
STEFANN: Scene Text Editor using Font Adaptive Neural Network

Prasun Roy1∗, Saumik Bhattacharya2∗, Subhankar Ghosh1∗, and Umapada Pal1

1Indian Statistical Institute, Kolkata, India
2Indian Institute of Technology, Kharagpur, India

https://prasunroy.github.io/stefann

Abstract

Textual information in a captured scene plays an im-

portant role in scene interpretation and decision making.

Though there exist methods that can successfully detect and

interpret complex text regions present in a scene, to the best

of our knowledge, there is no significant prior work that

aims to modify the textual information in an image. The

ability to edit text directly on images has several advan-

tages including error correction, text restoration and image

reusability. In this paper, we propose a method to modify

text in an image at character-level. We approach the prob-

lem in two stages. At first, the unobserved character (tar-

get) is generated from an observed character (source) be-

ing modified. We propose two different neural network ar-

chitectures – (a) FANnet to achieve structural consistency

with source font and (b) Colornet to preserve source color.

Next, we replace the source character with the generated

character maintaining both geometric and visual consis-

tency with neighboring characters. Our method works as

a unified platform for modifying text in images. We present

the effectiveness of our method on COCO-Text and ICDAR

datasets both qualitatively and quantitatively.

1. Introduction

Text is widely present in different design and scene im-

ages. It contains important contextual information for the

readers. However, if any alteration is required in the text

present in an image, it becomes extremely difficult for sev-

eral reasons. For instance, a limited number of observed

characters makes it difficult to generate unobserved charac-

ters with sufficient visual consistency. Also, different natu-

ral conditions, like brightness, contrast, shadow, perspective

distortion, complex background, etc., make it harder to re-

place a character directly in an image. The main motivation

of this work is to design an algorithm for editing textual in-

formation present in images in a convenient way similar to

∗These authors contributed equally to this work.

(a) (b)
Figure 1. Examples of text editing using STEFANN: (a) Original

images from ICDAR dataset; (b) Edited images. It can be ob-

served that STEFANN can edit multiple characters in a word (top

row) as well as an entire word (bottom row) in a text region.

the conventional text editors.

Earlier, researchers have proposed font synthesis al-

gorithms based on different geometrical features of fonts

[6, 24, 27]. These geometrical models neither generalize the

wide variety of available fonts nor can be applied directly

to an image for character synthesis. Later, researchers have

addressed the problem of generating unobserved characters

of a particular font from some defined or random set of ob-

servations using deep learning algorithms [4, 7, 31]. With

the emergence of Generative Adversarial Network (GAN)

models, the problem of character synthesis has also been

addressed using GAN-based algorithms [2, 19]. Though

GAN-based font synthesis could be used to estimate the tar-

get character, several challenges make the direct implemen-

tation of font synthesis for scene images difficult. Firstly,

most of the GAN-based font synthesis models require an

explicit recognition of the source character. As recognition

of text in scene images is itself a challenging problem, it is

preferable if the target characters can be generated without

13228



a recognition step. Otherwise, any error in the recognition

process would accumulate, and make the entire text editing

process unstable. Secondly, it is often observed that a par-

ticular word in an image may have a mixture of different

font types, sizes, colors, etc. Even depending on the rela-

tive location of the camera and the texts in the scene, each

character may experience a different amount of perspec-

tive distortion. Some GAN-based models [2, 19] require

multiple observations of a font-type to faithfully generate

unobserved characters. A multiple observation-based gen-

eration strategy requires a rigorous distortion removal step

before applying generative algorithms. Thus, rather than a

word-level generation, we follow a character-level genera-

tive model to accommodate maximum flexibility.

Contributions: To the best of our knowledge, this is the

first work that attempts to modify texts in scene images. For

this purpose, we design a generative network that adapts to

the font features of a single character and generates other

necessary characters. We also propose a model to transfer

the color of the source character to the target character. The

entire process works without any explicit character recogni-

tion.

To restrict the complexity of our problem, we limit

our discussion to the scene texts with upper-case non-

overlapping characters. However, we demonstrate in Figs.

5 and 13 that the proposed method can also be applied for

lower-case characters and numerals.

2. Related Works

Because of its large potential, character synthesis from

a few examples is a well-known problem. Previously, sev-

eral pieces of work tried to address the problem using geo-

metrical modeling of fonts [6, 24, 27]. Different synthesis

models are also proposed by researchers explicitly for Chi-

nese font generation [19, 37]. Along with statistical mod-

els [24] and bilinear factorization [30], machine learning

algorithms are used to transfer font features. Recently, deep

learning techniques also become popular in the font syn-

thesis problem. Supervised [31] and definite samples [4]

of observations are used to generate the unknown samples

using deep neural architecture. Recently, Generative Ad-

versarial Network (GAN) models are found to be effective

in different image synthesis problems. GANs can be used

in image style transfer [10], structure generation [13] or in

both [2]. Some of these algorithms achieved promising re-

sults in generating font structures [7, 19], whereas some ex-

hibits the potential to generate complex fonts with color [2].

To the best of our knowledge, these generative algorithms

work with text images that are produced using design soft-

ware, and their applicability to edit real scene images are

unknown. Moreover, most of the algorithms [2, 4] require

explicit recognition of the source characters to generate the

unseen character set. This may create difficulty in our prob-

lem as text recognition in scene images is itself a challeng-

ing problem [3, 11, 21] and any error in the recognition step

may affect the entire generative process. Character gen-

eration from multiple observations is also challenging for

scene images as the observed characters may have distinc-

tively different characteristics like font types, sizes, colors,

perspective distortions, etc.

Convolutional Neural Network (CNN) is proved to be ef-

fective in style transfer with generative models [10, 17, 18].

Recently, CNN models are used to generate style and struc-

ture with different visual features [9]. We propose a CNN-

based character generation network that works without any

explicit recognition of the source characters. For a natural-

looking generation, it is also important to transfer the color

and texture of the source character to the generated charac-

ter. Color transfer is a widely explored topic in image pro-

cessing [25, 28, 35]. Though these traditional approaches

are good for transferring global colors in images, most of

them are inappropriate for transferring colors in more local-

ized character regions. Recently, GANs are also employed

in color transfer problem [2, 16]. In this work, we introduce

a CNN-based color transfer model that takes the color in-

formation present in the source character and transfer it to

the generated target character. The proposed color transfer

model not only transfers solid colors from source to target

character, it can also transfer gradient colors keeping subtle

visual consistency.

3. Methodology

The proposed method is composed of the following

steps: (1) Selection of the source character to be replaced,

(2) Generation of the binary target character, (3) Color

transfer and (4) Character placement. In the first step, we

manually select the text area that requires to be modified.

Then, the algorithm detects the bounding boxes of each

character in the selected text region. Next, we manually

select the bounding box around the character to be modified

and also specify the target character. Based on these user in-

puts, the target character is generated, colorized and placed

in the inpainted region of the source character.

3.1. Selection of the source character

Let us assume that I is an image that has multiple text

regions, and Ω is the domain of a text region that requires

modification. The region Ω can be selected using any text

detection algorithm [5, 20, 36]. Alternatively, a user can se-

lect the corner points of a polygon that bounds a word to de-

fine Ω. In this work, we use EAST [38] to tentatively mark

the text regions, followed by a manual quadrilateral corner

selection to define Ω. After selecting the text region, we

apply the MSER algorithm [8] to detect the binary masks

of individual characters present in the region Ω. However,

MSER alone cannot generate a sharp mask for most of the

13229



Figure 2. Architecture of FANnet and Colornet. At first, the target character (‘N’) is generated from the source character (‘H’) by FANnet

keeping structural consistency. Then, the source color is transferred to the target by Colornet preserving visual consistency. Layer names

in the figure are: conv = 2D convolution, FC = fully-connected, up-conv = upsampling + convolution.

Figure 3. Generation of target characters using FANnet. In each

image block, the upper row shows the ground truth and the bot-

tom row shows the generated characters when the network has ob-

served one particular source character (‘A’) in each case.

characters. Thus, we calculate the final binarized image Ic
defined as

Ic(p) =

{

IM (p)
⊙

IB(p) if p ∈ Ω

0 otherwise

where IM is the binarized output of the MSER algorithm [8]

when applied on I , IB is the binarized image of I and
⊙

denotes the element-wise product of matrices. The image

Ic contains the binarized characters in the selected region

Ω. If the color of the source character is darker than its

background, we apply inverse binarization on I to get IB .

Assuming the characters are non-overlapping, we apply

a connected component analysis and compute the minimum

bounding rectangles of each connected component. If there

are N number of connected components present in a scene,

Cn ⊆ Ω denotes the nth connected area where 0 < n ≤ N .

The bounding boxes Bn contain the same indices as the

(a)

(b)

(c)

(d)

Figure 4. Color transfer using Colornet: (a) Binary target charac-

ter; (b) Color source character; (c) Ground truth; (d) Color trans-

ferred image. It can be observed that Colornet can successfully

transfer solid color as well as gradient color.

connected areas that they are bounding. The user specifies

the indices that they wish to edit. We define Θ as the set of

indices that require modification, such that |Θ| ≤ N , where

|.| denotes the cardinality of a set. The binarized images ICθ

associated with components Cθ, θ ∈ Θ are the source char-

acters, and with proper padding followed by scaling (dis-

cussed in Sec. 3.2), they individually act as the input of the

font generation network. Each ICθ
has the same dimension

with the bounding box Bθ.

3.2. Generation of the binary target character

Conventionally, most of the neural networks take square

images as input. However, as ICθ
may have different aspect

ratios depending on the source character, font type, font size

etc., a direct resizing of ICθ
would distort the actual font

features of the character. Rather, we pad ICθ
maintaining

its aspect ratio to generate a square binary image Iθ of size

mθ ×mθ such that, mθ = max(hθ, wθ), where hθ and wθ

are the height and width of bounding box Bθ respectively,

and max(.) is a mathematical operation that finds the max-

imum value. We pad both sides of ICθ
along x and y axes

with px and py respectively to generate Iθ such that

px =

[

mθ − wθ

2

]

, py =

[

mθ − hθ

2

]

followed by reshaping Iθ to a square dimension of 64× 64.

13230



3.2.1 Font Adaptive Neural Network (FANnet)

Our generative font adaptive neural network (FANnet) takes

two different inputs – an image of the source character of

size 64 × 64 and a one-hot encoding v of length 26 of the

target character. For example, if our target character is ‘H’,

then v has the value 1 at index 7 and 0 in every other lo-

cation. The input image passes through three convolution

layers having 16, 16 and 1 filters respectively, followed by

flattening and a fully-connected (FC) layer FC1. The en-

coded vector v also passes through an FC layer FC2. The

outputs of FC1 and FC2 give 512 dimensional latent repre-

sentations of respective inputs. Outputs of FC1 and FC2 are

concatenated and followed by two more FC layers, FC3 and

FC4 having 1024 neurons each. The expanding part of the

network contains reshaping to a dimension 8 × 8 × 16 fol-

lowed by three ‘up-conv’ layers having 16, 16 and 1 filters

respectively. Each ‘up-conv’ layer contains an upsampling

followed by a 2D convolution. All the convolution layers

have kernel size 3 × 3 and ReLU activation. The architec-

ture of FANnet is shown in Fig. 2. The network minimizes

the mean absolute error (MAE) while training with Adam

optimizer [14] with learning rate lr = 10−3, momentum

parameters β1 = 0.9, β2 = 0.999 and regularization pa-

rameter ǫ = 10−7.

We train FANnet with 1000 fonts with all 26 upper-case

character images as inputs and 26 different one-hot encoded

vectors for each input. It implies that for 1000 fonts, we

train the model to generate any of the 26 upper-case target

character images from any of the 26 upper-case source char-

acter images. Thus, our training dataset has a total of 0.6760

million input pairs. The validation set contains 0.2028 mil-

lion input pairs generated from another 300 fonts. We select

all the fonts from Google Fonts database [12]. We apply the

Otsu thresholding technique [22] on the grayscale output

image of FANnet to get a binary target image.

3.3. Color transfer

It is important to have a faithful transfer of color from

the source character for a visually consistent generation

of the target character. We propose a CNN based archi-

tecture, named Colornet, that takes two images as input –

colored source character image and binary target character

image. It generates the target character image with trans-

ferred color from the source character image. Each input

image goes through a 2D convolution layer, Conv1 col and

Conv2 col for input1 and input2 respectively. The outputs

of Conv1 col and Conv2 col are batch-normalized and con-

catenated, which is followed by three blocks of convolution

layers with two max-pooling layers in between. The ex-

panding part of Colornet contains two ‘up-conv’ layers fol-

lowed by a 2D convolution. All the convolution layers have

kernel size 3× 3 and Leaky-ReLU activation with α = 0.2.

The architecture of Colornet is shown in Fig. 2. The net-

work minimizes the mean absolute error (MAE) while train-

ing with Adam optimizer that has the same parameter set-

tings as mentioned in Sec. 3.2.1.

We train Colornet with synthetically generated image

pairs. For each image pair, the color source image and the

binary target image both are generated using the same font

type randomly selected from 1300 fonts. The source color

images contain both solid and gradient colors so that the

network can learn to transfer a wide range of color varia-

tions. We perform a bitwise-AND between the output of

Colornet and the binary target image to get the final col-

orized target character image.

3.4. Character placement

Even after the generation of target characters, the place-

ment requires several careful operations. First, we need to

remove the source character from I so that the generated tar-

get character can be placed. We use image inpainting [29]

using W (ICθ
, ψ) as a mask to remove the source character,

where W (Ib, ψ) is the dilation operation on any binary im-

age Ib using the structural element ψ. In our experiments,

we consider ψ = 3× 3. To begin the target character place-

ment, first the output of Colornet is resized to the dimension

of Iθ. We consider that the resized color target character is

Rθ with minimum rectangular bounding box BR
θ . If BR

θ is

smaller or larger than Bθ, then we need to remove or add

the regionBθ \B
R
θ accordingly so that we have the space to

position Rθ with proper inter-character spacing. We apply

the content-aware seam carving technique [1] to manipulate

the non-overlapping region. It is important to mention that

if BR
θ is smaller than Bθ then after seam carving, the entire

text region Ω will shrink to a region Ωs, and we also need

to inpaint the region Ω \Ωs for consistency. However, both

the regions Bθ \B
R
θ and Ω \Ωs are considerably small and

are easy to inpaint for upper-case characters. Finally, we

place the generated target character on the seam carved im-

age such that the centroid of BR
θ overlaps with the centroid

of Bθ.

4. Results

We tested1 our algorithm on COCO-Text and ICDAR

datasets. The images in the datasets are scene images with

texts written with different unknown fonts. In Fig. 5, we

show some of the images that are edited using STEFANN.

In each image pair, the left image is the original image and

the right image is the edited image. In some of the im-

ages, several characters are edited in a particular text region,

whereas in some images, several text regions are edited in

a single image. It can be observed that not only the font

features and colors are transferred successfully to the tar-

get characters, but also the inter-character spacing is main-

1Code: https://github.com/prasunroy/stefann

13231



Figure 5. Images edited using STEFANN. In each image pair, the left image is the original image and the right image is the edited image.

It can be observed that STEFANN can faithfully edit texts even in the presence of specular reflection, shadow, perspective distortion, etc.

It is also possible to edit lower-case characters and numerals in a scene image. STEFANN can easily edit multiple characters and multiple

text regions in an image. More results are included in the supplementary materials.

tained in most of the cases. Though all the images are nat-

ural scene images and contain different lighting conditions,

fonts, perspective distortions, backgrounds, etc., in all the

cases STEFANN is able to edit the images without any sig-

nificant visual inconsistency.

Evaluation and ablation study of FANnet: To evaluate

the performance of the proposed FANnet model, we take

one particular source character and generate all possible tar-

get characters. We repeat this process for every font in the

test set. The outputs for some randomly selected fonts are

shown in Fig. 3. Here, we only provide an image of charac-

ter ‘A’ as the source in each case and generate all 26 charac-

ters. To quantify the generation quality of FANnet, we se-

lect one source character at a time as input and measure the

average structural similarity index (ASSIM) [34] of all 26

generated target characters against respective ground truth

images over a set of 300 test fonts. In Fig. 6, we show the

average SSIM of the generated characters for each different

Figure 6. Average SSIM of the generated characters for each dif-

ferent source character.

source character. It can be seen from the ASSIM scores that

some characters, like ‘I’ and ‘L’, are less informative as they

13232



Table 1. Ablation study of FANnet architecture. Layer names are

similar to Fig. 2.

# Excluded layer(s) ASSIM

1 up-conv1 + up-conv2 0.5664

2 FC4 + up-conv2 0.6426

3 FC1 + FC2 + up-conv2 0.6718

4 None (Proposed FANnet) 0.7712

5 All (FCN) 0.1332

produce lower ASSIM values, whereas characters, like ‘B’

and ‘M’, are structurally more informative in the generation

process.

We perform ablation studies using ASSIM score to val-

idate the proposed FANnet architecture. The results are

shown in Table 1. As Fully Convolutional Networks (FCN)

are often used in generative models, we tried to develop

FANnet using FCN models at first. Unfortunately, none of

the developed FCN architecture for FANnet worked prop-

erly. To demonstrate it, we have included an FCN architec-

ture in Table 1 which is similar to ColorNet with two inputs

– one is the source character image and another is the tar-

get character in standard ‘Times New Roman’ font. Table 1

clearly shows the motivation of the proposed FANnet model

as it achieves the highest ASSIM score in the ablation study.

In our ablation study, when the ‘up-conv’ layer is removed,

it is replaced with an upsampling layer by a factor of 2 to

maintain the image size. During the ablation study, replace-

ment of ReLU activation with Leaky-ReLU activation gives

an ASSIM score of 0.4819. To further analyze the robust-

ness of the generative model, we build another network with

the same architecture as described in Sec. 3.2.1, and train it

with lower-case character images of the same font database.

The output of the model is shown in Fig. 7(a) when only a

lower-case character (character ‘a’) is given as the source

image and all the lower-case characters are generated. As

shown in Fig. 7(b) and Fig. 7(c), we also observe that the

model can transfer some font features even when a lower-

case character is provided as the input and we try to generate

the upper-case characters or vice versa.

Evaluation and ablation study of Colornet: The per-

formance of the proposed Colornet is shown in Fig. 4 for

both solid and gradient colors. It can be observed that in

both cases, Colornet can faithfully transfer the font color of

source characters to target characters. As shown in Fig. 4,

the model works equally well for all alphanumeric charac-

ters including lower-case and upper-case letters. To under-

stand the functionality of the layers in Colornet, we perform

an ablation study and select the best model architecture that

faithfully transfers the color. We compare the proposed Col-

ornet architecture with two other variants – Colornet-L and

Colornet-F. In Colornet-L, we remove ‘Block conv3’ and

‘up-conv1’ layers to perform layer ablation. In Colornet-F,

(a)

(b)

(c)

Figure 7. Additional generation results of target characters using

FANnet: In each image block, the upper row shows the ground

truth, and the bottom row shows the generated characters when

the network observes only one particular character: (a) lower-

case target characters generated from a lower-case source charac-

ter (‘a’); (b) upper-case target characters generated from a lower-

case source character (‘a’); (c) lower-case target characters gener-

ated from an upper-case source character (‘A’).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Color transfer results for different models: (a) Binary

target character; (b) Color source character; (c) Ground truth; (d)

Output of the proposed Colornet model; (e) Output of Colornet-

L; (f) Output of Colornet-F. It can be observed that the Colornet

architecture discussed in Sec. 3.3 transfers the color from source

to target without any significant visual distortion.

we reduce the number of convolution filters to 16 in both

‘Conv1 col’ and ‘Conv2 col’ layers to perform filter abla-

tion. The results of color transfer for all three Colornet vari-

ants are shown in Fig. 8. It can be observed that Colornet-L

produces visible color distortion in the generated images,

whereas some color information are not present in the im-

ages generated by Colornet-F.

Comparison with other methods: To the best of our

knowledge, there is no significant prior work that aims to

13233



Figure 9. Comparison between MC-GAN and the proposed FANnet architecture. The green color indicates input to both the models when

only one observation is available. Yellow colors indicate input to MC-GAN and the red box indicates input to FANnet when 3 random

observations are available. The evaluation is performed on the MC-GAN dataset.

Table 2. Comparison of synthetic character generation between

MC-GAN and FANnet.

MC-GAN

(1 observation)

MC-GAN

(3 random observations)

FANnet

(1 observation)

nRMSE ASSIM nRMSE ASSIM nRMSE ASSIM

0.4568 0.4098 0.3628 0.5485 0.4504 0.4614

edit textual information in natural scene images directly.

MC-GAN [2] is a recent font synthesis algorithm, but to

apply it on scene text a robust recognition algorithm is nec-

essary. Thus on many occasions, it is not possible to apply

and evaluate its performance on scene images. However,

the generative performance of the proposed FANnet is com-

pared with MC-GAN as shown in Fig. 9. We observe that

given a single observation of a source character, FANnet

outperforms MC-GAN, but as the number of observations

increases, MC-GAN performs better than FANnet. This is

also shown in Table 2 where we measure the quality of the

generated characters using nRMSE and ASSIM scores. The

comparison is done on the dataset [2] which is originally

used to train MC-GAN with multiple observations. But in

this case, FANnet is not re-trained on this dataset which also

shows the adaptive capability of FANnet. In another exper-

iment, we randomly select 1000 fonts for training and 300

fonts for testing from the MC-GAN dataset. When we re-

train FANnet with this new dataset, we get an ASSIM score

of 0.4836 over the test set. For MC-GAN, we get ASSIM

scores of 0.3912 (single observation) and 0.5679 (3 random

observations) over the same test set.

We also perform a comparison among MC-GAN [2],

Project Naptha [15] and STEFANN assisted text editing

schemes on scene images as shown in Fig. 10. For MC-

GAN assisted editor, we replace FANnet and Colornet with

MC-GAN cascaded with Tesseract v4 OCR engine [26].

Project Naptha provides a web browser extension that al-

lows users to manipulate texts in images. It can be observed

that the generative capability of MC-GAN is directly af-

fected by recognition accuracy of the OCR and variation of

scale and color among source characters, whereas Project

Naptha suffers from weak font adaptability and inpainting.

To understand the perceptual quality of the generated

characters, we take opinions from 115 users for 50 differ-

OCR: STeP OCR: LETTER

MC-GAN assisted MC-GAN assisted

STEFANN assisted STEFANN assisted

OCR: SIDGHPORE OCR: GENER:CO

Project Naptha assisted Project Naptha assisted

STEFANN assisted STEFANN assisted

Figure 10. Comparison among MC-GAN, Project Naptha and

STEFANN assisted text editing on scene images. Top row: Orig-

inal images. Text regions to be edited are highlighted with green

bounding boxes. OCR predictions for these text regions are shown

in respective insets. Middle row: MC-GAN or Project Naptha as-

sisted text editing. Bottom row: STEFANN assisted text editing.

Figure 11. Effectiveness of seam carving. In each column, top

row shows the original image, middle row shows the edited image

without seam carving and bottom row shows the edited image with

seam carving.

ent fancy fonts randomly taken from the MC-GAN dataset

to evaluate the generation quality of MC-GAN and FAN-

net. For a single source character, 100% of users opine that

the generation of FANnet is better than MC-GAN. For 3

random source characters, 67.5% of users suggest that the

generation of FANnet is preferable over MC-GAN.

Visual consistency during character placement: Au-

tomatic seam carving of the text region is an important step

to perform perceptually consistent modifications maintain-

ing the inter-character distance. Seam carving is particu-

larly required when the target character is ‘I’. It can be seen

from Fig. 11 that the edited images with seam carving look

13234



visually more consistent than those without seam carving.

Evaluation of overall generation quality: To evaluate

the overall quality of editing, we perform two opinion based

evaluations with 136 viewers. First, they are asked to detect

whether the displayed image is edited or not from a set of

50 unedited and 50 edited images shown at random. We get

15.6% true-positive (TP), 37.1% true-negative (TN), 12.8%

false-positive (FP) and 34.4% false-negative (FN), which

shows that the response is almost random. Next, the same

viewers are asked to mark the edited character(s) from an-

other set of 50 edited images. In this case, only 11.6% of

edited characters are correctly identified by the viewers.

5. Discussion and Conclusion

The major objective of STEFANN is to perform image

editing for error correction, text restoration, image reusabil-

ity, etc. Few such use cases are shown in Fig. 12. Apart

from these, with proper training, it can be used in font adap-

tive image-based machine translation and font synthesis. To

the best of our knowledge, this is the first attempt to de-

velop a unified platform to edit texts directly in images with

minimal manual effort. STEFANN handles scene text edit-

ing efficiently for single or multiple characters while pre-

serving visual consistency and maintaining inter-character

spacing. Its performance is affected by extreme perspec-

tive distortion, high occlusion, large rotation, etc. which

is expected as these effects are not present in the training

data. Also, it should be noted that while training FANnet,

we use Google Fonts [12] which contains a limited num-

ber of artistic fonts, and we train Colornet with only solid

and gradient colors. Thus at present, STEFANN does not

accommodate editing complex artistic fonts or unusual tex-

ture patterns. The proposed FANnet architecture can also

be used to generate lower-case target characters with simi-

lar architecture as discussed in Sec. 3.2.1. However in the

case of lower-case characters, it is difficult to predict the

size of the target character only from the size of the source

character. It is mainly because lower-case characters are

placed in different ‘text zones’ [23] and the source charac-

ter may not be replaced directly if the target character falls

into a different text zone. In Fig. 13, we show some images

where we edit the lowercase characters with STEFANN. In

Fig. 14, we also show some cases where STEFANN fails to

edit the text faithfully. The major reason behind the failed

cases is an inappropriate generation of the target character.

In some cases, the generated characters are not consistent

with the same characters present in the scene [Fig. 14(a)],

whereas in some cases the font features are not transferred

properly [Fig. 14(b)]. We also demonstrate that STEFANN

currently fails to work with extreme perspective distortion,

high occlusion or large rotation [Fig. 14(c)]. In all the edit-

ing examples shown in this paper, the number of characters

in a text region is not changed. One of the main limitations

Figure 12. Application of STEFANN. Misspelled words (bounded

in Red) are corrected (bounded in Green) in scene images.

Figure 13. Some images where lower-case characters are edited

using STEFANN.

(a) (b) (c)

Figure 14. Some images where STEFANN fails to edit text with

sufficient visual consistency.

of the present methodology is that the font generative model

FANnet generates images with dimension 64 × 64. While

editing high-resolution text regions, a rigorous upsampling

is often required to match the size of the source character.

This may introduce severe distortion of the upsampled tar-

get character image due to interpolation. In the future, we

plan to integrate super-resolution [32, 33] to generate very

high-resolution character images that are necessary to edit

any design or illustration. Also, we use MSER to extract

text regions for further processing. So, if MSER fails to ex-

tract the character properly, the generation results will be

poor. However, this can be rectified using better charac-

ter segmentation algorithms. It is worth mentioning that

robust image authentication and digital forensic techniques

should be integrated with such software to minimize the risk

of probable misuses of realistic text editing in images.

Acknowledgements

We would like to thank NVIDIA Corporation for provid-

ing a TITAN X GPU through the GPU Grant Program.

13235



References

[1] Shai Avidan and Ariel Shamir. Seam carving for content-

aware image resizing. In ACM SIGGRAPH, 2007. 4

[2] Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen

Wang, Eli Shechtman, and Trevor Darrell. Multi-content

GAN for few-shot font style transfer. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2018. 1, 2, 7

[3] Fan Bai, Zhanzhan Cheng, Yi Niu, Shiliang Pu, and

Shuigeng Zhou. Edit probability for scene text recognition.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[4] Shumeet Baluja. Learning typographic style: from discrimi-

nation to synthesis. Machine Vision and Applications, 2017.

1, 2

[5] Michal Busta, Lukas Neumann, and Jiri Matas. Deep

TextSpotter: An end-to-end trainable scene text localization

and recognition framework. In The IEEE International Con-

ference on Computer Vision (ICCV), 2017. 2

[6] Neill DF Campbell and Jan Kautz. Learning a manifold of

fonts. ACM Transactions on Graphics (TOG), 2014. 1, 2

[7] Jie Chang and Yujun Gu. Chinese typography transfer. arXiv

preprint arXiv:1707.04904, 2017. 1, 2

[8] Huizhong Chen, Sam S Tsai, Georg Schroth, David M Chen,

Radek Grzeszczuk, and Bernd Girod. Robust text detection

in natural images with edge-enhanced maximally stable ex-

tremal regions. In The IEEE International Conference on

Image Processing (ICIP), 2011. 2, 3

[9] Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim

Tatarchenko, and Thomas Brox. Learning to generate chairs,

tables and cars with convolutional networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI),

2016. 2

[10] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2

[11] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Learning to read by spelling: Towards unsupervised text

recognition. arXiv preprint arXiv:1809.08675, 2018. 2

[12] Google Inc. Google Fonts. https://fonts.google.

com/, 2010. 4, 8

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-Image translation with conditional adversar-

ial networks. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 2

[14] Diederik P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015. 4

[15] Kevin Kwok and Guillermo Webster. Project Naptha.

https://projectnaptha.com/, 2013. 7

[16] Chongyi Li, Jichang Guo, and Chunle Guo. Emerging from

water: Underwater image color correction based on weakly

supervised color transfer. IEEE Signal Processing Letters,

2018. 2

[17] Chuan Li and Michael Wand. Combining markov random

fields and convolutional neural networks for image synthesis.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2

[18] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing

Kang. Visual attribute transfer through deep image analogy.

In ACM SIGGRAPH, 2017. 2

[19] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng

Huang, and Wenyu Liu. Auto-encoder guided GAN for Chi-

nese calligraphy synthesis. In International Conference on

Document Analysis and Recognition (ICDAR), 2017. 1, 2

[20] Pengyuan Lyu, Cong Yao, Wenhao Wu, Shuicheng Yan, and

Xiang Bai. Multi-oriented scene text detection via corner lo-

calization and region segmentation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

2

[21] Lukas Neumann. Scene text localization and recognition in

images and videos. PhD thesis, Department of Cybernetics,

Faculty of Electrical Engineering, Czech Technical Univer-

sity, 2017. 2

[22] Nobuyuki Otsu. A threshold selection method from gray-

level histograms. IEEE Transactions on Systems, Man, and

Cybernetics (TSMC), 1979. 4

[23] U Pal and BB Chaudhuri. Automatic separation of machine-

printed and hand-written text lines. In International Confer-

ence on Document Analysis and Recognition (ICDAR), 1999.

8

[24] Huy Quoc Phan, Hongbo Fu, and Antoni B Chan. FlexyFont:

Learning transferring rules for flexible typeface synthesis. In

Computer Graphics Forum, 2015. 1, 2

[25] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter

Shirley. Color transfer between images. IEEE Computer

Graphics and Applications, 2001. 2

[26] Ray Smith. An overview of the Tesseract OCR engine. In

International Conference on Document Analysis and Recog-

nition (ICDAR), 2007. 7

[27] Rapee Suveeranont and Takeo Igarashi. Example-based au-

tomatic font generation. In International Symposium on

Smart Graphics, 2010. 1, 2

[28] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local

color transfer via probabilistic segmentation by expectation-

maximization. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2005. 2

[29] Alexandru Telea. An image inpainting technique based on

the fast marching method. Journal of Graphics Tools, 2004.

4

[30] Joshua B Tenenbaum and William T Freeman. Separating

style and content with bilinear models. Neural Computation,

2000. 2

[31] Paul Upchurch, Noah Snavely, and Kavita Bala. From A to

Z: Supervised transfer of style and content using deep neural

network generators. arXiv preprint arXiv:1603.02003, 2016.

1, 2

[32] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.

Recovering realistic texture in image super-resolution by

deep spatial feature transform. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 8

[33] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:

13236



Enhanced super-resolution generative adversarial networks.

In The European Conference on Computer Vision Workshops

(ECCVW), 2018. 8

[34] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE Transactions on Image Process-

ing (TIP), 2004. 5

[35] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller.

Transferring color to greyscale images. In ACM SIGGRAPH,

2002. 2

[36] Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, and Hong-Wei

Hao. Robust text detection in natural scene images. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2013. 2

[37] Baoyao Zhou, Weihong Wang, and Zhanghui Chen. Easy

generation of personal Chinese handwritten fonts. In The

IEEE International Conference on Multimedia and Expo

(ICME), 2011. 2

[38] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang

Zhou, Weiran He, and Jiajun Liang. EAST: An efficient and

accurate scene text detector. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 2

13237


