ( ) ~ f l ( ~ )  ~<b~ ~ , ~ /~  R (b, ~: constants  > 0) 

(4.7) / e ~ ( 0 ,  ~ ;  v' )  c~ ~ ( Q ) ,  0~ w .  
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~or any set A,  we denote by g, its characteristic ]unction; namely Z~ = 1 in A, 

g~ = 0 in the eoueplementary o] A. 

-For any ~ > O, let (0~, s~) be a solgtion of (P1)~ (existing by theorem 1). Then as 

s -+0 + 

(4.s) N0,(,.(t), t)Z{o<~.(o<o~h,(o,~)= o(~), 

and there exist 0 and s ,ueh that, possibly taking subsequenees~ 

(4.9) 
0,-->0 weakly star in Lr176 I% W)nL2(O,  T; V)nH~-o(O, T; V') , W > O ,  

s,-->s weakly star in BV(0, T) .  

Moreover (0, s) solves the reduced problem (P1)o: 

PlCOBr,Ext (P1)o. - t~ind 0 e Zz(0, T; V) and s e BV(O, T), sueh that 0 <<s(t) <a 

in ]0, T[ and 

(4.10) 

(4.11) 

(4.12) 

~[cO + LH(s ( t ) - - x ) ]  + AO = ] in V', in ~D'(]0, T[) 
3t 

o(s(t), t). [s(t) - ~ ]>  o ,  V~: e [o, a], a.e. in ]o, T[ 

[e0 + Z•(s(t) - ~) t=o = c0o + ~ H ( s o -  x) in v ' .  

I~n~AR~r -- If (2.8) an4 (1.9) hold, then neither superheated nor supercoooled 

regions uppe~.r; then problem (I)1)o coincides with the standard two-phase Stefan 

problem (1.1), ..., (1.8) and has a unique solution; consequently the whole sequence 

of solutions (Oe, ss) converges to (0, s). 

P~OOF. - (i) ~stimates. 

We no*ice that  (4.2) yields 

(4.13) s  = a(o,(s,(t), t)) Z{o<,,(o<o~ ~.e. in ]o, r [ .  

For any j e N, we set 

*~(~):= 

--1 
1 

if ~ < - - _  
1 

1 1 
j~ i f - = <  ~< =; 

? 

1 
if ~> .- 
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we also sot m~(~) =far rig, V~" e R. We multiply (4.1) by ~(0~) and integrate in 
0 

]0, ~[, for a generic ~'e ]0, T[; thus we get 

0 0 

By (4.13) and (4.6) we have 

T 

a ~ a 

+ kptp;(o ),vo, dx<fd f,ll 
0 0 0 0 

0 0 

L , �9 .5 ' 

o i o ; 

ls'(t)l'Z(i<(ol~>b~)dt>L [s:(t)l - - -  

0 0 

d t  ---- 

L b ~  

We also notice that  the first and the third integrals in (4.14) are non-negative; thus 

taking j -+ co in (4.14), by (4.15) we get 

(4.16) IIs:HL,(O,T)<Constant (independent of e), 

which yields (4.8), by (4.2) and (4.6). 

Wow we multiply (4.13) by 0~ and integrate in ]0, ~[, for a generic ~e ]0, T[. We 

notice that  by (4.2), (4.6) and (4.13) we have 

T 7, 

o o 7 

0 0 

thus, by calculations similar to those of section 1, we get 

(4.18) II0~I1L~(0,~; w)~(o,r;  v), %/~IIs:[Iz:(o,T) <Constant (independent of e). 

For any v eJS~(0, T; V) by (4.16) we have 

T T 

0 0 

at I < li~illL,(o,~)" Ilv(88(t), t)11L~(0,~)< 
! i 

< C o n s t a n t "  IIsoHv(o, ~)" h v I[~(o0 r; v),  
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hence 

II -, 
whence, as for any (3 > 0 {v e Z*(0, T): v'eZ~(0, T)'} r W1-~'1(0, T) c1~-~(0, T) with 

continuous injections, we have 

[lH(.~(t) - ~)H.~-,(o.~, ~ . )< Constant ,  W > o;  

by comparison in (4.1) we also have 

II c0. + z H ( ~ ( t )  - ~))II.,(o,., ~,) < Constant ; 

Moreover (4.18) yields 

hence 

.~(~(t)  - ,~) -+ .~ ( , ( t )  - ~) 

o~(~,o(t), t) -+ o(~(t), ~) 

t)) t)) 

! 

ss. ~ 0 

hence taking e -+  0 in (4.2) we get 

- ~(0(~(t), t ) ) [ ~ -  ~ ( t ) ] > o ,  

whence (4.11), by (4.5) and (4.6). [] 

weakly star i n / ~ ( Q )  and a.e. in Q 

strongly in Z~(o, T) 

strongly in Z~(o, T) .  

strongly in Z~(O, T) ; 

V~e[O,a],  a.e. in ]O,T[ ,  

thus we get 

(4.19) H0~lt~t_~(o,T: v.)<Constant ,  V8 > o .  

(ii) Zimit procedure. 

By (4.16), (4.18) and (4.19), there exist 0 and s such that ,  possibly taking sub- 

sequences, (4.9) holds; then by compactness, in particular by Aubin's lemma (see [13, 

lo. 57]), we h a v e  

0, -+ 0 strongly in Ls(0, T;//~-~(0, a)), V• > 0 

s~ -~ s strongly in L~(0, T), Vp e [1, ~- ~ [  ; 
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t~.E:I~AI~KS. - -  (i) In  general s(t) cannot  be expected to be continuous. For  instance 

in the Stefan problem for a supercooled liquid, at  a cer ta in  finite t ime s(t) jumps 

~o 0 [ l s ] .  

(ii) (4.12) does not  entai l  

olt=o = oo , ~(8(t )  - x)1,=o = ~ ( s o -  x) in ]o, a[ ; 

nei ther  0 nor  H ( s ( t ) -  x) have a t race for t = 0, a priori.  

(iii) I n  [8] C~owL~u studied a problem of phase t ransi t ion in a heterogeneous 

system with a kinetic condition at %]1o interface.  There the  supercooling is so small 

tha t  it  can be neglected. I n  the  case of a homogeneous system, such a condit ion 

has the  form 

(~.20) O(s(t), t) - -  -- y[s ' ( t ) ] - ,  where 0 < s(t) < a ,  in ]0, T [ ,  

with y: constant  > 0; namely  

(4:.21) s'(t) e fl(O(s(t), t ) ) ,  where 0 < s(t) < a ,  in 30, T[ ; 

here fl is a maximal  monotone  graph with domain R -  : fl(~) : {~/7} if ~ < 0, 8(0) : 

R +, (4.21) can be rewri t ten  in the  form 

(4.22) 

0(s(t), t) < o  ; v v < 0 ,  ] 

8 ' (0 .  [0(~(t), t) - v] > 2 r - [0(8(0, t ) 2 _  ~ ]  
where  0 < s(t) < a, in ]0, T [ ,  

A result  similar to theorem 3 can be proved also in this case: thus the  phase-transi- 

t ion problem corresponding to (4.20) has at  least one solution, which can be ob- 

ta ined  as the  l imit  of a subsequenee of solutions (0,, st) corresponding to inserting a 

superheat ing t e rm vanishing with e: 

~ ( 0 ~ ( 8 o ( t ) , t ) )  1 + 1 (4.23) 8'8(t) = : =  ;[o,(8,(t),t)] -~[o~(~(t),t)]-, 
where 0 < s~(t) < a, a.e. in ]0, T [ .  

5. - Several dimensions o f  space with radial symmetry.  

We take  into account  a radial ly symmetr ic  sys tem const i tu ted by  a water  ball  

surrounded by  ice. Le t  h r > 2  be the  number  of space dimensions; we denote the  

radial  coordinate by r the space domain is /2-=-{.(xl, ..., x ~ ) e R ~ :  Q < a} and the  
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interphuse 8 is characterized by the condition ~ = s(t). The energy balance yields 

(5.1) -~t[cO -~ LH(s(O--e)J- -YT. (kVO)  ---- 0 in D• 

(V :-- (~/~x~, ..., ~/~x~v)); (5.1) corresponds to (1.15), (1.3) and (1.10). We consider 

the boundary condition 

~0 
(5.2) k~-~= g(t) on ~9x]0 ,  T[ ,  

where ~/~v denotes the exterior normal derivative. Because of the radial symmetry, 

(5.1) and (5.2) yield 

(5.3) ~ o ~  Over-1 de + ~o~ ~ "v'(e)e ~-~ de + ~s'(t)'~(8(0)'s(t)  ~-~= 

o o = w~a~-~g(t).v(a), Vv e C1([0, a]), in ]0, T[ 

where co~ is the urea of the (H--1)-dimensional sphere of radius 1. 

Taking account of the surface tension effect, we shall use the kinetic condi- 

tion (1.16). 

Henceforth we shall replace e by x. We introduce 

a 

l~ :-~ {measurable v: ]0, a [ - ,  R: fv(x)~x ~-1 dx <: -~ c~} 
0 

~:= {~,e$: v'eVv}, ~:= Fn co([o,,~]), 

Hilbert and Banach spaces endowed with the norms 

0 

HvH~ = [v(x)~ + v'(x)~]x~-~ ax 

0 

t lvb = Ilvll~ + m a x  Ivl. 
[O,a] 

We assume that 

(5.4) /eZ~(o,T;]~),  0oe? ', s~ 

and introduce a variational problem: 
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PnOBI~E~ (P3). - Find 0 ~ Z~(O, T; ~') and s e L~176 T) such that s~e W~'~(O, T) 

and 

(5.5) 0(s(t), t).s(t)~-~ e L~(0, r)  

f (5.6) c Ovx iv-1 dx -~ -~x "v'(x)x~-I dx + 

0 0 

L d  
~ - ~ t [ s ( t )  ].v(s(t)) =- ~,(/(t) ,v}~, Y v e Z ,  a.e. in ]0, T[ 

[ u.e. in ]0, T [ ,  O<s(t )<a and Y~e[0 ,  a] 

(5.7) _d 
[s(t)~] + ~s(t)~'-~- o(s(t), t).s(t)~-~j.~ [~ - s(t)]>o 

t:v dt 

(5.8) O]t= o ----- 0 ~ in Z'  

(5.9) s(0) = s ~ . 

REgAlia. - By  comparison in (5.6) we h~ve 0 e H~(0, T; Z') ;  this gives a meaning 

%o (5.8). (5.6) corresponds to (5.3), sett ing 

v,(](t), v}v :---= a:~-~g(t).v(a), Yv e V .  

TtIEOtCES~ 4. - Let 1~>~3. Assume that (5.4) holds and that 

(5.1o) 0~ ~ .  

Then there exists at least one solution o] problem (P3) such that 

(5.11) 0 e L~ T; ]~') , s'Ve H~(O, T) . 

PIr - (i) Faedo-Galerkin approximation. 
f 

We introduce ~ , / , ~ ,  0~ ~nd ~b~ ~s in the  proof of theorem 1; here we ~lso 

require tha t  V~c C~ a]). For  uny m we consider the following approximated 

problem 

P~OBLE~ (P3)m: - Find 0.~: [0, T[ ~ I~,~ and s~: [0, T[ --~ R such that, setting 

0 if s~(t)~O 

~.~(t) --  s.,(t) if 0 ~ s.~(t) ~ a ,  

a if sin(t) > a 
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5~2 ( . - )  

(5.~3) 

( 5 . ~ )  

(5.15) 

a 

0 

= ~,</~(t), v>~, Vv e g~,  in ]o, T[ 

1 d z~ 
~ ~ [s~(t) ] + ~,~(s,~(~)) + 2s,~(r ~-2 = O~(~m(r ~)'s,~(~)~-~, in ]0, I '[ 

O~(x,O) =O~(x)  in 3o, a[ 

s~(O)=s~ 

This problem is equivalent to a Cauehy problem for a system of a finite number  

of ordinary differential equations and has at least one solution in [0, T~[, for a sui~- 

able T~e  ]0, T]. 

(ii) A priori estimates. 

We take v -=- 0~ in (5.12), mul t ip ly  (5.13) by  Zs '( t ) ,  sum and integrate in ]0, ~[, 

for a generic ~ e ]0, T~[. Thus we get 

a ~" a 

0 0 0 

8~(7) r 

+ ~ f r a$<l]f~llvco,z;e,). ( f  Ho,o(t)H~ dt)'. 
$ ~ 0 

Then by  Gronwall 's lemma we get T~ = T for any m and 

sa(5 
r + 1)/~ 

0 

<Cons tan t  (independent of m).  

We notice that  for any v ~ 

T T 

[8,~(~)~].v(~,~(O) at < (~v + 1---~ [8~,(~1,~+~/~].8~(~1,~-~/,.~(~(t)) dt < 

0 0 

< Constant  IIs.~(t) r T>" ff~ ff c~ Constant  

then by comparison in (5.12) we have 

(5.17) JJ O~HB,(o ' ~,, ~,) << Constant.  
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:Finally, mult iplying (5.13) by (d/dt)[s,,~(t) ~] wc get 

+ (N --1)O,~x~-'Hr,,(,)j < , w  
K 

- -  < C. [I 0,,]]~.(o,r~ r < Constant  

(iii) Zimit  procedure. 

By the previous ~ priori estimates~ there exist  0 and r such tha t  

(5.19) 0,~ --> 0 weakly st~r in L~176 T; ~ )  ~ (L~(0, T; ~) ~ H~(0, T; Z')) 

(5.20) s~ --> r weakly in H~(0~ T ) ,  

with O<r<<a ~ in ]O, T[; hence 

~5.21) s~ --> s :-~ r ~/~ uniformly in [0, T ] .  

By Aubin's lcmma (see [13], p. 57), (5.19) yields 

O,,x ~-~ -> Ox ~-~ strongly in L~(O, T; H~-~(0, a)), VO > 0 ,  

whence 

0~(s(t), t).s(t) ~-~ --> O(s(t), t).s($) ~-~ strongly in Z~(0, T) 

then 

10~(~(t), t). ~ ( t )~ -~ -  o(8(t), t). 8(t)~-~l < 10~(~(t), t). s.~(t)~-~- o~(s(t), t). 8(t)~'-~l + 

+ lo~(~(t), ~) - o(~(t),  t)l. ~(t)~-~< [/0~-~[r,,<o,o>+ [o~(~(~!, t)  - o(~(t),  t )1.~(t)~-~ ~ o 

strongly in L2(0, T). 

Taking m --> co in (5.12) we obtain (5.6). Multiplying (5.13) by  ~ w sin(t), ~or a 

generic ~ e [0~ a]~ and taking m - +  c~ we get (5.7). [] 

I%E~A~K. -- In  the  case of a.n ice ball surrounded by  water~ Z is replaced by  - - /~  

in (5.6) and O(s(t), t) by --O(s(t), t) in (5.7). Theorem r holds also there.  
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