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 

Abstract—The goal of steganalysis algorithms is detection of stego images from clean images. Each steganography method based on its 

embedding mechanism puts a special pattern on the stego images. Finding this pattern in the images, lead us to employ a classifier that be 

constructed specially for detecting stego images which are the results of a special steganography algorithm. In this paper, to have high 

detection accuracy, we propose an approach for Steganography Pattern Discovery (SPD). Our proposed approach employs an evolutionary 

method to extract the signature of stego images against clean images via fuzzy if-then rules. Based on the discovered knowledge, suitable 

trained models for steganalysis can be employed and stego images will be detected with high accuracy. Using SPD, we can predict the type of 

steganography method from a stego image. Employing SPD can enhance the approaches, which assume that a special steganography method is 

used. The effect of SPD before applying steganalysis methods has been investigated by some steganography and steganalysis techniques and it 

has been validated using some image databases. The results indicate that the pattern of a steganography method is extracted well and the type 

of steganography method used to make a stego image can be predicted with high accuracy. 

 

Keywords: Steganography; Evolutionary fuzzy Rules; Steganalysis; Blind Steganalysis. 

1- INTRODUCTION 

Steganography is the science of imperceptible communications. In cryptography, the attacker is able to identify, catch, and 

change the transmitted information [1], nevertheless, steganography is used when we need to hide the existence of 

communicating. Steganography methods embed secret messages within visually innocent covers. Typical medias that can cover 

secret messages are image, video, and audio files [2]. 

Invisible ink, covert channel, microdot, and spread-spectrum communication are some famous and ancient steganographic 

methods [3-4]. A famous classic steganographic model is the prisoners’ problem. In this problem, Alice and Bob are in a jail and 

they plan to escape together [5]. The communications between them are monitored by Wendy that is a warden. In this regard, 

they must hide the secret messages in another innocuous-looking means (cover object) to achieve the stego object. Afterward, 

the stego object is sent through the public channel. For more explanation about applications of steganography method, refer to 

[5, 6]. 

The fundamental requirement of steganographic systems is that the stego object should be perceptually indistinguishable to 

the degree that it does not raise suspicion. In other words, the hidden information should introduce only slight modification to 

the cover object [7].  

Various image steganography methods have been proposed in the literature. Due to the great use of JPEG images, embedding 

in Discrete Cosine Transform (DCT) domain is well known. Steganography methods like F5 [8], Model-based (MB) [9], 

Perturbed Quantization (PQ) [10], and YASS [11] embed secret messages in images by modifications of carefully chosen DCT 

coefficients. In addition, some methods have been proposed which embed messages in other transform domains, such as 

Contourlet transform [12]. The method presented in [12] embeds secret messages in Contourlet coefficients of a cover image. 

Adaptive steganography schemes like WOW [13], started with the advancement of coding schemes [14] capable of 

embedding messages while nearly optimally minimizing arbitrarily defined additive distortion functions. Since the capacity of 

steganography methods is limited based on the properties of images, and the goal of the steganography methods is to be 

undetectable, the researches in [15-18] are about increasing the embedding capacity of steganography methods to provide the 

capability of embedding larger secret messages. 

In [42], a prediction-based reversible steganographic scheme based on image inpainting is proposed. Another reversible data-

hiding scheme in encrypted image is proposed in [44]. This scheme has better decrypted image quality and higher image 

recovery accuracy. In [43], a method of steganographic embedding in digital images is proposed, in which each secret digit in a 

(2n+1)-ary notational system is carried by n cover pixels and, at most, only one pixel is increased or decreased by 1. In other 

words, the (2n+1) different ways of modification to the cover pixels correspond to (2n+1) possible values of a secret digit. 

Because the directions of' modification are fully exploited, this method provides high embedding efficiency. 

 In [45], a joint data-hiding and compression scheme is presented for digital images using side match vector quantization 

(SMVQ) and image inpainting. The two functions of data hiding and image compression can be integrated into one single 

module seamlessly. On the sender side, except for the blocks in the leftmost and topmost of the image, each of the other residual 

blocks in raster-scanning order can be embedded with secret data and compressed simultaneously by SMVQ or image inpainting 

adaptively according to the current embedding bit.  

In [46], a data-hiding scheme with reversibility based on exploiting modification direction (EMD) is proposed. One cover 

image is first chosen and prepared to generate two visually similar steganographic images. During the secret embedding, the 

pixels in the first steganographic image are modified by no more than one gray level to embed secret data using the traditional 

EMD method, while the pixels in the second steganographic image are adaptively modified through referring to the first 
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steganographic image without any confusions in image recovery process. On the receiver side, secret data can be extracted easily 

and the original cover image can also be recovered from the two steganographic images correctly.  

In [47] an approach for selecting proper cover images in steganography is presented. This approach consists of two stages. 

The first stage is an evolutionary algorithm that extracts the signature of cover images against stego images in the form of fuzzy 

if-then rules. In the second stage, the fuzzy rules are used for selecting suitable cover images for steganography. This approach 

selects the appropriate cover images from an image database and use them produce more secure steganography.  

Due to the various contents of images, the stego images produced by a steganography method may have different levels of 

undetectability against steganalyzers. In other words, a steganography method may cause less detectable statistical artifacts on 

some images compared to other images. In [48], different features of images are analyzed to find the similarity between proper 

cover images for each steganography method. Similarity between images is modeled in the form of fuzzy rules. Subsequently for 

hiding secret data in a cover image, a reliable steganography method is suggested in [48] that results an undetectable stego image 

against steganalysis methods.  

In the current paper, the idea of extracting fuzzy rules in a similar way of [47,48], is used to reveal the signature of 

steganography methods and enhance the performance of steganalysis algorithms. 

Steganalysis algorithms try to distinguish stego images from clean images. Generally, a classifier is built based on stego and 

clean image. In condition of observing a new image, we do not have any information about the used steganography method or 

the payload. Therefore, a general steganalyzer is built using a set of clean images and a set of stego images generated by various 

steganography algorithms and different payloads. 

On the other words in popular steganalysis methods, the important issue is to detect the existence of the hidden information. 

They do not consider different patterns of steganography algorithms. Therefore, the classifier should learn a complex function 

that can distinguish clean images from stego images with various steganography patterns. 

Each steganography method employs a special mechanism to embed secret data in the images. Therefore, it puts a distinct 

pattern on the stego images. Discovering this patterns in the images, lead us to hire a proper classifier that be constructed 

particularly to detect stego images which are the results of a special steganography algorithm. 

In this paper, we present an approach that consists of two stages. In the first stage, we analyze an image database to discover 

the pattern or signature of stego images. By the pattern, we mean the effective features of stego images and their relative values. 

This pattern is constructed in the form of a set of fuzzy if-then rules that represent the similarity between stego images. In the 

second stage, the steganalyzer trained to detect only one steganography method at once. After discovering patterns of the used 

steganography method from the stego image, the proper model is used to analyze it. This approach simplifies the problem of 

blind steganalysis to partially blind steganalysis. 

The process of generating the signature of stego images is done by an Evolutionary Algorithm (EA). EAs have been used as 

rule generation and optimization tools in the design of fuzzy rule-based systems [19, 20].  

To obtain accurate fuzzy rules, we employ  an evolutionary rule generation algorithm based on Iterative Rule Learning (IRL) 

approach [47,48]. The rules are generated incrementally so that the evolutionary algorithm optimizes one fuzzy rule at a time. 

The generated fuzzy rules are then used as the signature of stego images or in other word pattern of the employed steganography 

method. We applied our approach to MB, PQ, and YASS steganography techniques and validated it using an image database. 

Experimental results indicate that evaluating images based on the discovered patterns of steganography methods, increases the 

detection accuracy of steganalysis methods considerably.  

The goal of this work is extraction rules that show the pattern of steganography methods and applying steganalysis method 

based on these rules.  

The paper is organized as follows: Related works is introduced in Section II. Steganography pattern discovery is presented in 

Section III. Experiments are reported in Section IV and Section V concludes this paper. 

2- RELATED WORKS 

 Most of the existing works in steganalysis assumed that the employed steganography method is not known like [8, 11, 21, 

22,23,24]. For example, the innovation of the research [41] is proposing low complexity features for JPEG steganalysis using 

undecimated DCT. The features are engineered as first-order statistics of quantized noise residuals obtained from the 

decompressed JPEG image using 64 kernels of the discrete cosine transform (the so-called undecimated DCT). Considering the 

great advances in steganalysis of grayscale images, it is rather surprising that steganalysis that uses the more complex structure 

of color images has largely been neglected by the research community. In this regard, the research in [25] introduces features for 

steganalysis of color images. The research in [24] proposed extracting features in Contourlet transform to increase the accuracy 

of ateganalyzers. 

In this paper, firstly, the type of steganography method is predicted and then a suitable model is employed for analyzing the 

images. 

A. Image Feature Selection 

To detect the existence of a hidden message in an image various steganalysis methods consider different features of images.  
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Commonly, feature selection can be divided into two groups: filtering and wrapper methods. Filtering methods select feature 

subsets independently from the learning classifiers and do not include learning [34,35].  The flaw of filtering methods is that 

they only consider the single feature in isolation and disregard the possible interaction of features among them. However, the 

combination of these features may have a combined effect that does not necessarily follow from the separate performance of 

features in the group. However, if there is a limit on the number of features to be selected, no informative features may be 

included. The wrapper methods wrap around a certain learning algorithm that can assess the selected feature subsets in terms of 

estimated classification errors and then build the final classifiers [28]. 

In [49,51], schemes based on feature mining and pattern classification are presented to detect Least Significant Bit (LSB) 

matching steganography in grayscale images. 

In [50], several data mining approaches on steganalysis of images, audio, video, text and protocol are studied. The main aim 

of this study is to present the efficiency of using data mining techniques in steganalysis in comparison to the model based 

steganalysis approaches. 

Using large number of features is unattractive in terms of classification performance due to the curse of dimension [29]. 

Additionally, performing feature selection in steganalysis offers some advantages [30] as follows:  
 

- Pruning the meaningless features  

- Improvement of classification performance  

- Reducing the complexity for both feature generating and classifier training  

- Help to point out the features that are sensitive to a given steganographic scheme and consequently highlight its weaknesses  
 

Hence, it is necessary to reduce the feature dimension by eliminating redundant features and selecting the most relevant ones. 

In this paper to find the effective features of images and their relative values, we employ a learning approach in Section III to 

find accurate and interpretable fuzzy if-then rules. 

B. Fuzzy Rule Generation 

 Employing EAs to construct fuzzy rule-based systems are referred to as Evolutionary Fuzzy Systems (EFS), each of which 

can be classified into Michigan, Pittsburgh, and Iterative Rule Learning approaches [19]. In Michigan approach, a single fuzzy 

if–then rule is considered as an individual [31, 32]. In Pittsburgh approach, a set of fuzzy if–then rules is considered as an 

individual [33, 34]. In Iterative Rule Learning approach, each individual codes one rule and in each iteration of Genetic 

Algorithm (GA) a new rule is adapted and added to the rule set, iteratively [35, 36]. 

The most important characteristic of EFS that inspires us to use them as a rule generation tool is their notable capability to 

produce precise and interpretable knowledge [19]. In other learning systems like Artificial Neural Networks, Naïve Bayes, k-

Nearest Neighbors and Support Vector Machines (SVM), the final Knowledge Base (KB) does not introduce effective features 

from input samples. However, in EFS the expert can understand and interpret the generated KB, which is a rule base in our 

work. 

In this paper, an evolutionary rule generation algorithm, which is based on IRL approach, is presented. The generated fuzzy 

rule base is used to form the signature of stego images and finally, pattern of steganography method. We will discuss about the 

details of our approach in the following section. 

3- STEGANOGRAPHY PATTERN DISCOVERY 

In this paper, we utilize an iterative evolutionary fuzzy algorithm for Steganography Pattern Discovery (SPD). In this 

utilization, the proposed algorithm extracts a fuzzy rule base for steganalysis problem. Introducing the pattern of each 

steganography method, our proposed approach classifies clean and stego images with high accuracy and introduces the used 

steganography method based on fuzzy rules. 
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Fig. 1. The block diagram of steganography pattern discovery. 

 

Fig. 1 shows the block diagram of steganography pattern discovery. Following subsections describe the details of this 

approach. In SPD, we have Si, i=1,..,I steganography methods, the amount of embedded secret data(payload) can be Lj, j=1,..,J 

and we have Ak , k=1,..,K steganalysis method. Accordingly, the number of steganographic patterns Pijk is I×J×K and we require 

to construct I×J×K models Mijk for investigating cleanness of an image. Therefore, instead of showing a test image to all of the 

models, we can match its feature vector by all the patterns and after finding the most possible one, the corresponding model is 

employed for the final evaluation. 

 

A. Feature Vector Generation 

This section deals with the generation of feature vector from the image database. A 636-dimensional feature vector, which is 

produced by appending the features of four efficient and famous steganalyzers. Table 1 shows that the features are computed 

according to the proposed features of Pevny-Fridrich [37], Chen [38] and Lyu-Farid [39] and YASS steganalysis methods. In the 

following, the features are briefly reviewed, which are used by these steganalyzers. 

1- Pevny et al. [37] merge 193 extended DCT features with 81 averaged calibrated Markov features to provide a 274-

dimentional feature vector. In this method, Markov features model intra block DCT dependencies and DCT features (first 193 

features) model inter block relations. However, many of the 274 features may be highly correlated to each other. In this paper, 

we called this method as 274-dim steganalyzer. 

 

2- In [38], Chen proposed a steganalysis method that employs a 324-dimensional feature vector for analysis. It is based on 

statistical moments derived from both image 2-D array and JPEG 2-D array. This steganalyzer considers both the first order and 

the second order histograms. Consequently, the moments of 2-D characteristic functions are also used for steganalysis. In the 

following, this method is referred to as 324-dim steganalyzer. 

 

3- Lyu and Farid proposed Wavelet-based steganalysis method in [39]. This steganalyzer builds a model for clean images by 

using higher order statistics, and then considers deviation of stego images from the built model. Quadratic Mirror Filters (QMF) 

are used to decompose the image into wavelet domain, after which higher order statistics such as mean, variance, skewness, and 

kurtosis are calculated for each subband. The higher order statistics are computed from wavelet coefficients of each high-

frequency subband to form one set of features. Another set of features is in the same way formulated from the prediction errors 
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of wavelet coefficients of each high-frequency subband. We referred to this method 24-dim steganalyzer, in the rest of the paper. 
  

TABLE  1. Four groups of 636 image features and types of 636 image features.  

Steganalysis 

Method Feature Group  

(Number of 

Features) 

Number of  

Features  
    Feature Type 

Pevny-Fridrich [37] 

274 

11 Global Histogram 

66 5 AC Histograms 

99 11 Dual Histograms 

1 Variation 

2 Blockiness 

25 Co-occurrence Matrix 

81 Markov Features 

Chen [38] 

324 

39 Histogram of Spatial Representation and 
Discrete 

Wavelet Transform (DWT) 

Representation 

39 Histogram of Prediction Error and DWT 

of Error 

Error 

 

39 Histogram of JPEG Representation and 

its DWT 

 

78 Horizontal 2-D Histogram of JPEG 

Representation 

and its DWT 

 

2-D Histogram 

 

78 Vertical 2-D Histogram of JPEG 

Representation 

and its DWT  

 2-D Histogram 

 

78 Diagonal 2-D Histogram of JPEG 

Representation 

and its DWT 

 

39 Histogram obtained from Prediction 

Error of JPEG 

Representation 

and its DWT 

Lyu-Farid [39] 24 24 Higher order statistics of each Wavelet 

subband  YASS[11] 14 14 Frequency of Zeros 
 

 

4- In [11], a steganalysis method is proposed that employs a 14-dimensional feature vector for analysis. It is based on the 

average frequency of zeros in possible locations, average frequency of zeros in impossible locations and their differences. In the 

following, this method is referred to as 14-dim steganalyzer. 

The types of all 636 features are given in Table 1. In 324-dim steganalyzer, the first three moments of Discrete Fourier 

Transform (DFT) of all feature types are considered. We have normalized the feature values into the unit interval [0,1] in order 

to use the same membership function for them in the fuzzy rule generation. In the next subsection, this step is explained in detail. 

B. Fuzzy Rule Generation 

This subsection deals with the generation of fuzzy if-then rules from the feature vectors of images, which are prepared as 

mentioned in the previous subsection. Each fuzzy if-then rule is coded as a string and the following symbols are used for 

denoting the six linguistic values (Fig. 2): 1: don’t care (DC), 2: small (S), 3: medium small (MS), 4: medium (M), 5: medium 

large (ML), 6: large (L). The fuzzy rules generated similar to [47] and are as follows:  
 

 jRule R : If  ( 1x  is 1jA  and … and nx  is jnA )  then   Image is clean with jCF CF . 
 

where jR  is the label of the jth fuzzy if-then rule, x1,…, xn are the features which are extracted from the observed 

image, 1,...,j jnA A  are values in [0,1] that represent S, MS, M, ML, L, and DC as shown in Fig. 2. The rectangular shape of DC 

membership function means if a feature gets the value (DC), the value of membership function is 1. jCF  is the certainty factor 

of the fuzzy if-then rule jR . Each fuzzy rule has a certainty factor that demonstrates the confidence of the rule about its 

antecedent part. 

 The membership function of each linguistic value in Fig. 2 is specified by homogeneously partitioning the domain of each 

feature into symmetric triangular fuzzy sets. However, we can use other tailored membership functions in our fuzzy algorithm.  

The total number of possible fuzzy if-then rules is 6n (due to using six linguistic values) in the case of n-dimensional feature 

vector. It is impossible to use all the 6n fuzzy if-then rules in a single fuzzy rule base for large n (e.g. steganalysis based on n = 

636 features). Therefore, our evolutionary method searches for a relatively small number of fuzzy rules (e.g., 10 rules) with high 

performance. By performance, we mean that the generated fuzzy if-then rules should be able to show the pattern of stego images 

with high accuracy. This pattern is extracted according to the training samples of clean and stego images. 
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Fig. 2. Membership Functions. S: small, MS: medium, small, M: 

medium, ML:  medium, large, L: large, and DC: don’t care. 
 

 

The following three steps are applied to calculate the certainty factor of each fuzzy if-then rule: 
 

Step 1: Calculate the compatibility of each training sample 1 2( , ,..., )p p p pnx x x x  with the fuzzy if-then rule jR  by Eq.(1): 

 
 

1 1( ) ( ) . . . ( ),j p j p jn pnx x x      P=1,2,…,M. (1) 
 

where ( )j i p ix  is the membership function of ith feature of pth sample and M denotes the total number of samples. 

 

Step 2: For clean and stego images, calculate the relative sum of the compatibility grades of training samples with rule jR : 

( )

( )
p

j p

x Clean

Clean j

Clean

x

R
N









 (2) 

( )

( )
p

j p

x Stego

Stego j

Stego

x

R
N









 (3) 

 

where ( )Clean jR and ( )Stego jR are the relative sum of the compatibility grades of training samples that represent clean and 

stego images, respectively. Note that CleanN  and StegoN represent the number of clean and stego images that are being used as 

the training samples.  
 

Step 3: The grade of certainty jCF  for clean images is determined as Eq.(4): 

 
 

( ) ( )

( ) ( )

Clean j Stego j

j

Clean j Stego j

R R
CF

R R

 

 





          (4) 

 

By the proposed heuristic procedure, we can specify the certainty factor for any combination of antecedents in a fuzzy if-then 

rule. Such a combination is generated by the proposed evolutionary fuzzy algorithm.  

In the next subsection, we will discuss about the evolutionary fuzzy algorithm in detail. 

C. Evolutionary Fuzzy Algorithm 

 Our employed evolutionary fuzzy algorithm learns rules in iteratively by optimizing one fuzzy rule in each iteration of the 

algorithm. Firstly, all the training samples have the same weight and each individual in the algorithm is initialized by the feature 

vector of an image. In each iteration of the algorithm, the if-then rule with highest fitness is considered as the output of the 

iteration. Then the learning mechanism reduces the weight of those training samples that are learned correctly. Samples with 

higher weight are more significant in the training process. Therefore, the next rule generation cycle searches for fuzzy rules that 

account for the current training samples, which are uncovered by the rules achieved in the previous iterations. In brief, the fuzzy 

rules that cover the distribution of training samples more than other rules are included in the final rule base.  

In our learning system, we have used a fitness function in the evolutionary process, which is computed for example for 
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discovering pattern of clean images according to Eq. (5) to (7). 

 

( )
i

k

k

k k
R

x Clean

P k

x Clean

w x

f
w












 (5) 

( )
i

k

k

k k
R

x Stego

N k

x Stego

w x

f
w












 (6) 

( )j P P N Nfitness R w f w f   (7) 

 

where Pf  is the rate of positive training samples covered by rule iR (correctly covered). Nf  is the rate of negative training 

samples covered by rule iR (wrongly covered). kw is a weight which reflects the frequency of the sample kx in the training 

database. Pw  is the weight of rule’s positive power and Nw  is the weight of rule’s negative power. 
 

The outline of the iterative evolutionary fuzzy method is as the following: 
 

1: Initialization: Produce an initial population of fuzzy if-then rules based on the weight of training samples. 

2: Generation: Generate new fuzzy if–then rules by genetic operations. 

3: Replacement: Replace a part of the current population with the newly generated rules. 

4: Inner Cycle Termination Test: Terminate the inner cycle (Step 2 and Step 3) of the algorithm if a stopping condition is 

satisfied, otherwise go to Step 2. 

5: Outer Cycle Termination Test: Terminate the outer cycle (Step 1 to Step 6) if a stopping condition is satisfied, otherwise go to 

Step 6. 

6: Weight Adjustment: Reduce the weight of training samples that cover the new obtained fuzzy rule. Go to Step1. 

 

The output of each outer cycle of the above algorithm is one fuzzy if-then rule. Each step of the presented learning algorithm is 

described as follows: 
 

Step 1: Npop denotes the number of rules in the population of genetic algorithm. To produce an initial population, Npop rules are 

generated according to the features of random samples in the training database. The probability of each training sample to be 

chosen in this step is relative to its current weight. In this regard, the algorithm considers a greater probability for those 

samples that have not been learned in previous iterations. Next, for these random samples, we determine the most compatible 

combination of antecedents in if-then rules using only six linguistic values as shown in Fig. 2. The compatibility of 

antecedents with features of random a sample is measured by Eq. (1). The certainty factor of each fuzzy if-then rule is 

determined according to the heuristic method, explained in the previous section. After generation of Npop fuzzy if-then rules, 

the fitness value of each rule is evaluated by classifying all the given training samples using the set of fuzzy if-then rules in the 

current population. Each fuzzy if–then rule is evaluated according to the fitness function, which is presented in Eq. (7). 
 

Step 2: A pair of rules is nominated from the current population to generate new rules for the following population. Each rule in 

the current population is selected using the tournament selection mechanism. This process is repeated until a certain number of 

pairs of rules are selected. Crossover operation is then applied to a selected random pair of rules with a certain crossover 

probability. We have used uniform crossover, in our computer simulations. With a certain mutation probability, each 

antecedent of rules is randomly replaced with a different antecedent fuzzy set after the crossover operation. The probability of 

changing to don’t care value, PDC, is more than the other five linguistic values. After performing selection, crossover, and 

mutation operators, the fitness value of each of the generated rules is evaluated according to Eq. (7).  
 

Step 3: A pre-specified number of rules in the current population are replaced with the newly generated rules. In our fuzzy 

classifier, PR percent of the worst rules with the smallest fitness values are removed from the current population and (100 - PR 
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) percent of the newly generated fuzzy if-then rules are added (PR is the replacement percentage). After performing the 

mentioned replacement procedure, the fitness value of each of the individuals is evaluated according to Eq. (7). 
 

Step 4: We can use any stopping condition for terminating the inner cycle of the rule-learning algorithm. We used the total 

number of generations as a stopping condition in our computer simulations. 
 

Step 5: After termination of the inner cycle, the algorithm adds the best fuzzy rule of the evolved population to the final 

classification rules list and checks if this added fuzzy rule is capable of improving the classification rate of the final 

classification system. If the classification rate is not improved, the algorithm removes the added fuzzy rule from the final rule 

base and terminates. Otherwise, it goes to next step. 
 

Step 6: In each iteration of the main evolutionary process, rule tR with the best fitness value is introduced into the primary rule 

base. After each rule extraction process, samples that are misclassified will end up having the same weight. The weight of 

those instances that are classified correctly will become zero. This adjustment prevents the relearning of correctly classified 

instances and therefore provides the opportunity for misclassified instances of the previous iteration to be learned in the new 

iteration. Note that initially 1kw  . After this step, the algorithm jumps to Step 1. 

D. Steganography Pattern Discovery 

The steganographer can search the entire database to find the best cover image or sequentially searches until it finds an 

acceptable cover image that result in an undetectable stego image according to the clean image signature. Acceptable cover 

images were found in our experiments. 

As Fig. 1 shows, each pair of stego image database and clean image database is fed to the evolutionary fuzzy rule generation 

stage (we set the parameters of MB, PQ, and YASS to construct stego image databases with a variety of payloads). After this 

stage, an image rule set is resulted considering the effects of steganography method on images. We have three types of stego 

image databases (MB, PQ, and YASS), therefore three types of rule sets are generated. All the rules of images are put in an 

image rule base. 

For a given rule base S, in order to determine whether or not an image with feature vector xp = (xp1, xp2, …, xpn  ) is stego using 

the steganography method with index i , the parameter i
Stego is computed using Eq. (8).  

 

( )
j

Stego j ps j

R S

x CF 


   (8) 

Discovered Pattern (DP), the employed steganography method/cleanness of image I is determined based on Eq. (9): 

 

DP(I) = argmax ({n
Stego  , Clean  })  for n=1 to N (9) 

SPD in the current paper, is a 4-class(MB, PQ, YASS and Clean) classification problem. Therefore, if another steganography 

method will be considered in the future, the problem is changed to a 5-class classification problem but the number features for 

extracting SPD is fixed. 

4- EXPERIMENTS 

In this section, experimental results of the proposed method are presented.  

The experiments were executed on a personal computer with a 4 GB RAM, Intel(R) Pentium (R), 3.00 GHz processor and 

Matlab R2010b was used for program writing. In the following, the way of providing the code to make stego datasets and 

evaluating the results is explained. 

 

Table 2. Provided steganography and steganalysis codes. 

  Algorithm                                                            Available from 

Steganography 

Method 

MB http://www.codeforge.com/article/157206#introduction 

PQ http://dde.binghamton.edu/download/pq/   

YASS Get privately from the authors’s of  [11] 

Steganalysis Method 

274-dim steganalyzer http://dde.binghamton.edu/download/ccmerged/ 

324-dim steganalyzer 
http://dde.binghamton.edu/download/feature_extractors

/ 

24-dim steganalyzer http://www.cs.dartmouth.edu/farid/#jumpTo 
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14-dim steganalyzer Implemented in Matlab 

 

 

The database of 4959 images was prepared for evaluation. For performance evaluation of the proposed approach different 

experiments were done. We obtained 1000 JPEG images from Washington University image database [40] and 3959 images 

were taken with six cameras with different resolutions. All images were converted to grayscale images of size 512×512. To 

make stego image databases, MB, PQ, and YASS steganography methods are employed. We set the parameters of these methods 

to different values to obtain three stego image databases with a variety of payloads. Each stego database has 1000 stego images. 

Accordingly, each classifier is built by using 1000 stego and 1000 clean images. Table 2 shows the source of codes to produce 

such data sets. 

 

In this paper, 4 different payloads, 3 steganography and 4 steganalysis methods are considered. Experiments can be done in 4 

situations: 

 

 Situation 1 (Blind Steganalysis): For traditional evaluation without considering SPD, 4 models should be build based 

of 4 steganalysis methods. In this situation, type of the used steganography method and the amount of the payload are 

unknown. 

 Situation 2 (Partially Blind Steganalysis): If we assume that, the employed steganography method is known then we 

can build 12 models based on 4 steganalysis and 3 steganography methods while the amount of the payload is 

unknown. In this situation, the achieved accuracy for steganalysis is usually higher than Situation 1 because the 

models are built more specific than Situation 1. In the real world, we are not aware of the employed steganography 

method. 

 Situation 3 (Unblind): If we assume that, the employed steganography method and the payload are known then we can 

build 48 models based on 4 steganalysis and 3 steganography methods and 4 different amounts for the payloads. This 

situation is more specific than situation 2 and the models are more accurate. In the real world, we are not aware of the 

employed steganography method and the amount of the payload. Usually in the papers, steganalyzers are built 

specially for a certain size (range) of payload for a particular steganography method. 

 Situation 4 (Blind in nature but Operate Partially Blind): If we use SPD, which tries to guess the employed 

steganography method, we can build 12 models based on 4 steganalysis methods and 3 steganography methods. In 

the real world, we do not know the employed steganography method and the amount of the payload but we can use 

SPD to guess the employed steganography method. When a new image is given for analysis, after analyzing the 

results of SPD we deliver the new observed image to the true classifier for further analysis. 

 

The experiments were run in 10-fold cross validation way. We quantified the steganalysis performance according to the 

detection accuracy [11]. The SVM classifier is used to distinguish between two classes: cover (class `0') and stego (class `1') 

images. Let X0 and X1 denote the events that the image being observed, belongs to classes `0' and `1', respectively. On the 

detection side, let Y0 and Y1 denote the events that the observed image is classified as belonging to classes `0' and `1', 

respectively. We use detection accuracy (Da) which is the percent of detection probability (Pd) as our evaluation criteria 

according to the following equations: 
 

Da= Pd × 100 

Pd = 1 - Perror 

Perror = P(X0) P(Y1|X0) + P(X1)P(Y0|X1)=1/2PFA +1/2Pmiss   ;  

for P(X0) = P(X1) =1/2 
 

(10) 

 

where PFA = P(Y1|X0) and Pmiss = P(Y0|X1) denote the probability of false alarm and missed detection, respectively. The above 

equation assumes an equal number of cover and stego images in the dataset. 

An uninformed detector can classify all the test images as stego (or cover) and get an accuracy of 50. Thus, Da being close to 

50 implies nearly undetectable hiding, and as the detectability improves, Da increases towards 100. 

We normalized the features extracted from the databases, where each numerical value in the data set is normalized between 0 

and 1 according to Eq.(11): 
 

min

max min

normalized

x x
x

x x





 (11) 

 

Hence, 636 numeric features are constructed and normalized to the interval [0, 1].  

Table 3 shows the parameter specification that we have used in our computer simulations for the evolutionary fuzzy rule 
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generation algorithm.  
 

TABLE  3. VALUE  OF PARAMETERS IN SIMULATIONS 
Parameter Value 

Population size ( popN ) 500 

Don’t care replacement rate  0.5 

Crossover probability  0.9 

Mutation probability  0.5 

Fitness positive weight  0.1 

Fitness negative weight  0.9 

Replacement percentage  10 

Maximum Number of the iteration 50 
 

 

 

4-1. RELATION BETWEEN DETECTION RATE OF STEGANALYSIS AND EMBEDDING RATE OF STEGANOGRAPHY 

This experiment is done in Situation 3. To investigate the relation between the embedding rate and the detection rates of 

steganalyzers, we adjust the embedding rate of steganography methods to different values. Then we measure the average 

detection rates of four used steganalyzers on YASS, PQ, and MB steganography methods. In this experiment, SPD does not be 

employed the proposed algorithm. The results in Fig. 4 show that in most of the cases the detection accuracy has a direct relation 

with embedding rate. Nevertheless, using YASS as the steganalysis algorithm, this relation is not direct in all the cases. In this 

experiment, we report the results of 48 classifiers. Each classifier has been trained using 1000 clean and 1000 stego images. 

 

 

 
(a) 

 
 

(b) 
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(c) 

Fig. 4. The relation between detection rate and embedding rate (a) YASS (b) PQ and (c) MB steganography methods. 

 

 

4-2 DETECTION RATE OF STEGANALYSIS WITHOUT SPD 

This experiment is done in Situation 2. In this experiment, we report the results of 12 classifiers. Each classifier has been 

trained using 4000 clean and 4000 stego images. Stego images have different payloads. The results are shown in Table 4. 
 

TABLE 4. Average accuracy of steganalysis methods in detection of stego images 

 with different payloads, produced by different steganography methods (in percent %)  

 

 

 

 

 

 

 

 

 

 

 

4-3. EVALUATION OF THE PROPOSED METHOD  

 This experiment is done in Situation 4. In this experiment, we evaluate the effect of SPD. In the first part we investigate the 

accuracy of each SPD.. In this regard, we measure the accuracy of each model in recognizing the patterns. The results of three 

models are shown in Table 5. In this experiment the fuzzy rules based is used to predict the hype of employed steganography 

method. Actually SPD perform as a blind steganalysis. 

 
TABLE 5. Average accuracy of steganography patterns in detection of employed steganography methods (in percent %)  

 

 SPD estimation 

Real images MB PQ YASS 

MB  91 - - 

PQ - 81 - 

YASS - - 88 

Clean 90 79 89 

    

 

TABLE 6.Average accuracy of steganalysis methods in detection of stego images with different payloads, produced by 

different steganography methods (in percent %)  
 

 Steganography Method 

 MB (with SPD)                             PQ(with SPD)                             YASS(with SPD)                             

 Accuracy(%) Accuracy(%) Accuracy(%) 

Steganalysis method 

(Steganography 

Pattern  Discovery)  

 

274-dim 82 274-dim 80 274-dim 70 

324-dim 91 324-dim 77 324-dim 58 

24-dim 79 24-dim 68 24-dim 66 

14-dim 55 14-dim 60 14-dim 92 

 Average    77  71  72 

       

Table 6 shows the detection accuracy of four steganalysis methods on MB, PQ, and YASS steganography methods after 

applying SPD. In this application SPD helps to simplify blind a steganalysis problem to a partially blind steganalysis problem. In 

this experiment after SPD, 12 classifiers are used to report the detection rates. As the results demonstrate, steganography pattern 

discovery approach in average decreases the undetectability of steganography methods compared to Tables 4, which shows the 

results of traditional steganalysis. Consequently, we can comprehend that our proposed approach enhances the performance of 

steganalysis methods considerably.  

In Table 6, the accuracy is 55% for MB by 14-dim, and 58% for YASS by 324-dim, which are lower than the previous results 

in Table 4. This difference is not important because when the pattern of steganography is discovered, the best steganalyzer can 

 

 

Steganography 

Method 
MB PQ YASS 

Steganalysis 

Method (General classifier) 

274-dim 77 69.5 60 

324-dim 78 69 66 

24-dim 68 65 63 

14-dim 60 59 74 

 Average 71 66 66 
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be used. For example, for MB pattern, the 324-dim classifier is the best choice. In other word, SPD is a coarse scale analysis and 

based on the output of SPD, the fine scale analysis is done by the proper steganalysis. 

 

 

 

As a result, we can see that if we use only SPD, since it uses features from four strong steganalysis and in detection of each 

steganography method, some special features are discriminative we can use only SPD as a steganalysis.  

 

As we can conclude from the process of the proposed method, the proper setegnalaysis method is recognized after SPD 

execution. This process is done during the modeling. For testing, we know the proper steganalyzer for testing an input image. 

Based on the results of Table 6, it is obvious that 324-dim stegamnalyzer is the proper method if the used steganography method 

is MB, 274-dim steganalyzer is the best for detecting PQ and 14-dim  steganalysis method is the best one for detecting YASS 

steganography. 

 

4-4. EVALUATION OF THE PROPOSED METHOD AS A BLIND STEGANALYSIS METHOD 

This experiment is done in Situation 4. In this experiment, a data set consists of clean and stego images with various payloads 

and produced by different steganography methods is used. As Table 7 shows, the accuracy of SPD in predicting the type of the 

used steganography method is less than 20 percent. By having the results of SPD, the accuracy of steganalysis methods is shown 

in the last row of the table. The final accuracy is about 74% , while without using SPD this value is less than 70%(from Table 4). 

 

TABLE 7.Average accuracy of steganalysis methods with employing SPD, in detection of stego images (in percent %) 

 

4-5.  COMPUTATIONAL COMPLEXITY 

Due to the considerable computation of the evolutionary method, the execution time or computational complexity of the 

proposed scheme is explained in the following. Extracting fuzzy rules via an evolutionary algorithm has a high complexity. But 

in steganalysis as a process of checking an image to find either it has secret data or not, only prepared fuzzy rules checked. 

Therefore being time consuming of rule extraction can be tolerated. The average execution time of Table 6 is shown in Table 7. 

 
TABLE 7.Average execution time of SPD, steganalyzers and SPD application.  

Model Time (Secs) 

SPD Extraction 311 

Steganalysis 

method 

274-dim 7 

324-dim 6 

24-dim 2 

14-dim 3.2 
SPD Application (without time of 

steganalysis) 2 

 

5- CONCLUSIONS 

Generally, this research proposes an approach for steganography pattern discovery which shows an approach of evolutionary 

method, that extracts the signature of stego images against clean images via fuzzy if-then rules. Basically, the proposed approach 

consist of two stage includes firstly, an analysis of image database to discover the pattern or signature of stego images and 

second stage the steganalyzer trained to detect only one steganography method at once. In other words, in this paper, to increase 

the accuracy of steganalysis images, we proposed a novel step before steganalysis process. After discovering the used 

steganography method, a suitable model for steganalysis is employed. In this regard, an evolutionary fuzzy algorithm is 

Steganography Method 

MB PQ YASS 

MB+ 

PQ+ 

YASS 

Proper Setegnalaysis Accuracy of SPD(%) 
Propoer 

Setegnalaysis 
Accuracy of SPD(%) 

Propoer 

Setegnalaysis 
Accuracy of SPD(%) 

Accuracy 

of 

SPD(%) 

324-dim 90 274-dim 80 14-dim 92 87 
       

 TP FP Accuracy  TP FP Accuracy  TP FP Accuracy  

Average  final 

steganalysis 

Accuracy(%) 

88 20 84  61 35 62  87 31 78 74 
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proposed to generate fuzzy rules from features of the stego images. These rules are used to form the pattern of steganography 

methods. 

According to the obtained results, our approach increases the detection rate of steganalyzers compared to the classical use of 

steganalysis methods. The advantage of our proposed approach is that in appearance of new steganography method, the fuzzy 

rule base can be upgraded and the pattern of this method can be discovered for using by the steganalysis.  
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