
Steganalysis in the Presence of Weak

Cryptography and Encoding

Andreas Westfeld

Technische Universität Dresden
Institute for System Architecture

01062 Dresden, Germany
westfeld@inf.tu-dresden.de

Abstract. Steganography is often combined with cryptographic mech-
anisms. This enhances steganography by valuable properties that are
originally left to cryptographic systems.

However, new problems for cryptographic mechanisms arise from the
context of steganography. There are two sorts of steganographic tools:
commercial tools with insecure or badly implemented cryptography and
academic proof-of-concepts that abstain from the actual implementation
of the cryptographic part.

Comparably to cryptography, steganography evolves in an itera-
tive process of designing and breaking new methods. In this paper
we examine the encoding properties and cryptographic functionality of
steganographic tools to enable the detection of embedded information in
steganograms even if the embedding part was otherwise secure.

1 Introduction

Digital steganography has evolved from an art in the early 1990’s to a
mature discipline in computer science. As a consequence, the gap between
academic research and application has widened. The current situation is char-
acterised by a huge and fast-growing number of publicly available tools offering
steganographic functionality “out of the box.” Apart from a poorly reflected
use of deprecated and weak embedding functions, these tools also comprise
all indispensable functions for pre- and post processing of message data and
steganographic objects, respectively. These lateral processing steps are usually
not covered in academic research. Since documentation is scarce and develop-
ers may tend to neglect possible security impacts, it was initially expected that
a large number of tools would be vulnerable to simple (and thus avoidable)
mistakes in the pre- and post-processing steps. We verified this assumption
on a quantitative basis by scrutinising a number of arbitrarily chosen stegano-
graphic tools. This paper will give a survey on the security of current end-user
steganography. Empirical evidence was gathered about weaknesses in stegano-
graphic tools, due to mistakes originating outside from the embedding function
itself.

Y.Q. Shi and B. Jeon (Eds.): IWDW 2006, LNCS 4283, pp. 19–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

westfeld@inf.tu-dresden.de

20 A. Westfeld

The combination of steganography with cryptography delivers important and
desirable security properties:

– Encrypting messages before embedding identifies authorised recipients by
the knowledge of a secret key, or, combined with other key-dependent trans-
formations, becomes a second line of defence.

– Permuting data values pseudo-randomly before embedding reduces the local
embedding density and dilutes statistical measurements.

– Encoding of message bits can be used to alter distributions for better cam-
ouflage, or add redundancy for error correction and robustness.

Hence, cryptographic primitives and encoding principles are constitutional ele-
ments for secure steganographic systems; as they offer their desirable properties
in other applications as well.

This paper is organised as follows: Sect. 2 describes our approach to find
the steganographic tools, the cryptographic functionality of which we survey
in Sect. 3. We encountered different types of weaknesses in steganographic tools.
These are described in Sect. 4. For each type of weakness we developed at least
one prototype, which we present in Sect. 5. The paper is concluded in Sect. 6.

2 Tool Search

Our search is based on a comprehensive collection of steganographic tools, which
grew over several years and is updated from time to time. We observe other
collections (e. g., Johnson [1], [2], and Petitcolas [3]) to gain search terms apart
from generic ones like “steganographic tools” and “download.” According to our
definition, steganographic tools are programs targeted to the end-user, which
embed data into carrier with the aim of secrecy of the fact that hidden data
exists. This implies that watermarking algorithms, steganalysis tools, and pure
cryptographic tools are not included. If we count multiple releases of the same
tool or ports to different platforms as one tool, the collection comprises 96 tools.

All tools in the collection were installed, and the files shipped with the install
packages were examined. Some quick tests were performed for the tools with
undocumented algorithms, steganograms were produced with these tools and
compared with the original to determine the embedding function, if it uses en-
cryption, or straddles the steganographic changes over the whole carrier medium.

3 Employment of Cryptography in Steganographic Tools

65% of the tools provide encryption of the message before embedding. The rest
neglects encryption or assumes that the message is encrypted using extra soft-
ware (see Table 1). Although it is hard or impossible to read encrypted messages
without the correct key, the steganographic embedding can be detected in most
cases. In addition, many encryption applications add header information to the
encrypted message. If such header information can be extracted, this proves the

Steganalysis in the Presence of Weak Cryptography and Encoding 21

Table 1. Availability of encryption option

Cryptographic Number Percentage
availability of tools of all tools

implemented 62 65%
not implemented 28 29%

not indicated 6 6 %
total 96 100 %

presence of the embedded message. Once this header and the encrypted message
is extracted, a cryptanalyst can try to find out the message content.

We can divide the cryptography integrated in steganographic tools into two
categories:

1. tools that employ widely used and standardised algorithms and
2. tools that use improvised or non-public cryptography, which are mostly not

published and not reviewable.

Table 2 lists the number of implementations by their particular standard-
ised cryptographic algorithms. Because a single tool can offer more than one
encryption scheme, we count implementations instead of tools. The particular
algorithms appear only in the table if three or more implementations are known.
Schemes provided by two or fewer tools have been added to the group “Other.”
The table shows that the most popular encryption algorithm in steganographic
software is Blowfish, closely followed by DES.

Finally, most of the improvised algorithms break Kerckhoffs’ principle [4] be-
cause they are kept secretly. In contrast to open source algorithms (e. g., Blow-
fish, DES, etc.) they are not reviewed and evaluated by a wide community and
should not be trusted.

4 Weaknesses

This section gives an overview of the weaknesses detected in our survey of
steganographic tools (see Table 3). We found weaknesses in 18 tools, with some
seeming to be systematic while others are very specific. We explicitly do not
count broken embedding function as a weakness, because they are not caused in
the cryptographic or encoding part.

The indicated weaknesses lead to more or less strong attacks. Similar to cryp-
tography, we can define classes of different strengths.

Total break: One can separate carriers and steganograms almost completely.
(In cryptography: recovery of the secret key)

Existential break: One can tell for some files that they are almost certainly
a steganogram. (In cryptography: one can forge the signature for some text,
but not all texts.)

22 A. Westfeld

Table 2. Types of encryption schemes

Cryptographic Encryption Number of Percentage of all
category scheme implementations implementations

Standardised 86 80%
Blowfish 15 13%

DES 10 8%
RC4 5 5%

Twofish 5 5%
ICE 4 4%

IDEA 4 4%
AES 3 3%

GOST 3 3%
PGP 3 3%
RSA 3 3%
Other 31 29%

Improvised 22 20%

Exclusion of innocuous files: One can tell for sure which files (usually many)
have not been modified by the tool under attack.1

The definitions use the word “almost” because, in contrast to cryptography, one
not only has to distinguish between “able” and “unable” to read some informa-
tion, but also have to resolve its origin: was it deliberately there or by chance.
In most cases, there is a very small probability for the latter.

4.1 Magic Prefix

One of the most common mistakes is the inclusion of unencrypted status infor-
mation at a deterministic place in the file (e. g., the beginning of the file). An
adversary can access this information and use it to separate steganographic ob-
jects from plain carrier. This degrades the affected tool to a simple cryptographic
tool with a very bad payload to data ratio. The presence of a magic prefix leads
to total breaks. Examples: BlindSide [5], Stegano [6]

4.2 Specification of the Length of the Hidden Message

Some tools embed the length of the hidden message as status information with
a fixed number of bits. While this is not as easy to detect as deterministic
redundancy (cf. Sect. 4.1), comparing the length information with the maximum
1 In some cases, one cannot exclude post-processing. Then “exclusion” means that

this tool was not the last one to process the image.

Steganalysis in the Presence of Weak Cryptography and Encoding 23

Table 3. Selected steganographic tools and their weaknesses

Tool name A
tt

ac
k

pr
ot

ot
yp

e

M
ag

ic
pr

efi
x

F
ix

ed
le

ng
th

V
ar

yi
ng

le
ng

th

A
tt

ac
hm

en
t

Sm
al

l
ke

y

W
ea

k
st

ra
dd

lin
g

Im
pr

op
er

en
co

di
ng

Break
AppendX . . apdet — — — × — — — excl.
BlindSide . . bsdet × (×) — — × — — total
Camera/Shy — — — — — — (×?) (×) (exist.)
Contraband codet — × — — (×) × — excl.
Cryptobola . — — — — — — (×?) — (exist.)
Encrypt Pic epdet — × — — — (×) — excl.
Gif it up! . . . giudet — × — — — (×) × excl.
Gifshuffle. . . — — — — — — (×?) — (excl.)
Hermetic . . . — — (×?) — — — (×?) — (excl.)
Invisible rdjpegcom — — — × — — — excl.
Jsteg jsteglen.R — — × — — (×) — excl.
Masker apdet — — — × — — — excl.
MP3Stego . . — — (×?) — — — (×) — (?)
Pngstego . . . — — — — — (×?) — — (excl.)
Stegano stdet × × — — — × (×?) total
Steganos . . . — — — — — — (×?) — (excl.)
Steggy apdet — (×) — × — — — excl.
Ump3c updet — — × — — × — excl.

×—weakness,
excl.—exclusion of innocuous files,
total—total break,
exist.—existential break,
?—slightly better than random guessing,
(. . .)—attack not implemented

capacity for a given file size can easily identify a large number of plain carriers.
This ratio increases for smaller carrier files. Examples: BlindSide [5], Contraband
[7], EncryptPic [8], Gif it up! [9], Stegano [6], Steggy [10].

A similar comparison between length information and capacity can be made
for those tools that avoid reserving a fixed number of bits, but store a prefix
of the size of the length information before the actual information. Here, the
adversary on average gains a little less information compared to the case with

24 A. Westfeld

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Capacity of carrier medium (in bytes)

P
ro

ba
bi

lit
y

of
 e

xc
lu

si
on

generic 32 bit length info
Gif it up (5 BCD)
generic 16 bit length info
Jsteg
Under MP3 Cover

Fig. 1. Probability of exclusion by the attack under the assumption of uniformly dis-
tributed steganographic bits

fixed length information, but is still able to exclude innocuous files. Fig. 1 shows
that the exclusion rate depends on the capacity of the carrier medium. Although
the variable length field performs better, we can still exclude about 80% of the
carriers that provide less than 6 KB capacity. Examples: Jsteg [11], Under MP3
Cover [12].

4.3 Attached Message

We found some tools that do not actually alter the carrier data, but simply use
special comment fields or undocumented areas at the file end to store the so-
called “hidden” information. These tools provide almost no security. Surprisingly,
quite a lot pursue this approach. However, because some commercial editors
append their name to files or some executable files contain proprietary resources
before file end, manual inspection is required for a total break. Machines can
only exclude those files that don’t have attachments. Examples: AppendX [13],
Invisible [14], Masker [15], Steggy [10].

4.4 Small Keys

Another flaw is the insufficient length of the security parameter used for cryp-
tographic functions. Some tools generate very short hashes from pass phrases
to initialise random number generators. This enables an adversary to try the
whole key space with brute force in reasonable time. Examples: BlindSide [5],
Contraband [7], Pngstego [16].

4.5 Weak Straddling

A more specific vulnerability is the concentration of steganographic alterations
in small parts of the carrier. Permutative straddling is a well-known and effective
technique to avoid this problem. It is important to permute the alterations really

Steganalysis in the Presence of Weak Cryptography and Encoding 25

randomly, because an adversary can anticipate and exploit any deterministic
step size (whether adaptive or not). This is not a severe weakness per se, but
steganalytic attacks are much easier if the content is concentrated. Examples:
Contraband [7], Encrypt Pic [8], Gif it up! [9], Jsteg [11], MP3Stego [17], Stegano
[6], Under MP3 Cover [12].

4.6 Improper Encoding of the Embedded Message

Last but not least, a poor choice of source encoding—even after a cryptographic
operation—introduces redundancies that can be detected by an adversary to
identify steganograms, i. e., lead to existential breaks. Examples: Camera/Shy
[18], Gif it up! [9].

5 Prototype Applications and Sample Sessions

All of the weaknesses classified in the previous sections have been successfully
attacked with at least one prototype application. The prototypes are listed in
Table 4. They are implemented in C/C++, and ready to download as source

Table 4. List of prototype applications

apdet detects data appended to files
bsdet determines a valid password for BlindSide
codet excludes files not produced by Contraband
epdet determines length information produced by EncryptPic
giudet excludes files not produced by Gif it up!
stdet detects data hidden with Stegano GIMP

updet excludes files not produced by ump3c

code and Windows executables[19]. The usage is quite intuitive and does not
require lengthy documentation: The programs are called from the command line
with a filename of the medium under investigation as a parameter.

5.1 apdet—Detection of Appended Messages

The most primitive steganographic programs just append the message to the
carrier medium. Although some of these programs are sold for a reasonable
amount of money, their work can be done with simple commands that are already
part of operating systems.

Unix:
cat carrier.bmp readme.txt >steganogram.bmp

Windows:
copy /b carrier.bmp+readme.txt steganogram.bmp

26 A. Westfeld

Such steganograms are more or less reliably detected by apdet. This tool cur-
rently supports the following carrier file formats: .asf, .avi, .bmp, .dll, .exe,
.gif, .jpg, .mid, .mov, .mp3, .mpg, .ocx, .snd, .tif, and .wav. apdet needs
a file name or directory that is automatically scanned (including subdirecto-
ries) for file names with the aforementioned suffixes. If additional bytes after the
structurally expected end of the file are detected, the number of these bytes and
the file name is written, otherwise apdet is silent.

$ apdet .
There are 333 bytes after the expected end of file!
... in file ./apstego.bmp

5.2 bsdet—Password Detection for BlindSide

bsdet detects steganograms created with BlindSide [5]. If the secret data are
protected with a password, a string with four characters that is equivalent to
the original password is derived and can be used to decrypt the embedded data.
BlindSide hashes the password to a 16 bit key. Even worse: We don’t have
to search the whole key space. The structure of the embedded header (cf. Ta-
ble 5) contains the known plaintext “OK,” which can be used to determine the
16 bit key directly and convert it into an appropriate password. For instance,
“cppe” is equivalent to the password “abc123,” which was used to create the file
bsstego.encrypted.bmp.

$ bsdet carrier.bmp
File does not contain any BlindSide hidden data.

$ bsdet bsstego.bmp
This file contains BlindSide hidden data.
Data is not encrypted, there is no password.

$ bsdet bsstego.encrypted.bmp
This file contains BlindSide hidden data.
Data is encrypted, a valid password is "cppe".

Table 5. Blindside message structure

Offset Length (bytes) unencrypted encrypted
0 2 “BS” “BE”
2 4 Length n Encrypted length n

6 1 Version (0x01) Encrypted version
7 2 “OK” Encrypted “OK”
9 n Message Encrypted message

Steganalysis in the Presence of Weak Cryptography and Encoding 27

5.3 codet—Exclusion Despite Straddling

Contraband [7] uses a PIN2 dependent straddling of the changes in the image.
This PIN is needed to extract the length of the embedded message. This strad-
dling is not very secure, and it is possible to extract the length with some errors.
Nevertheless, codet is able to exclude a lot of carrier files from being stegano-
graphic. In the following example, we derive the number of leading zeros from
the capacity. Since we know the earliest and latest bit positions of the (ran-
domly straddled) length field, we can exclude files with less than 18 zeros in
that part.

$ codet carrier.bmp
Analysing file carrier.bmp
capacity: 24000 bytes
--> 18 zeros expected in embedded length.
File does not contain any contraband hidden data.

$ codet costego.bmp
Analysing file costego.bmp
capacity: 24000 bytes
--> 18 zeros expected in embedded length.
min possible offset = 0
max possible offset = 3
There are 36 possible combinations for the first two digits of
the PIN.
possible sizes of embedded data: 1024, 2049, 4099, 8199 bytes

111000000000010000000000000000000001001000110100010100110101 <-- extracted bits
123456789012345678901234567890123456789012345678901234567890 <-- ruler

5.4 epdet—Exclusion by Length Information

Encrypt Pic [8] embeds the length of the message in the first 8 pixels. The
capacity offered by this tool can be determined by the number of pixels divided
by 2 (in bytes; one byte fits in two pixels). The image was not created by Encrypt
Pic if the potential length specification exceeds the capacity−8. The length and
other header information use 8 bytes of the capacity. The tool epdet compares
the length and capacity to decide if a file is a potential steganogram.

$ epdet carrier.bmp
Analysing file carrier.bmp
capacity: 31992+8 bytes
File does not contain any encpic hidden data. (length
exceeds capacity: 118386139 > 31992)
11011011101101100111000011100000 <-- 32 length bits (LSB ... MSB)

2 Personal identification number, here: a four digit numeric password.

28 A. Westfeld

$ epdet epstego.bmp
Analysing file epstego.bmp
capacity: 31992+8 bytes
length of embedded data: 18713
10011000100100100000000000000000 <-- 32 length bits (LSB ... MSB)
First two blocks of embedded data (2 x 128 bits)

01000001010011110111010011001001101001111101000101011110111100100100000111000...
11000101101101110010111110011001010001000000011000110001000000101011001110110...
1234567890123456789012345678901234567890123456789012345678901234567890 <-- ruler

Encrypt Pic can also encrypt the message with an unknown encryption algo-
rithm. epdet dumps the first two 128 bit blocks of the ciphertext to the screen. If
the plain text is periodically repeated (e. g., a series of zeros only), the ciphertext
blocks are all the same. So at least the mode of operation used here is weak.

$ epdet epstego.periodic.bmp
Analysing file epstego.periodic.bmp
capacity: 290832+8 bytes
length of embedded data: 262144
00000000000000000010000000000000 <-- 32 length bits (LSB ... MSB)
First two blocks of embedded data (2 x 128 bits)

00001101100100110010110111000000010111000111010010010101001001011111000011001...
00001101100100110010110111000000010111000111010010010101001001011111000011001...
1234567890123456789012345678901234567890123456789012345678901234567890 <-- ruler

5.5 giudet—Exclusion by Length Information

Gif it up! [9] uses the first 20 pixels of a GIF file for storing the length of
the embedded message. The size of the message is limited to 99,999 bytes. For
each of the five digits, four bits are used to store the binary representation of
the numbers 0 to 9, i. e., the length is encoded as binary coded digits (BCD).
Consequently, media can be excluded from being steganographic in two ways.
First one can exclude all length specifications that exceed the capacity of the
current image as described in Section 4.2. Second, all digits > 9 (1010. . . 1111)
can be excluded because they are not BCD.

giudet uses this principle to detect valid length specifications embedded with
“Gif it up!”

Fig. 2. Gif it up!: equidistant straddling (black: changed pixels)

Steganalysis in the Presence of Weak Cryptography and Encoding 29

$ giudet carrier.gif
Processing file carrier.gif
File does not contain any Gif-it-up hidden data.

$ giudet giustego.gif
Processing file giustego.gif
Possible length of embedded data: 2032

5.6 stdet—Detection by Magic Prefix

The embedding principle of Stegano [6] (a plug-in for GIMP) can be called LSB
matching by increment (see Fig. 3). This is harder to detect than LSB replace-
ment and the introduced error is smaller than with plus minus one steganogra-
phy. Pixel values at the upper bound are only changed by decrement, because
they cannot be incremented. Stegano is also the only known program that em-
beds in vertical direction, column by column from left to right (see Fig. 4).

0 1 2 3 4 ... 253 254 255

0 1 2 3 4 ... 253 254 255

before embedding

after embedding
steganographic value0 0 0 01 1 1 1

Fig. 3. Stegano: LSB matching by increment

Fig. 4. Stegano: continuous embedding in vertical direction (coloured pixels are
changed)

Stegano can be easily detected by the magic prefix STG, which is prepended
to every embedded message. There is also information about the file name and
length of the embedded message. Even if the embedded message is encrypted,
which is possible only using an external tool, the prefix and header is still plain-
text. This is exploited by stdet, which can reliably detect messages embedded
with Stegano.

$ stdet carrier.bmp
Analysing file carrier.bmp
File does not contain any Stegano-GIMP hidden data.

30 A. Westfeld

$ stdet ststego.bmp
Analysing file ststego.bmp
Steganographic message detected.
embedded file name: /usr/users/mat02/s1924087/stegano/README
length of embedded data: 2140

5.7 updet—Exclusion by Length Information

Under MP3 Cover (ump3c [12]) is a tool that embeds one bit into every second
block of an MP3 stream. As with some other tools, ump3c stores a length word
in front of the actual data. Instead of reserving a fixed width, ump3c reserves 6
bits to specify the width. This makes the analysis interesting. Reasoning about
the distributions of initial bits, under the assumption that normal MP3 files
hold uniformly distributed bits in their first blocks3, gives a theoretical ratio of
arbitrary MP3 files that can be easily detected as non-steganographic.

$ updet carrier.mp3
Analysing file carrier.mp3
capacity: about 159 bytes
File does not contain any ump3c hidden data.

$ updet ump3c.stego.mp3
Analysing file ump3c.stego.mp3
capacity: about 159 bytes
Possible length specification found: 148

5.8 Analysis of Non-random Straddling Functions

MP3Stego [17] embeds into the parity of block lengths of MP3 streams. This
tool is a good example of a specific straddling function: For each block a coin is
tossed. On heads, the block is used for embedding, on tails not. As an embedding
rate of 50% was deemed too small by the author of the tool, MP3Stego ignores
every third tail of the coin. This leads to an interesting probabilistic selection
rule, which can be modelled as a finite state machine with deterministic initial
state s1 (see Fig. 5).

This finite state model is used to compute the expected embedding probabili-
ties for the first n blocks of an MP3 stream and expected additional information
for steganalysis. As shown in Fig. 5, the probability indeed vibrates around the
steady state probability 0.6 in the first 8 blocks. Unfortunately, this convergence
appears too fast, so that the additional information is marginal and does not
lead to a significantly better ability to tell plain carriers apart. Nevertheless, this
technique may lead to better results in cases where the parameters are chosen
differently.

3 Incidentally, we gain additional confidence from the fact that one of the leading bits
is always zero, which seems to be a programming error.

Steganalysis in the Presence of Weak Cryptography and Encoding 31

s1

s2

s3

1/0.5

0/0.5

0/0.25

1/0.25 1/0.5

0/0.5

1/0.5

1: embed, 0: don’t em-
bed/probability of tran-
sition

● ●

●

●

● ● ● ● ● ●

2 4 6 8 10
0.

50
0.

52
0.

54
0.

56
0.

58
0.

60

Block Index

P
ro

ba
bi

lit
y

of
 E

m
be

dd
in

g
● ●

●

●

● ● ● ● ● ●

S1:

S2:

S3:

1

0

0

0.5

0.5

0

0.25

0.5

0.25

0.188

0.438

0.375

0.188

0.406

0.406

0.195

0.398

0.406

0.199

0.398

0.402

0.2

0.399

0.4

0.2

0.4

0.4

0.2

0.4

0.4

Fig. 5. Probability of embedding for the first 10 blocks with MP3Stego

5.9 Application of Jsteg Length Information to Jsteg Attacks

Jsteg length information can be used to reduce the detection power of targeted
Jsteg attacks. We use two sets of 936 JPEG images to demonstrate—based on
Jsteg length information—the generic improvement of the attacks of Zhang and
Ping [20] and Lee et al. [21]. The first set C consists of the original carrier images
from the CBIR database [22]. The second set S is derived from C with a Jsteg
like algorithm (random embedding path) at 5% embedding rate. Because of this
small embedding rate, the attacks cannot perfectly separate both sets and will
result in false positives or false negatives.

Jsteg embeds the length l of the embedded message (in bytes) in a variable
length field at the beginning of the JPEG file. This is similar to ump3c (cf.
Sect. 5.7). The first five bits tell the width of the length field (�log2 l� = 0 . . . 31
bits). l is stored in these bits. Beside the length information one can determine
also the capacity c of the JPEG image. This is the number of DCT coefficients
that are neither 0 nor 1 minus the length of the length information (5+�log2 l�).
If

l = 0 or l >

⌊
c − 5 − �log2 l�

8

⌋
,

Jsteg will not extract anything, and if the 6th bit in the extracted stream—the
most significant bit of l—is 0 (in about 44% of all cases), nothing has been
embedded using Jsteg, because the length of the length field is always mini-
mal. With these criteria we can find 717 (77%) out of the 936 files in C that
do not contain a proper Jsteg message. In 54% the capacity was exceeded by
the length specification. Fig. 6 shows the improved Receiver Operating Char-
acteristic (ROC) of the attacks when they are combined with knowledge about
the Jsteg length information. Table 6 shows the improved reliability ρ = 2A − 1
where A is the area under the ROC curve, the false positive rate (FPR) at 0.5
true positive rate (TPR) and the TPR for 1% false positives.

32 A. Westfeld

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Improved attack by Lee et al.
based on Jsteg length information
Original attack by Lee et al.
Improved attack by Zhang and Ping
based on Jsteg length information
Original attack by Zhang and Ping

Fig. 6. ROC curves for generic improvement of targeted Jsteg attacks by exclusion of
false positives based on Jsteg length information

Table 6. Reduced false positive rate and increased reliability ρ for targeted Jsteg
attacks (5% embedding rate)

Attack ρ FPR at 0.5 TPR TPR at 0.01 FPR
Lee et al., original 0.8657 0.0107 0.4530
Lee et al., improved 0.9671 0.0021 0.7244
Zhang and Ping, original 0.6425 0.1389 0.0096
Zhang and Ping, improved 0.9163 0.0331 0.0801

6 Conclusion

The conclusions of this research are twofold. First, our prior belief that many end-
user tools suffer from weaknesses in the encryption and encoding part has been
confirmed. We presented a range of exemplary attacks against popular tools from
the Internet, and the discovery of new weaknesses could be continued, although
the academic outcome of analysing additional tools gets marginal.

Second, and more general, it remains the impression that the diversity of
tools and carrier formats keep open the possibility for undetected stegano-
graphic communications, essentially because the resources to analyse every

Steganalysis in the Presence of Weak Cryptography and Encoding 33

tool and every exotic format4 are limited. Even blind attacks cannot improve
the situation substantially, because formats are not supported, features not de-
veloped, and training sets not available.

Acknowledgements

The author thanks Rainer Böhme for fruitful discussions, Benjamin Kellermann
(né Scholz) for the implementation of codet and apdet, Kwangsoo Lee for pro-
viding his implementation of the category attack and 2 GB of test images, as
well as Elke Franz for helpful comments on the paper. The work on this paper
was supported by the Air Force Office of Scientific Research, Air Force Ma-
terial Command, USAF, under the research grant numbers FA8655-04-1-3036
and FA8655-06-1-3046. The U. S. Government is authorised to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation there on.

References

1. Johnson, N.F.: Steganography tools (2002) Online available at http://www.jjtc.
com/Security/stegtools.htm

2. Johnson, N.F.: Steganography and digital watermarking tool table (2003) Online
available at http://www.jjtc.com/Steganography/toolmatrix.htm

3. Petitcolas, F.A.P.: Steganographic software (2005) Online available at http://

www.petitcolas.net/fabien/steganography/stego soft.html

4. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX
(1883) 5–38, 161–191 Online available at http://www.petitcolas.net/fabien/

kerckhoffs/crypto militaire 1.pdf

5. Collomosse, J.: Blindside (2000) Online available at http://www.blindside.co.uk
6. Cotting, D.: Stegano (2000) Online available at http://registry.gimp.org/

plugin?id=314

7. Thijssen, J., Zimmerman, H.: Contraband (1998) Online available at http://www.
xs4all.nl/∼jult/4u/contrabd.exe

8. Collin, F.D.: EncryptPic (2000) Online available at ftp://ftp.elet.polimi.it/

mirror/Winsite/win95/miscutil/encpic13.exe

9. Nelson, L.: Gif it up! (2004) Online available at http://digitalforensics.

champlain.edu/download/Gif-it-up.exe

10. Iceman81: Steggy (2003) Online available at http://mesh.dl.sourceforge.net/

sourceforge/steggy/steggy0.1rc1.tar.gz

11. Upham, D.: Jsteg (2000) Online available at 0urls.txt:http://munitions.

vipul.net/software/steganography/jpeg-jsteg-v4.diff.gz

12. Platt, C.: Ump3c (2004) Online available at http://mesh.dl.sourceforge.net/

sourceforge/ump3c/UnderMP3Cover-1.1.tar.gz

13. Bauer, M.: AppendX (2003) Online available at http://www.unet.univie.ac.at/
∼a9900470/appendX/apX

4 For example, Stegogo (http://sourceforge.net/projects/stegogo) embeds information
into GNU Go Games.

http://www.jjtc.
com/Security/stegtools.htm
http://www.jjtc.com/Steganography/toolmatrix.htm
http://
www.petitcolas.net/fabien/steganography/stego_soft.html
http://www.petitcolas.net/fabien/
kerckhoffs/crypto_militaire_1.pdf
http://www.blindside.co.uk
http://registry.gimp.org/
plugin?id=314
http://www.
xs4all.nl/~jult/4u/contrabd.exe
ftp://ftp.elet.polimi.it/
mirror/Winsite/win95/miscutil/encpic13.exe
http://digitalforensics.
champlain.edu/download/Gif-it-up.exe
http://mesh.dl.sourceforge.net/
sourceforge/steggy/steggy0.1rc1.tar.gz
0urls.txt:http://munitions.
vipul.net/software/steganography/jpeg-jsteg-v4.diff.gz
http://mesh.dl.sourceforge.net/
sourceforge/ump3c/UnderMP3Cover-1.1.tar.gz
http://www.unet.univie.ac.at/
~a9900470/appendX/apX

34 A. Westfeld

14. Neobyte Solutions: Invisible (2000) Online available at http://www.

neobytesolutions.com/downloads/invsecr.zip

15. Zaretskiy, E.: Masker (2001) Online available at http://www.softpuls.com/

masker/

16. HappyCactus: Pngstego (2003) Online available at http://mesh.dl.sourceforge.
net/sourceforge/pngstego/pngstego-0.3.2.tar.gz

17. Petitcolas, F.A.P.: MP3Stego (2001) Online available at http://packetstorm.

trustica.cz/crypt/stego/SourceCode/MP3Stego 1.0.14b1 src.tar.gz

18. Hacktivismo: Camera/Shy (2002) Online available at http://mesh.dl.

sourceforge.net/sourceforge/camerashy/CameraShy.0.2.23.1.exe

19. Westfeld, A., Kellermann, B.: Detection utilities (2005) Online available at http://
dud.inf.tu-dresden.de/∼westfeld/detectors/

20. Zhang, T., Ping, X.: A fast and effective steganalytic technique against JSteg-
like algorithms. In: Proc. of the 2003 ACM Symposium on Applied Computing,
Melbourne, Florida (2003) 307–311

21. Lee, K., Westfeld, A., Lee, S.: Category attack for LSB steganalysis of JPEG
images (2006) In these proceedings.

22. University of Washington: CBIR image database (2004) Online available at http://
www.cs.washington.edu/research/imagedatabase/groundtruth

http://www.
neobytesolutions.com/downloads/invsecr.zip
http://www.softpuls.com/
masker/
http://mesh.dl.sourceforge.
net/sourceforge/pngstego/pngstego-0.3.2.tar.gz
http://packetstorm.
trustica.cz/crypt/stego/SourceCode/MP3Stego_1.0.14b1_src.tar.gz
http://mesh.dl.
sourceforge.net/sourceforge/camerashy/CameraShy.0.2.23.1.exe
http://
dud.inf.tu-dresden.de/~westfeld/detectors/
http://
www.cs.washington.edu/research/imagedatabase/groundtruth

	Introduction
	Tool Search
	Employment of Cryptography in Steganographic Tools
	Weaknesses
	Magic Prefix
	Specification of the Length of the Hidden Message
	Attached Message
	Small Keys
	Weak Straddling
	Improper Encoding of the Embedded Message

	Prototype Applications and Sample Sessions
	apdet---Detection of Appended Messages
	bsdet---Password Detection for BlindSide
	codet---Exclusion Despite Straddling
	epdet---Exclusion by Length Information
	giudet---Exclusion by Length Information
	stdet---Detection by Magic Prefix
	updet---Exclusion by Length Information
	Analysis of Non-random Straddling Functions
	Application of Jsteg Length Information to Jsteg Attacks

	Conclusion

