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Abstract. We explain and motivate Stefan-Sussmann singular foliations, and
by replacing the tangent bundle of a manifold with an arbitrary Lie algebroid

we introduce singular subalgebroids. Both notions are defined using compactly

supported sections. The main results of this note are an equivalent charac-
terization in which the compact support condition is removed, and an explicit

description of the sheaf associated to any Stefan-Sussmann singular foliation

or singular subalgebroid.
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1. Introduction

As an introduction we survey the case of foliations. We start recalling smooth
foliations, understood as partitions of a manifold into immersed submanifolds; they
clearly contain the class of regular foliations. Then we argue that, using submodules
of sections (vector fields) instead of leaves, one obtains another extension of the
notion of regular foliation which records more information than just a partition
into leaves. Finally we explain briefly the purpose of the remainder of this note.

1.1. Partitions into leaves. A naive way to think of a foliation is as a partition
of a manifold M to immersed and connected submanifolds (leaves). Here are some
examples:

• Parallel lines in R2 with slope θ. When we pass to the torus, the nature of
θ plays an important role: If θ ∈ Q we obtain a partition of the torus to
circles, whereas if θ ∈ R \Q, the leaves are (infinite) lines wrapped around
the torus in a dense way.
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• The partition of R2 into the x-axis (a 1-dimensional leaf), the open upper
halfplane and the open lower halfplane (2-dimensional leaves).
• The partition of R2 to the upper halfplane (a 2-dimensional leaf) and every

point of the lower halfplane (each of which is a 0-dimensional leaf).

Notice that all of the above partitions are “smooth” in the following sense1: every
vector v ∈ TM which is tangent to the leaf through the footpoint of v can be
extended to a vector field X ∈ X(M) which at every point p ∈ M is tangent to
the leaf through p. In this note we refer to such partitions as smooth foliations.
For instance in the first example X will be a multiple of the Kronecker vector field
∂x + θ∂y by a smooth function f ∈ C∞(R2). There are partitions which are not
“smooth” in this sense, for example:

• The partition of R2 into the x-axis (a 1-dimensional leaf) and each of the
remaining points of the plane (0-dimensional leaves). (The complement of
the x-axis is dense in R2, so every vector field which vanishes there must
vanish everywhere in R2 due to continuity.)

In the literature foliations are often required to be smooth in the above sense,
(e.g. singular Riemannian foliations, see the survey [1]). Notice that in the above
examples we allow the dimension of the leaves to vary. More precisely, given a
point p, the dimensions of the leaves that intersect small enough neighbourhoods
of p might drop (but not become bigger than the one of the leaf through p.)

By and large, the theory of smooth foliations has been developed under the
assumption that all the leaves have equal dimension. In this case, the local structure
of a foliated manifold M is as follows: there exists an atlas by smooth charts which
are split into a longitudinal direction ` and a transversal one τ , and the coordinate
changes are of the form (`, τ) 7→ (f(`, τ), g(τ)). In fact, this local description
implies both the partition of M to leaves, as well as the smoothness; it is taken as
the standard definition of a regular foliation.

However, partitions where the dimension of certain leaves drops are abundant
in mathematics. Take for instance the orbits of the action of S1 by rotations on
R2, or on S2: All the orbits have dimension 1, except for the fixed points. In
fact, lots of smooth actions of Lie groups on a manifold M have orbits with varying
dimension, and the induced partition of M to orbits is smooth (every vector tangent
to an orbit is the value of a vector field defined by the infinitesimal generators of
the action). For example, actions of orthogonal groups provide many examples of
singular Riemannian foliations.

Other interesting foliations where the dimension of the leaves drops arise in Pois-
son geometry, as every Poisson manifold is endowed with a foliation by symplectic
leaves. In fact, the Poisson structure at hand is completely determined by its sym-
plectic foliation. The “dimension drop” phenomenon arises in lots of interesting
Poisson structures, for instance linear Poisson structures on the dual g∗ of a Lie
algebra. Take for example g to be the Lie algebra of SU(2,R): The leaves of the as-
sociated symplectic foliation (coadjoint orbits) are concentric spheres in R3, whose
dimension drops at the origin (which is the fixed point of the coadjoint action).

While regular foliations are well-understood, there is a great deal of subtlety
present when the “dimension drop” phenomenon occurs2, which is not captured

1Another charaterization of smoothness, involving charts, is given in [7, §1.5].
2As an instance of this subtlety let us point out that a manifold M with a foliation exhibiting

the dimension-drop phenomenon does admit local coordinates which split to a longitudinal and
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by the notion of smooth foliation as we introduced it at the beginning of this
subsection. In the remainder of this introduction we will describe another, much
finer extension of the notion of regular foliation (see definition 1.4).

1.2. Regular foliations. Let us make a fresh start with regular foliations and try
to give a more algebraic perspective in this setting.

Instead of looking at the leaves, we may look at the tangent spaces to the leaves.
This way we obtain a constant rank distribution, in fact a vector subbundle F →
M of the tangent bundle TM . Furthermore, the C∞(M)-module of sections ΓF
is involutive, namely it is closed by the Lie bracket of vector fields. Moreover,
the Serre-Swan theorem shows that the subbundle F can be recovered from ΓF :
recall that for every x ∈M the vector space ΓF/Ix(ΓF ) is isomorphic to Fx (here
Ix ⊂ C∞(M) stands for the functions which vanish at x). The isomorphism is the
evaluation map evx : ΓF/Ix(ΓF )→ TxM, evx([ξ]) := ξ(x).

Observe that the module ΓcF of compactly supported sections of F has the
same properties, in particular the fiber ΓcF/Ix(ΓcF ) is isomorphic to Fx, so the
module ΓF is not the only one with this property. In fact, instead of starting with
the vector bundle F , we could start with the choice of a submodule F of vector
fields tangent to the leaves such that the evaluation map evx : F/IxF → TxM maps
isomorphically onto the tangent space Fx to the leaf. There can be several choices of
such a module; for instance, for the regular foliation on a product manifold M1×M2

consisting of just one leaf, take the C∞(M1×M2)-submodule F1 generated by (the
canonical lifts of) Xc(M1) and X(M2), or the submodule F2 generated by X(M1)
and Xc(M2), etc. However, for every partition of a manifold M to leaves of constant
dimension, there are always two extreme possibilities:

A) F , the module generated by all vector fields tangent to the leaves. (Of
course, this module is none other than ΓF .)

B) Fcomp, the module generated by all the compactly supported vector fields
tangent to the leaves. (This module is ΓcF .)

The classical Frobenius theorem says that, item (A) is equivalent to having a par-
tition of M to leaves of constant dimension: if we start from a C∞(M)-module F
which is involutive and can be realised as the module of sections of a vector subbun-
dle F of TM , then there is a unique partition of M to leaves which determines F in
the above way. As for item (B), the module Fcomp is involutive and locally finitely
generated. In general, it is not the module of sections of any vector subbundle of
TM . But it is the module of compactly supported sections of a vector subbundle of
TM .

On the other hand, thanks to the Serre-Swan theorem, the C∞(M)-submodules
of X(M) which can be realized as modules of sections of some vector bundle F
are exactly the projective modules. This discussion leads to the following algebraic
characterization of regular foliation, which we phrase as a definition.

Definition 1.1. Let M be a smooth manifold and X(M) its C∞(M)-module of
vector fields. A regular foliation on M is a C∞(M)-submodule F of X(M) such
that:

(1) F is locally finitely generated;

a transversal direction (see [7]). However, due to the dimension drop phenomenon the change of
coordinates resists a smooth formulation. So, in contrast with the regular case we do not have a
good notion of foliation atlas.
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(2) F is involutive, namely [F ,F ] ⊆ F ;
(3) F is projective;
(4) for every x ∈M the evaluation map evx : Fx := F/IxF → TxM is injective

for every x ∈M .

Remark 1.2. i) Item (4) in Definition 1.1 is absolutely necessary. Here is an
example of a foliation which is not regular, and satisfies only the other items:
Take M = R and consider the action of R defined by the flow of the vector
field x∂x. In other words, the C∞(R)-module F1 is the one generated (only)
by x∂x. At zero the fiber (F1)0 is isomorphic to R and the evaluation map
vanishes since zero is a fixed point. On the other hand the orbits of the action
are (−∞, 0), {0} and (0,+∞), and the induced partition of R is not a regular
foliation (but it is a smooth foliation in the sense of §1.1).

ii) Consider the vector subbundle F of TM corresponding to F in definition 1.1 via
the Serre-Swan theorem and notice that the module Fcomp = ΓcF also satisfies
this definition. So we could have formulated this definition using a submodule
of the C∞(M)-module of compactly supported vector fields Xc(M). We will
use this observation and elaborate on it in §1.3 below.

1.3. Stefan-Sussmann singular foliations. In definition 1.1 we characterized
algebraically partitions of M into leaves of constant dimension. Now we discuss
how to extend definition 1.1 to partitions of M into leaves whose dimension drops,
obtaining as a result the notion of Stefan-Sussmann singular foliation. An essential
requirement is that, given a regular foliation, one can regard it as a Stefan-Sussmann
singular foliation in a unique way. From that respect, one is tempted to start by
considering the module F of all vector fields which are tangent to the leaves (or
the compactly supported ones having that property). But in the dimension-drop
case this module may not be locally finitely generated: This is exactly the case for
the foliation on R with leaves the half-line (0,+∞) (1-dimensional leaf) and all the
remaining points (each one of which is a 0-dimensional leaf).

So when the dimension of the leaves drops, one is a priori forced to make a choice
of a module F of vector fields tangent to the leaves (since there is no canonical such
module). Lots of different choices of module appear, as the following examples
exhibit this clearly. Notice that for regular foliation we obtained a unique module
once we imposed that it consist of compactly supported vector fields (see §1.2), and
imposing the same condition in these examples is not sufficient to obtain a preferred
module.

Example 1.3. i) The partition of R to (−∞, 0), {0}, (0,+∞) we discussed in
remark 1.2 arises also by the action of R defined by the flow of the vector field
xk∂x, for any k ∈ N, k ≥ 2. For each such k we obtain a different module Fk.

ii) Consider the partition of R2 to {0} and R2 \ {0}. These are the orbits of the
linear action of GL(2,R) or SL(2,R) or C∗ (by complex multiplication). The
module F in each case is the one generated by the infinitesimal generators of
the action.

Now let us see which items of definition 1.1 may survive when the dimension of
the leaves is allowed to drop:

• Item (4) does not survive as we explained in remark 1.2 i).
• Item (3) does not survive either. All the modules Fk defined in example 1.3

i) are projective, but for the foliation of R2 we discussed in ii) we find the
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following: the fiber F0 is R4 for the action of GL(2,R), R3 for the action
of SL(2,R) and R2 for the action of C∗, as was shown in [2, Prop. 1.4].
At every other point x 6= 0, the foliation is regular (with a single leaf), so
Fx = R2. A module F is projective iff the dimension of F/IxF is constant
at all points x, as a consequence of the Serre-Swan theorem. So the module
defined by the action of GL(2,R) (or SL(2,R)) is not projective. However
the module defined by the action of C∗ is projective.

Whence, the only items that may survive from definition 1.1 in the dimension-
drop case, are (1) and (2). These are enough to constitute an algebraic definition
that allows to recover the dimension-drop phenomenon, as the generalization of the
Frobenius theorem by Stefan and Sussmann shows [11, 12].

Definition 1.4. A Stefan-Sussmann singular foliation on M is a C∞(M)-
submodule F of Xc(M) such that:

(1) F is locally finitely generated;
(2) F is involutive, namely [F ,F ] ⊆ F ;

Remark 1.5. i) In definition 1.4 we require F to consist of compactly supported
vector fields. We will see in §5 that it is possible to give an equivalent definition,
using modules of vector fields which are not necessarily compactly supported
but which satisfy the partition of unity property.

ii) F being locally finitely generated means that for every point of M there
is an open neighbourhood i : U ↪→ M with the following property: denote

i∗F := {X|U : X ∈ F has support in U} and î∗F := {X ∈ X(U) : fX ∈
i∗F for all f ∈ C∞c (U)}. Then there are finitely many Y1, . . . , Yn of î∗F such
that every element of i∗F is a C∞c (U)-linear combination of the Yj ’s.

iii) Definition 1.4 satisfies the requirement that regular foliations can be regarded
as Stefan-Sussmann singular foliations in a unique way. This is clear from
definition 1.1 and remark 1.2 ii), in which a preference for possibility B) in
§1.2 (compact support assumption) is made.

iv) The examples discussed right before definition 1.4 show that there is a hier-
archy among foliations (M,F). If the module F is projective, the foliation is
called almost regular. This case was studied by Debord in [6]; The Serre-Swan
theorem forces ∪x∈MFx to be a Lie algebroid whose anchor map is induced by
the pointwise evaluation map evx. It turns out that this anchor map is injective
in the dense and open subset of M which consists of the regular points. The
almost regular case includes the regular one. The “truly” singular foliations
are the ones where F is not projective.

v) Given a Stefan-Sussmann singular foliation (M,F), the fiber Fx := F/IxF at
some x ∈M fits in an exact sequence

0→ gx → Fx
evx−→ TxL→ 0

where L is the leaf at x. The kernel gx is the quotient of F(x) = {ξ ∈ F :
ξ(x) = 0} by the maximal ideal IxF . It inherits the Lie bracket of vector fields
and becomes a Lie algebra. The singular points of (M,F) are exactly those
where the kernel gx does not vanish.

Let us see how to obtain a module F as in definition 1.4 for some of the previous
examples of smooth foliations with dimension-drop. Note that in the last two
examples the module is projective.
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Example 1.6. i) Let G be a Lie group acting smoothly on a manifold M . If g
is the Lie algebra of G and {X1, . . . , Xk} a basis of g then every Xi defines a
vector field X† ∈ X(M) (an infinitesimal generator of the action). Take F to

be the C∞c (M)-span of X†1 , . . . , X
†
k.

ii) Let (M, { , }) be a Poisson manifold. Every f ∈ C∞(M) defines a Hamiltonian
vector field Xf ; take F the C∞c (M)-span of {Xf : f ∈ C∞(M)}. This F is
locally finitely generated by the Hamiltonians of the coordinate functions, and
involutive due to the well known equality {Xf , Xg} = −X{f,g}.

iii) The foliation of R with a 1-dimensional leaf (0,+∞) and every non-positive
real number as a 0-dimensional leaf: Take F the C∞c (M)-span of f∂x, where
f ∈ C∞(R) is any (fixed) function which vanishes exactly on (−∞, 0].

iv) The foliation of R with leaves (−∞, 0), {0}, (0,+∞): Take Fk the C∞c (M)-
span of xk∂x for any k ∈ N.

Given a smooth foliation as in §1.1, the reader might wonder why we insist on
considering modules of vector fields instead of just the partition to leaves. After
all, in the regular case the two viewpoints are equivalent. The reason is that when
the dimension-drop phenomenon occurs, the leaves alone do not contain enough
information about the dynamics of the situation involved. For instance, the orbits
of the action of GL(2,R) on R2 are the same as the orbits of the action of SL(2,R),
but obviously the two actions are different. One would like this difference to be
recorded, and Stefan-Sussmann singular foliations allow for this. In other words,
the notion of Stefan-Sussmann singular foliation is a genuine generalization of the
notion of regular foliation, which allows to record more information than the notion
of smooth foliation described in §1.1.

At the level of global geometry, the above-mentioned difference is recorded by
the holonomy groupoid associated in [2] to any Stefan-Sussmann singular foliation:
the holonomy groupoids associated to the two actions are different. Moreover, a
very important feature of the holonomy groupoid construction given in [2] is that
locally it arises from a very simple and smooth structure, that of a bisubmersion,
which makes it appropriate for the development of analytical tools along a Stefan-
Sussmann singular foliation (pseudodifferential calculus, analytic index, etc). The
introduction of bisubmersions is possible exactly because we view singular foliations
as modules of vector fields; we elaborate more on this point in §3.

We return briefly to the relation between regular foliations and Stefan-Sussmann
singular foliations, since we did not provide a proof for the equivalence stated just
before Def. 1.1. Given a manifold M , there is an canonical injection

{Regular foliations in the sense of §1.1} → {Stefan-Sussmann singular foliations},
mapping the regular foliation integrating (in the sense of Frobenius) the involutive
distribution D to Γc(D). The image admits a simple characterization: it consists of
the Stefan-Sussmann singular foliations F with the property that their evaluation at
points of M delivers a constant rank distribution D. This characterization follows
from this known fact (see [2, Ex. 1.3(2)], whose proof we include for completeness:

Lemma 1.7. Let F be a Stefan-Sussmann singular foliation whose evaluation at
points of M delivers a constant rank distribution D. Then necessarily F = Γc(D).

Proof. Denote by k the rank of D. First notice that for every point p ∈ M there
exists a subset Y := {Y 1, . . . , Y k} ⊂ F whose evaluation at p delivers a basis of
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Dp. Denote by V the open neighbourhood of p on M on which the set Y is linearly
independent. Take a cover {Vα}α∈A of open sets as above. Now fix X ∈ Γc(D);
we have to show that X ∈ F . There exist finitely many Vα’s which cover supp(X),
since the latter is compact. So we may assume that the cover {Vα}α∈A is such
that only finitely many Vα’s intersect supp(X). Let {ϕα}α∈A be a partition of
unity on M such that supp(ϕα) ⊂ Vα. For every α, since ϕαX is supported on the

open subset Vα, there are hiα ∈ C∞(M) such that ϕαX =
∑k
i=1 h

i
αY

i
α ∈ F . Hence

X =
∑
α∈A ϕαX, being effectively a finite sum of elements of F , lies in F . �

Purpose of this note: Motivated by the case of foliations discussed in this intro-
duction, in §2 we discuss the generalization of the above ideas to a wider class
of singular situations, called singular subalgebroids. These objects are formulated
using submodules of sections of Lie algebroids and they appear naturally. Exactly
as Stefan-Sussmann singular foliations, they give rise to smooth objects encoding
them, as we explain in §3.

In the second half of this note we clarify why Stefan-Sussmann singular foliations
and singular subalgebroids are defined in terms of compactly supported sections,
and give equivalent characterizations. More precisely, we show in theorem 5.1
that there is a bijection between singular subalgebroids and the class of C∞(M)-
submodules which satisfy the partition of unity property. The latter will be defined
in §4, and for regular foliations this property specializes to possibility A) in §1.2.
Hence this question, which we intend to answer in a forthcoming paper, is well-
posed:

Compare the holonomy groupoid of Androulidakis-Skandalis [2] for Stefan-Sussmann
singular foliations to the one obtained, by a similar procedure, for submodules which
satisfy the partition of unity property (and likewise for singular subalgebroids).

The above bijection is an intermediate step toward an explicit description of the
sheaf naturally associated to Stefan-Sussmann singular foliations. Being defined
using compactly supported sections, they naturally give rise to a presheaf, and in
§6 (theorem 6.3) we describe the natural sheaf associated to it via the sheafification
procedure. The description in terms of sheaves is important because it is the
appropriate setting to treat analytic or holomorphic foliations.
Acknowledgements: This work was partially supported by Marie Curie Career In-
tegration Grant PCI09-GA-2011-290823 (Athens), by Pesquisador Visitante Espe-
cial grant 88881.030367/2013-01 (CAPES/Brazil), by IAP Dygest, the long term
structural funding – Methusalem grant of the Flemish Government, and by SCHI
525/12-1 (DFG/Göttingen). M.Z. thanks Roy Wang for enlightening discussions.

2. Singular subalgebroids

In this section we introduce the notion of a singular subalgebroid and discuss
a few motivating examples. To this end, we fix a Lie algebroid A with anchor
map ρ : A → TM (i.e. A is a vector bundle over M , and Γ(A) has a Lie algebra
structure satisfying a Leibniz rule involving ρ when one of the entries is multiplied
with a function on M). We will assume A is integrable and fix an integrating Lie
groupoid G −→−→M with connected s-fibers, and denote by s and t its source and
target map respectively. Recall that a Lie groupoid is an extension of the notion
of Lie group in which only selected pairs of elements can be multiplied, and that
every Lie groupoid induces a Lie algebroid, which can be considered its infinitesimal
counterpart.
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Definition 2.1. A singular subalgebroid of A is an involutive, locally finitely
generated C∞(M)-submodule B of Γc(A).

Example 1. i) The singular subalgebroids of A = TM are exactly the Stefan-
Sussmann singular foliations on M defined in definition 1.4 (see [2]). Note that
TM can be integrated both by the pair groupoid M×M and by the fundamental
groupoid Π(M).

ii) Let F : D → A a morphism of Lie algebroids covering a diffeomorphism between
the base manifolds. We do not assume that F has constant rank. Then

B := {F (d) : d ∈ Γc(D)}

is a singular subalgebroid of A. For instance, the image of the anchor map
ρ : A → TM is the Stefan-Sussmann singular foliation underlying the Lie
algebroid A. Let us point out that the Stefan-Sussmann singular foliations
arising from a Lie algebroid in this way are a huge and very interesting class,
however there do exist Stefan-Sussmann singular foliations which do not arise
from any Lie algebroid [5, Prop. 2.3].

A singular subalgebroid B of A gives rise to a Stefan-Sussmann singular foliation
on the Lie groupoid G, and can be recovered from this Stefan-Sussmann singular
foliation. Given a section α ∈ B ⊂ Γc(M, ker(ds) |M ), consider the associated

right-invariant vector field
→
α ∈ Γ(G, ker(ds)) ⊂ X(G) defined by

→
αg = (Rg)∗αt(g)

for all g ∈ G (cf. [9, §3.5]). Put

(1)
−→
B := 〈 {→α | α ∈ B} 〉,

the C∞(G)-module generated by {→α | α ∈ B}. Notice that support(−→α ) = t−1(support(α)),

hence −→α is not necessarily compactly supported. The module
−→
B is involutive as

well as locally finitely generated, although technically it is not a Stefan-Sussmann
singular foliation in the sense of definition 1.4 as it does not satisfy the compact

support condition. Nevertheless, every −→α ∈
−→
B has a time-1 flow:

Lemma 2.2. For every section α ∈ B the vector field −→α ∈
−→
B is complete.

Proof. Identifying the anchor map ρ : A→ TM with dt|M : ker(ds) |M→ TM , we
get that −→α is t-related with the vector field ρ(α), which has the same support as
α, whence it is complete. It follows from [9, Thm. 3.6.4] that −→α is complete as
well. �

Of course (
−→
B )c, the module of compactly supported vector fields in

−→
B , is a

Stefan-Sussmann singular foliation, but it is more convenient to work with
−→
B .

Similarly to the above, we introduce the notation
←
B for the C∞(G)-submodule of

Γ(G, ker(dt)) generated by the left-invariant vector fields
←
α for all α ∈ B.

3. Bisubmersions and the holonomy groupoid

The integration of singular subalgebroids is dealt with in [4, 3], by modifying the
procedure introduced in [2] to integrate Stefan-Sussmann singular foliations. In [2]
it is shown that the object of integration for a Stefan-Sussmann singular foliation
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(M,F) is a (highly pathological) topological groupoid H(F)−→−→M called the holo-
nomy groupoid3 of the foliation. The building blocks for the construction of H(F)
are bisubmersions. The latter are smooth manifolds endowed with certain smooth
maps that “desingularize” the Stefan-Sussmann singular foliation. In this section
we explain how the notion of bisubmersion is formulated in the context of singular
subalgebroids. We do so to emphasize that, even though singular subalgebroids are
defined in terms of modules of sections, they are encoded by differential-geometric
objects.

Let us start by recalling the following:

(1) Let ϕ : U → V be a smooth map between manifolds and X ∈ X(U) and
Y ∈ X(V ). We say that X is ϕ-related to Y iff ϕ∗(X(p)) = Y (ϕ(p)) for
all p ∈ U .

(2) Let F be a C∞(V )-submodule of X(V ). Define the pullback

ϕ−1(F) := {X ∈ Xc(U) : dϕ(X) =

n∑
i=1

fi(Yi ◦ ϕ) for fi ∈ C∞c (U), Yi ∈ F}.

Here dϕ : TU → ϕ∗(TV ) is a vector bundle map covering IdU , where
ϕ∗(TV ) denotes the pullback vector bundle. ϕ−1(F) is a C∞(U)-submodule
of Xc(U).

Remark 3.1. The pullbacks of F and of the module Fc of compactly supported
elements of F are the same.

Definition 3.2. Let B be a singular subalgebroid of A. A bisubmersion for B is
a smooth map ϕ : U → G, where U is a manifold, such that

(1) sU := s ◦ ϕ and tU := t ◦ ϕ : U →M are submersions,
(2) for every α ∈ B, there is Z ∈ X(U) which is ϕ-related to −→α and W ∈ X(U)

which is ϕ-related to ←−α ,

(3) ϕ−1(
−→
B ) = Γc(U, ker dsU ) and ϕ−1(

←−
B ) = Γc(U, ker dtU ).

We denote a bisubmersion of B by (U,ϕ,G).

Now let us give an overview of some examples of bisubmersions, which are elab-
orated further in [4].

Example 2. i) Let (M,F) be a Stefan-Sussmann singular foliation. Recall from
[2] that a bisubmersion of (M,F) is a triple (U, tU , sU ) consisting of a manifold
U with two submersions tU and sU to M , such that

(2) t−1U (F) = s−1U (F) = Γc(U, ker dtU ) + Γc(U, ker dsU ).

Such a triple is equivalent to a bisubmersion in the sense of definition 3.2 once
we choose the pair groupoid M ×M as an integration of TM ; then put ϕ the
map (tU , sU ) : U →M ×M

ii) The class of path-holonomy4 bisubmersions can be constructed explicitly for any
singular subalgebroid B of A. Let x ∈ M and put Ix ⊂ C∞(M) the functions
which vanish at x. Let α1, . . . ,αn ∈ B such that [α1], . . . , [αn] span B/IxB.
The associated path-holonomy bisubmersion is the map

ϕ : U → G, (λ, y) 7→ expy
∑

λi
→
αi,

3For regular foliations H(F) coincides with the usual holonomy groupoid. The same happens

in the case of almost regular foliations studied by Debord in [6].
4We call a bisubmersion as above minimal if [α1], . . . , [αn] are a basis of B/IxB.
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where U is a neighborhood of (0, x) in Rn ×M . Recall that the time-1 flow of
→
αi is defined due to Lemma 2.2.

The explicit construction of the holonomy groupoid H(B)−→−→M is given in [4].
We will not be concerned with this groupoid in this note, nevertheless let us briefly
overview that H(B) is a quotient of the collection (atlas) of minimal path-holonomy
bisubmersions arising by applying the above construction at every x ∈ M . The
groupoid structure is the one arising by the following operations on bisubmersions:

• The inverse of (U, φ,G) is i ◦ φ : U → G, where i : G → G is the groupoid
inversion;
• The product of (Uj , φj ,G), for j = 1, 2 is (U1×s,tU2,m◦(φ1×φ2),G) where
m : G ×s,t G → G is the groupoid multiplication.

4. Global hulls

We defined singular subalgebroids in definition 2.1 using compactly supported
sections. A singular subalgebroid immediately gives rise to a presheaf, and the
sheafification procedure associates to it canonically a sheaf. In the remainder of
this note we describe explicitly this sheaf. As an intermediate step, of independent
geometric interest, we show that one might work by replacing the compact support
condition with a “partition of unity” condition (see definition 4.3), and that doing
so leads to an equivalent theory. We carry this out for submodules of any vector
bundle, not necessarily a Lie algebroid.

Let us make a fresh start and fix a vector bundle A over M . Associated to
any submodule of Γc(A) there is a canonical natural submodule of Γ(A), which
contains non-compactly supported sections too when M is not compact. It was
already defined in5 [2, §1.1]:

Definition 4.1. For any submodule E of Γc(A), the global hull of E is the following
C∞(M)-submodule of Γ(A):

Ê := {α ∈ Γ(A) : fα ∈ E for all f ∈ C∞c (M)}.

Clearly E ⊂ Ê . In proposition 5.1 we will see that E consists exactly of the

compactly supported sections of Ê .

Remark 4.2. Def. 4.1 extends mutatis mutandis to the case when E is a submodule
of Γ(A) rather than of Γc(A). We will use this in §6.

Example 3. i) If E = Γc(A) then obviously Ê = Γ(A).
ii) More generally, if F : D → A is vector bundle map covering the identity on M

and E = F (Γc(D)), then we have Ê = F (Γ(D)). The inclusion “ ⊃ ” is clear.
For the other inclusion, choose a partition of unity {ϕi}i∈I on M by compactly

supported functions. Given a ∈ Ê, we have a =
∑
i∈I ϕia and each summand,

lying in E, is of the form F (di) for some di ∈ Γc(B). So a = F (
∑
i∈I di).

iii) Let α1, . . . ,αn ∈ Γ(A). Consider the submodule E of Γc(A) consisting of the
finite C∞c (M)-linear combinations of the αk’s. Then

Ê =

{
n∑
k=1

fkαk : fk ∈ C∞(M)

}
,

5There it was called “submodule of global sections”.
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i.e. Ê consists of the finite C∞(M)-linear combinations of the αk’s. The
inclusion “ ⊃ ” holds by definition 4.1. To show the other inclusion choose
a partition of unity {ϕi}i∈I by functions with compact support. Then for any

α ∈ Ê we have α =
∑
i∈I ϕiα, and every summand ϕiα lies in E, so it can

be written as
∑
k f

i
kαk where f ik ∈ C∞c (M). Further, we may arrange that

supp(f ik) ⊂ supp(ϕi), hence Fk :=
∑
i∈I f

i
k is well-defined for every k since

{supp(ϕi)}i∈I is locally finite. Therefore α =
∑
k Fkαk with Fk ∈ C∞(M).

Global hulls satisfy a property, which we now introduce. Recall [13, §13.2] that
a partition of unity on a manifold M is a family of functions ϕi : M → R≥0 such
that

(1) {supp(ϕi)}i∈I is locally finite, i.e. , any point of M has a neighborhood
that meets finitely many of the supp(ϕi),

(2)
∑
i∈I ϕi = 1.

Definition 4.3. We say that a submodule M of Γ(A) satisfies the partition of
unity property iff the following is satisfied: for any partition of unity {ϕi}i∈I ,

for any family {ai}i∈I of elements of M, the sum
∑
i∈I ϕiai lies in M. (?)

Remark 4.4. GivenM, the existence of a partition of unity {ϕi}i∈I by functions
with compact support satisfying (?) implies that M satisfies the partition of unity
property.

Indeed, given any partition of unity {φj}j∈J and any family {aj}j∈J of elements
of M, we have

(3)
∑
j∈J

φjaj =
∑
i∈I

(ϕi
∑
j∈J

φjaj).

For each i, the sum
∑
j∈J φjaj can be replaced by the sum over the finite subset of

indices j such that supp(φj) intersects the compact set supp(ϕi). The sum, being
finite, lies in M, hence {ϕi}i∈I satisfying (?) implies that (3) lies in M.

Here we used the fact that, for any compact K ⊂ M , the subset of indices j
such that supp(φj) ∩ K 6= ∅ is finite. To prove this, cover K by finitely many
open sets, each of which meets finitely many of the supp(φj). This is possible since
{supp(φj)}j∈J is locally finite.

Example 4. An example of submoduleM of Γ(A) which does not satisfy the parti-
tion of unity property is the following. Let X ∈ Γ(A) be a section with non-compact
support and M = C∞c (M)X. Let {ϕi}i∈I be a partition of unity by functions with
compact support. In particular, ϕiX ∈M for every i. Then

∑
i∈I ϕi(ϕiX) ∈ Γ(A)

has non-compact support (since the function
∑
i∈I ϕ

2
i is no-where vanishing), hence

it does not belong to M.
To obtain an example where the submodule does not consist of compactly sup-

ported sections, we can take a variation of the above: on M = R, take the C∞(M)-
submodule of X(M) generated by C∞c (M) ∂

∂x and C∞(M)x ∂
∂x .

Proposition 1. For any submodule E of Γc(A), the global hull Ê satisfies the
partition of unity property.

We will show in remark 5.2 that Ê is the smallest submodule containing E among
those satisfying the partition of unity property.
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Proof. Take a partition of unity {ϕi}i∈I , and a family {ai}i∈I of elements of Ê .
For any f ∈ C∞c (M), only finitely many i ∈ I satisfy supp(f) ∩ supp(ϕi) 6= ∅ (see
the last paragraph of remark 4.4). Hence the sum f(

∑
i∈I ϕiai) =

∑
i∈I fϕiai is a

finite sum. Each summand fϕiai lies in E since fϕi ∈ C∞c (M), so the whole sum

lies in E . Therefore
∑
i∈I ϕiai ∈ Ê . �

We end this section introducing an operation which, contrary to the global hull
(definition 4.1), takes arbitrary submodules to compactly supported submodules.

Definition 4.5. Given any submoduleM of Γ(A), the submodule of compactly
supported sections is

Mc := {fa : f ∈ C∞c (M), a ∈M} ⊂ Γc(A).

Remark 4.6. Notice that

Mc = {compactly supported sections of M}.

Indeed, the inclusion “⊂” is obvious, and if a is a compactly supported section of
M, choosing χ ∈ C∞c (M) with χ|supp(a) = 1, we have a = χa ∈ Mc. This justifies
the name given in Def. 4.5 and shows that Mc is a submodule of Γc(A).

5. The bijection between submodules of compactly supported
sections and their global hulls

In this section we show that passing from a submodule of compactly supported

sections E to its global hull Ê we do not lose any information. Hence one can
choose freely with which submodule to work. This applies in particular to singular
subalgebroids of a Lie algebroid.

Theorem 5.1. Let A be a vector bundle. Let SUBMODc be the collection of sub-
modules of Γc(A) and SUBMODpu the collection of submodules of Γ(A) satisfying
the partition of unity property (definition 4.3).

(1) The map SUBMODc → SUBMODpu, E 7→ Ê is a bijection. The inverse
map is M 7→Mc.

(2) E is locally finitely generated iff Ê is.

(3) When A is a Lie algebroud: E is involutive iff Ê is.

Proof. (1) Let E be a submodule of Γc(A). Then (Ê)c = E : the inclusion “⊂” is

clear by the definition of Ê (definition 4.1), the opposite inclusion holds by

Remark 4.6, since E is contained in Ê and E consists of compactly supported
sections.

LetM be a submodule of Γ(A) satisfying the partition of unity property.

Then (̂Mc) = M. The inclusion “⊃” is clear by the definition of Mc

(definition 4.5). For the other inclusion, take a partition of unity {ϕi}i∈I
on M by functions with compact support, and for every i ∈ I take χi ∈
C∞c (M) with χi|supp(ϕi) = 1, i.e. so that ϕi = χiϕi. Take an element of

(̂Mc), i.e. a ∈ Γ(A) such that fa ∈ Mc for all f ∈ C∞c (M). Then a =
(
∑
i∈I ϕi)a =

∑
i∈I ϕi(χia). Since χia ∈ Mc ⊂ M, and since M satisfies

the partition of unity property, the whole sum lies in M, i.e. a ∈M.
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(2) “⇒”: Let a ∈ Ê . Since E is locally finitely generated (see Remark 1.5),
for any x ∈ M there are a neighborhood U of x in M and finitely many

aj ∈ î∗E such that, for any g ∈ C∞c (U), the element ga ∈ i∗E can be
written as

∑
j gjaj where gj ∈ C∞c (U). Choose g so that it equals one in a

neighborhood V ⊂ U of x. Then a|V =
∑
j gj |V aj |V . Since aj ∈ î∗E and

V is relatively compact, aj |V is the restriction to an element of E , and this

shows that Ê is locally finitely generated.

“⇐”: Let a ∈ E and x ∈ M . Since in particular a ∈ Ê , there are a

neighborhood U of x and finitely many aj ∈ Ê such that a|U =
∑
j fjaj |U

with fj ∈ C∞(U). For any g ∈ C∞c (U) we have ga|U =
∑
j(gfj)aj |U .

Notice that gfj ∈ C∞c (U) and aj |U ∈ î∗E , showing that E is locally finitely
generated.

(3) “⇒”: let a, b ∈ Ê . We want to show that for all f ∈ C∞c (M) one has
f [a, b] ∈ E . Let χ ∈ C∞c (M) with χ|supp(f) = 1, so that fχ = f . We know
by assumption that the bracket [fa, χb] lies in E , and applying the Leibniz
rule we can write it as f [a, b] plus C∞c (M)-multiples of a and b. Hence
f [a, b] ∈ E .

“⇐”: follows since, by Remark 4.6, E consists exactly of the compactly

supported sections of Ê .
�

Remark 5.2. Let E be any C∞(M)-submodule of Γc(A). We can now show that

Ê is the smallest submodule containing E among those satisfying the partition of
unity property. Indeed, let M be a submodule of Γ(A) satisfying the partition of
unity property with E ⊂ M. Then E ⊂ M∩ Γc(A) =Mc. Taking global hulls on

both sides we obtain Ê ⊂ M̂c =M, where the last equality holds by Thm. 5.1 (1).

6. Associated sheaves

In this section we will associate canonically a sheaf to any submodule of Γc(A),
hence in particular to any singular subalgebroid and Stefan-Sussmann singular foli-
ation. The explicit description of the sheaf makes use of the global hull introduced
in §4.

Recall (see for example [8, Appendix B]) that a presheaf P of C∞-modules
on M consists of a C∞(U)-module P(U) for every open U ⊂ M , and of a module
homomorphism rU,V : P(V )→ P(U) (called restriction) for any pair of open subsets
U ⊂ V of M , such that rU,U = IdP(U) and rU,W = rU,V ◦ rV,W whenever U ⊂ V ⊂
W .
P is a sheaf if additionally it satisfies, for any collection of open subsets {Ui}i∈I

of M (denoting U := ∪i∈IUi):
(1) existence of gluing: given fi ∈ P(Ui) for all i ∈ I such that rUi∩Uj ,Ui

(fi) =
rUi∩Uj ,Uj (fj) for all i, j ∈ I, there exists f ∈ P(U) such that rUi,U (f) = fi
for all i,

(2) uniqueness of gluing: if f, g ∈ P(U) satisfy rUi,U (f) = rUi,U (g) for all i,
then f = g.

Let A be a vector bundle over M . As earlier, let E be a C∞(M)-submodule of
Γc(A). It gives rise to a presheaf of C∞-modules on M , which we also denote by E ,
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which by definition associates to any open U ⊂M the following6 C∞(U)-module:

(4) E(U) := C∞(U){a|U : a ∈ E}.
Clearly E is not a sheaf in general, since “glueing” compactly supported sections of
A one might obtain a section with non-compact support.

Proposition 2. Let E be any C∞(M)-submodule of Γc(A). Then the presheaf S
defined by

S(U) := Ê(U)

is a sheaf.

Remark 6.1. Recall that Ê(U) is defined in Def. 4.1 and Remark 4.2. Explicitly,

Ê(U) = {α ∈ Γ(A|U ) : fα ∈ E for all f ∈ C∞c (U)},
where fα is viewed as an element of Γc(A) which vanishes on M \ U .

Proof. S is clearly a presheaf: given open subsets U ⊂ V , the restriction of sections

of A gives a well-defined map rU,V : Ê(V )→ Ê(U). We have to show that S satisfies
the existence and uniqueness property for glueing required in the definition of sheaf.
The uniqueness property is satisfied as Γ(A) defines a sheaf (via U 7→ Γ(A|U )).

For the existence property, let U = ∪i∈IUi be an arbitrary union of open subsets

of M , and for every i ∈ I take ai ∈ Ê(Ui) so that they agree on double overlaps
Ui ∩ Uj . Since Γ(A) defines a sheaf, there is a unique a ∈ Γ(A|U ) such that

a|Ui
= ai|Ui

for all i ∈ I. We have to show that a ∈ Ê(U), i.e. , for any f ∈ C∞c (U)
we have to show that fa ∈ E(U).

As supp(f) is compact, we can select a finite subset K ⊂ I such that supp(f) ⊂
∪i∈KUi. There exists a partition of unity {ϕi}i∈K on ∪i∈KUi such that supp(ϕi) ⊂
Ui for all i ∈ K [13, Thm. 13.7]. Since f = f

∑
i∈K ϕi, we have

fa =
∑
i∈K

fϕia =
∑
i∈K

fϕiai,

using in the second equality that ϕia = ϕiai since supp(ϕi) ⊂ Ui and a|Ui
= ai|Ui

.
Now the support of fϕi is compact (since the same holds for the support of f) and

contained in Ui, so fϕi ∈ C∞c (Ui). Together with ai ∈ Ê(Ui), this implies that
fϕiai lies in E(Ui), and its trivial extension to a section on U lies in E(U). Hence
fa, which is given by the finite sum above, lies in E(U). �

Example 6.2. Let E = Γc(A). For every open subset U we have Ê(U) = Γ(A|U ).

Recall [8, Def. B.0.25][10, III 1] that given a presheaf P, there is a smallest sheaf
containing P, namely the sheafification of P, denoted P+. To every open subset U
it associates

P+(U) :={s : U → ∪x∈UPx with s(x) ∈ Px such that

∀x ∈ U ∃ open V ⊂ U, ∃t ∈ P(V ) with s(y) = ty for all y ∈ V }.
Here Px denotes the stalk of P at x, consisting of the germs of elements of P(W )
as W varies among the open neighbourhoods of x in M . Further, ty ∈ Py denotes
the germ at y of t ∈ P(V ).

6Notice that if instead to U we associated {f · a|U : f ∈ C∞
c (U), a ∈ E}, we would not obtain

a presheaf, since the restricton maps rU,V would not be well-defined.
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Theorem 6.3. Let E the presheaf defined in eq. (4). Its sheafification E+ is the
sheaf S defined in proposition 2.

Proof. It suffices to prove that S ⊂ E+, because E+ is the smallest sheaf containing

E and the sheaf S contains E . Fix an open subset U of M . Any b ∈ S(U) = Ê(U)
gives rise to an element of E+(U), namely s : U → ∪x∈UEx where s(x) = bx, the
germ of b at x. The element s is well-defined: s(x) ∈ Ex, since it agrees with
the germ of an element of E , namely the multiplication of b with any compactly
supported function which is 1 in a neighbourhood of x. The element s really belongs
to E+(U): given x ∈ U , one can choose V to be an open set with compact closure

and take t ∈ E(V ) to be b|V . This provides an embedding of Ê(U) in E+(U),
finishing the proof. �
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[1] M. M. Alexandrino, R. Briquet, and D. Töben. Progress in the theory of singular Riemannian

foliations. Differential Geom. Appl., 31(2):248–267, 2013.

[2] I. Androulidakis and G. Skandalis. The holonomy groupoid of a singular foliation. J. Reine
Angew. Math., 626:1–37, 2009.

[3] I. Androulidakis and M. Zambon. Integration of singular subalgebroids. In preparation.

[4] I. Androulidakis and M. Zambon. Singular subalgebroids and their holonomy groupoids. In
preparation.

[5] I. Androulidakis and M. Zambon. Smoothness of holonomy covers for singular foliations and

essential isotropy. Math. Z., 275(3-4):921–951, 2013.
[6] C. Debord. Holonomy groupoids of singular foliations. J. Diff. Geom., 58(3):467–500, 2001.

[7] J.-P. Dufour and N. T. Zung. Poisson structures and their normal forms, volume 242 of

Progress in Mathematics. Birkhäuser Verlag, Basel, 2005.
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