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Abstract: As one of the important methods to protect information security, steganography can ensure
the security of data in the process of information transmission, which has attracted much attention
in the information security community. However, many current steganography algorithms are not
sufficiently resistant to recent steganalysis algorithms, such as deep learning-based steganalysis
algorithms. In this manuscript, a new steganography algorithm, based on residual networks and
pixel shuffle, is proposed, which combines image encryption and image hiding, named Resen-Hi-
Net, an algorithm that first encrypts a secret image and then hides it in a carrier image to produce
a meaningful container image. The proposed Resen-Hi-Net has the advantages of both image
encryption and image hiding. The experimental results showed that the proposed Resen-Hi-Net
could realize both image encryption and image hiding; the visual container image quality was as high
as 40.19 dB on average in PSNR to reduce the possibility of being attacked, and the reconstructed
secret image quality was also good enough (34.39 dB on average in PSNR). In addition, the proposed
Resen-Hi-Net has a strong ability to resist destructive attacks and various steganographic analyses.

Keywords: steganography; image encryption; residual; pixel shuffle; steganalysis

MSC: 68T07; 98A08

1. Introduction

Encryption and information hiding are the two main measures to ensure information
security. Encryption is the transformation of data into disordered ciphertext via cryp-
tographic algorithms. The essence of image encryption is to change the pixel positions
or pixel values of an image so that the image becomes visually similar to noise or tex-
ture [1–3]. To increase the key space and flexibility, some image encryption techniques,
such as fractional discrete cosine transform [4–6], fractional chaotic systems [7], fractional
wavelet transform [8], fractional Fourier transform [9,10], and multi-parameter discrete
fractional random transform [11], use fractional-order transformations with additional free
parameters as auxiliary keys. However, these encryption models are vulnerable to various
cryptographic attacks by eavesdroppers. Unlike encryption, steganography is a technique
that hides information in a host to avoid the attention of eavesdroppers. Common hosts
include: images [12], audio [13], text [14], video [15], compressed files [16], etc. Among
these, images are the most commonly used information carriers due to their strong intuition
and comprehensiveness. Image steganography has now become an important branch in
the field of information security.

The application of steganography in digital media can be traced back to the 1990s.
Bender et al. [17] proposed the earliest image steganography algorithm, which consisted of
a digital image steganography algorithm based on the least significant bit (LSB). This algo-
rithm embeds secret information by changing the lowest bits of the pixels. Similar to the
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LSB algorithm, in the compression domain, the information is considered to be hidden in
the lowest bits of the quantized discrete cosine transform (DCT) coefficients, resulting in al-
gorithms, such as Jsteg [18] and F5 [19]. However, these algorithms belong to non-adaptive
steganography algorithms that do not consider the texture complexity of the image when
embedding secret information. In 2011, Fridrich [20] proposed an image steganography
framework by minimizing the embedding of arbitrary additive distortion functions. He
used syndrome-trellis codes to improve the security of existing steganographic algorithms
and reduce distortion for a given payload. Generally, the above-mentioned steganographic
algorithms use manually-designed distortion functions, such as the weighted difference
of eigenvectors used in the highly undetectable steGO (Hugo) [21], the cost sum of pixel
change differences used in the wavelet obtained weights (WOW) [22] and the sum of
relative changes of the wavelet coefficients used in the spatial-domain universal wavelet
relative distortion (S-UNIWARD) [23]. It requires a long time of knowledge accumulation
and continuous attempts. In addition, the traces in the carrier image resulting from the se-
cret information embedding in traditional steganography algorithms can be easily detected
by steganalysis.

With the rise of deep learning, the deep learning-based image steganography algorithm
has attracted much attention in the information security community. In 2016, Volkhonskiy
et al. [24] proposed the first deep learning-based image steganography algorithm. The
algorithm was based on a deep convolutional generative adversarial network (DCGAN),
including a generator (G), a discriminator (D), and a steganalyzer (S). G is responsible
for generating image samples, D is responsible for determining whether the samples are
real or generated samples, and S is responsible for evaluating the security of the container
images generated after steganography embedding. Subsequently, more steganography
algorithms, based on generative adversarial networks (GAN) [25], were proposed, such as
SSGAN [26], ADSL-GAN [27], Hiding GAN [28], etc. [29,30]. These new steganography
methods not only reduce human participation, but also effectively enhance the security
of steganography. However, there are still some problems, such as instability of network
architecture and irreversibility of the GAN network.

The steganography methods based on convolutional neural network (CNN) are differ-
ent from those based on GAN. They hide secret images based on global feature mapping.
Baluja [31] proposed an image steganography model based on an automatic encoder frame-
work, which hides an image of the same size in another image. Rehman et al. [32] proposed
an end-to-end training method and trained a pair of encoded and decoded CNNs to hide
images into other images. To improve security and reliability, Wang et al. [33] proposed
a novel steganographic network based on style transfer (STNet). To further improve the
capacity of steganography, Baluja [34] attempted to hide two color images of the same size
into one color image. Wang et al. [35] also proposed a high-capacity image steganography
that can hide up to four images in a host image by naturally increasing the number of
channels in the hidden image branch. Zhu et al. [36] proposed a high-capacity image hiding
algorithm based on residual CNN in wavelet domain, which has a maximum capacity of
32 times that of the carrier. However, the high-capacity embedding ratio poses security
risks and is more easily detected by recent deep learning-based steganalyses.

Among the evaluation indicators of the above-mentioned steganography algorithms,
capacity is an important one. For example, in the literature [34–36], the focus has always
been on how to improve the image hiding capacity of steganography. However, the
increase in capacity comes at the cost of security threats, along with reduced ability to
resist steganalysis, cropping, compression, and noise attacks. In [36], the image hiding
capacity reached up to 32, but the resistance against some attacks, such as cropping and
compression, was unsatisfactory. Therefore, in this paper, we propose a new image hiding
model to improve the hiding capacity, while maintaining resistance to various steganalyses
and common image manipulation attacks.

In this paper, we propose a new image-hiding convolutional neural Network based on
Residual network and pixel Shuffle combined with image Encryption, named Resen-Hi-Net.
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Resen-Hi-Net basically consists of an encryption module, an image hiding network and
a recovery network (i.e., Torch-Net). To reduce the possibility of being attacked, and to
increase the difficulty of steganalysis algorithms, the secret image was first encrypted and
then hidden in the carrier image, resulting in a visually meaningful container image. To
recover the secret image, a Torch-Net was modeled as a recovery network, including a
pyramid at the bottom and an inverted pyramid at the top. The hidden information was
extracted from the pyramid and the secret image was gradually reconstructed through the
layers of the inverted pyramid.

2. Related Work and Evaluation Indexes
2.1. Residual Convolutional Neural Network (RCNN)

The RCNN, originally proposed by He [37], adds a branch of jump connections,
compared to the traditional CNN. The residual network solves the degradation problem of
the deep neural network very well [38]. Under the premise of the same number of layers,
the convergence speed of the residual network is faster. In the steganography algorithm
proposed in this paper, two different ResBlocks were used, as shown in Figure 1. It can be
seen from Figure 1 that ResBlock1 was used to deepen the network depth and bring the
shallow information into the deeper layer. ResBlock2 amplified the input feature maps and
transmitted them to the later layers.
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Figure 1. Two ResBlocks (Conv: Convolutional network, Concat: Concatenation operation, Deconv:
Deconvolutional network).

2.2. Pixel Shuffle

Upsampling, in the framework of deep learning, can simply be understood as any
technology that can make an image become higher in resolution. In PyTorch, there are four
types of upsampling implementations: Pixel shuffle, Upsample, UpsamplingNearest2d,
and UpsamplingBilinear2d. The latter three types are each used to upsample the input
tensor by padding zeros and to enlarge the size of the input feature maps. These adjacent
pixel filling algorithms mainly consider the space factor, but not the channel factor. Artificial
modification traces are obvious and image restoration effect is poor. Pixel shuffler fills
pixels with channel dimensional information, which can achieve ultra-high resolution and
generate more realistic and perfect images [39].

2.3. Image Encryption Algorithm

Wu et al. [40] proposed a highly nonlinear image encryption approach that can resist
common attacks, such as differential attack. This approach combines antagonistic neural
cryptography (ANC) and SHA-256 controlled chaotic systems. In the image encryption
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phase in Resen-Hi-Net, the secret image is encrypted with the aid of this approach and
then embedded in a carrier.

2.4. Evaluation Indexes

Mean square error (MSE), peak signal-to-noise ratio (PSNR) [41], mean structural
similarity (MSSIM) [42], and mean absolute pixel error (APE) [36] were used to evaluate the
quality and difference of images. In this paper, they were used to evaluate the differences
between carriers and containers, secret images and reconstructed secret images. For color
images, a metric was the average of three metrics over the channels R, G, and B.

3. The Proposed Resen-Hi-Net

The proposed Resen-Hi-Net steganography network is shown in Figure 2. First, the
secret image was encrypted using the algorithm in Section 2.3, and the encrypted result was
embedded into the carrier image in the hiding network, resulting in the container image.
After channel transmission, at the receiving end, the container containing the secret image
was the input to the recovery network (Torch-Net), and, Torch-Net output the reconstructed
secret image, as shown in Figure 2, where some notations are: secret image (S), carrier
image (C), encrypted secret image (Ŝ), container image (Ĉ), received container image (C*),
and reconstructed secret image (S*).
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container image (C*), and reconstructed secret image (S*). 

Steganography process

Channel 
transm

issionRecovery process

S

C

S*

Ŝ
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Ĉ

 
Figure 2. Steganography algorithm flowchart. Figure 2. Steganography algorithm flowchart.

3.1. Hiding Network

The structure of the proposed hiding network is shown in Figure 3. As can be seen
from Figure 3, the resulting encrypted image and the carrier image were sent to the upper
and lower branches of the hiding network, respectively. In the upper branch, there were
five convolutional layers. The outputs of layers 3 and 5 of the upper branch were connected
with the outputs of layers 5 and 7 of the lower branch, respectively, and then sent to
the subsequent layers of the lower branch for further learning. By this operation, the
encrypted secret image was embedded in the carrier. Three identical residual modules
(three ResBlock1) were added to the network to concatenate the outputs of layers 3, 4 and
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5ch with those of layers 9, 11 and 13 in the lower branches, respectively, bringing more
carrier information into the deep network. Finally, a container image was obtained.
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3.2. Recovery Network

The recovery network is also called Torch-Net because it is structured like a torch, as
shown in Figure 4. It can be seen from Figure 4 that the container image was input from
the low end, moved up along the lower pyramid, up the inverted pyramid, and, finally,
reached the top, from which the reconstructed secret image was output. After every two
convolutional layers, the size of the feature map was reduced to 1/4 of the original size
using a third convolutional layer with a stride of 2. This operation was repeated four times,
whereby the feature map was compressed from 256 × 256 to 16 × 16 and the number of
channels was increased from 64 to 1024. Subsequently, the secret images were progressively
reconstructed with the help of pixel shufflers and residual modules. On the one hand, the
small-size feature map passed through a pixel shuffle layer and two convolution layers.
On the other hand, it passed through two convolutional layers and an extended ResBlock2.
Both operations enlarged the feature map by a factor of four. The two output feature
maps were then concatenated. After five repetitions, the feature map size was restored to
256 × 256. In the fifth repetition, instead of using pixel shuffle and ResBlock2, an ordinary
convolutional layer and ResBlock1 were used. Finally, after concatenating the two outputs,
the reconstructed secret image was obtained.
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4. Experimental Results
4.1. Developmental Environment and Dataset

The proposed Res-Hi-Netk was implemented using PyTorch (V. 1.10. Adam P.; Sam G.;
Soumith C. Silicon Valley, USA) and accelerated using two GeForce RTX 3090Ti GPUs. The
BOSSbase1.01 dataset [43] was used for training and testing (see Supplementary Materials).
We resized the 50,000 original images in the dataset to a size of 256 × 256 and randomly
divided the training set and test sets in a ratio of 4 to 1.

4.2. Training Process

During the training process, the hiding and recovery networks were trained together
and constrained by the loss function. The loss function consisted of a loss function for the
hiding network L0 and a loss function for the recovery network L1. When the final loss
function met the requirements, the two models were saved and later used in a test set to
verify the performance of the system. L0 is defined as the l1 norm of the difference between
C and Ĉ.

L0= L0
(
C, Ĉ

)
=‖C− Ĉ‖, (1)

Besides, L1 is used to control the difference between S and S*, and is defined as

L1= L1(S, S*) =||S− S*||. (2)

Then the total loss function L is the weighted sum of L0 and L1,

L = L0+αL1. (3)

where α is a balance factor.
The batch size was 8, the initial learning rate was set to 0.005 and α was 0.2 (It was

determined by the ablation experiment in Section 4.6). Figure 5 shows the relationship
between the training epoch and the loss function. It can be seen from the figure that more
than 6000 epochs were trained, at which point the loss function converged. The whole
training lasted for about 60 days. Figure 5 shows that the loss function L0 decreased rapidly
in the first 200 epochs and fluctuated in the next 600 epochs. Afterwards, it entered a slow
downward trend and converged to 0.001 after 3000 epochs, and, finally, fell within the
interval of 0.0001–0.0002. L1 was similar to L0, but the decline rate was slower than L0,
converging to about 0.0005 after 5800 epochs.
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4.3. Results of Image Hiding and Recovery

Some of the results of image hiding and recovery are shown in Figure 6. Figure 6
shows four groups of images, each consisting of a carrier, a secret image, an encrypted
secret image, a container, and the corresponding reconstructed secret image. Any container
image in the fourth row cannot be distinguished from its corresponding carrier in the first
row. As shown in Figure 7, the histograms of the three channels of the carrier images were
almost identical to their corresponding container images. Similarly, Figure 8 shows the
histograms of an original secret image and its reconstructed counterparts for the three
channels. The histograms reflected the distribution of pixel values. This meant that the
obtained container and reconstructed secret images had similar pixel distributions to their
corresponding carrier and secret images.
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Ŝ

 
Figure 6. Results of the four tests for image hiding and reconstruction. 
Figure 6. Results of the four tests for image hiding and reconstruction.



Mathematics 2022, 10, 2934 9 of 19
Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20 

 

 

(a) (b) (c) (d)

(e) (f) (g) (h)  
Figure 7. Histogram comparison between a carrier image and a container image: (a) carrier image; 
(b–d) histograms of pixel values of (a) for the three (RGB) channels, respectively; (e) container 
image; (f–h) histograms of pixel values of (e) for the three (RGB) channels, respectively. 

(e) (f) (g) (h)

(a) (b) (c) (d)

 
Figure 8. Histogram comparison between a secret image and a reconstructed secret image: (a) secret 
image; (b–d) histograms of pixel values of (a) for the three (RGB) channels, respectively; (e) 
reconstructed secret image; (f–h) histograms of pixel values of (e) for the three (RGB) channels, 
respectively. 

Different images were used to measure the difference between two images. The first 
row of Figure 9 shows a carrier, a container and different images scaled by three factors 
of 1, 10 and 20. As can be seen in Figure 9, no information about the hidden image can be 
perceived, even when zoomed in. This showed the excellent hiding performance of the 
proposed algorithm. The difference images between the secret image and its 
corresponding reconstructed image are shown in the second row of Figure 9. This 
indicated that the proposed recovery network could successfully recover the hidden 
image. 

Figure 7. Histogram comparison between a carrier image and a container image: (a) carrier image;
(b–d) histograms of pixel values of (a) for the three (RGB) channels, respectively; (e) container image;
(f–h) histograms of pixel values of (e) for the three (RGB) channels, respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20 

 

 

(a) (b) (c) (d)

(e) (f) (g) (h)  
Figure 7. Histogram comparison between a carrier image and a container image: (a) carrier image; 
(b–d) histograms of pixel values of (a) for the three (RGB) channels, respectively; (e) container 
image; (f–h) histograms of pixel values of (e) for the three (RGB) channels, respectively. 

(e) (f) (g) (h)

(a) (b) (c) (d)

 
Figure 8. Histogram comparison between a secret image and a reconstructed secret image: (a) secret 
image; (b–d) histograms of pixel values of (a) for the three (RGB) channels, respectively; (e) 
reconstructed secret image; (f–h) histograms of pixel values of (e) for the three (RGB) channels, 
respectively. 

Different images were used to measure the difference between two images. The first 
row of Figure 9 shows a carrier, a container and different images scaled by three factors 
of 1, 10 and 20. As can be seen in Figure 9, no information about the hidden image can be 
perceived, even when zoomed in. This showed the excellent hiding performance of the 
proposed algorithm. The difference images between the secret image and its 
corresponding reconstructed image are shown in the second row of Figure 9. This 
indicated that the proposed recovery network could successfully recover the hidden 
image. 

Figure 8. Histogram comparison between a secret image and a reconstructed secret image: (a) secret
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structed secret image; (f–h) histograms of pixel values of (e) for the three (RGB) channels, respectively.

Different images were used to measure the difference between two images. The first
row of Figure 9 shows a carrier, a container and different images scaled by three factors
of 1, 10 and 20. As can be seen in Figure 9, no information about the hidden image can be
perceived, even when zoomed in. This showed the excellent hiding performance of the
proposed algorithm. The difference images between the secret image and its corresponding
reconstructed image are shown in the second row of Figure 9. This indicated that the
proposed recovery network could successfully recover the hidden image.
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Figure 9. Difference images between carrier and container images, and secret and reconstructed
secret images.

The evaluation indexes, PSNR, MSE and MSSIM, as well as APE, for the four groups
of test images in Figure 9, are listed in Table 1. It can be seen from Table 1 that between
the carrier image and the container image, the average PSNR was greater than 40.19 dB,
the MSSIM reached 0.99 on average, and the APE was less than 1 on average for all three
channels. Between the reconstructed image and the original secret image, the average
PSNR was 34.39 dB, the MSSIM reached 0.95 on average, and the average APEs for the R, G
and B channels were 4.14, 4.37 and 4.81, respectively. This indicated that the performance
of the proposed steganography network was excellent.

Table 1. PSNR (dB) and images of MSSIM, MSE and APE (R, B, G).

Image Group Container vs. Carrier
PSNR (dB), MSSIM, MSE

Reconstructed vs. Secret
PSNR (dB), MSSIM, MSE

Container vs. Carrier
APE (R, G, B)

Reconstructed vs.
Secret APE (R, G, B)

a 39.67, 0.99, 14.76 35.34, 0.96, 35.98 0.75, 0.78, 0.76 3.34,3.70, 3.73
b 40.51, 0.99, 10.78 32.30, 0.92, 114.91 0.45, 0.46, 0.55 5.29, 5.47, 6.32
c 40.22, 0.99, 11.34 35.29, 0.97, 45.86 0.53, 0.52, 0.54 3.91, 4.12, 4.58
d 40.34, 0.99, 12.31 34.61, 0.96, 53.57 0.64, 0.67, 0.66 4.00, 4.19, 4.61

Average 40.19, 0.99, 12.29 34.39, 0.95, 62.58 0.59, 0.61, 0.63 4.14, 4.37, 4.81

4.4. Performance of Resistance to Cropping and Noise Attacks

In this section, the performance of the recovery network in response to cropping
attacks, as well as Gaussian and salt-and-pepper noise attacks, is discussed. Figure 10
shows the results of adding Gaussian noise with different intensities to the container images.
As can be seen in Figure 10, the recovery network was able to reconstruct the secret images
even with the addition of noise to the container images. As the intensity of the added noise
increased, the quality of the reconstructed image became worse, but still acceptable with
most of the details being perceptible. Even at a magnification of 16×, the edges of the
reconstructed image became only slightly blurred. This could also be confirmed, as shown
in Table 2, in which, of course, the quality metrics of the reconstructed secret image were
worse than those of the secret image. However, when the added noise intensity was not
significant, the PSNR and MSSIM were good enough, amounting to 27.17 dB and 0.893 for
MSSIM, respectively. Another advantage was that the quality of the reconstructed secret
image slowly decreased from 27.17 to 26.31 dB when the Gaussian noise intensity increased
from 0.01 to 0.12 (12 times). As a result, the recovery network could somewhat resist the
attack of Gaussian noise and recover high-quality secret images.
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Figure 10. Recovery results of secret images with different intensities of Gaussian noise added to container
images: (a) 0, (b) 0.01, (c) 0.04, (d) 0.08 and (e) 0.12 dBW. From left to right correspond to containers,
reconstructed secret images and magnified hand areas in the reconstructed images, respectively.
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Table 2. Evaluation indexes of reconstructed secret images under container images with different
noise attacks in Figures 10 and 11.

Attack Mode Attack Intensity PSNR MSSIM MSE APE (R, G, B)

Gaussian noise attack
(power/dBW)

0.01 27.17 0.893 373 8.23, 7.88, 8.30
0.04 26.75 0.875 415 8.87, 9.09, 9.52
0.08 26.56 0.869 412 9.70, 8.60, 8.89
0.12 26.31 0.857 455 9.85, 9.53, 9.84

Salt and pepper noise
attack (power/dBW)

0.01 28.41 0.900 281 7.32, 7.22, 7.50
0.05 27.86 0.893 320 7.77, 8.05, 8.41
0.1 27.43 0.887 418 8.10, 8.27, 8.55
0.2 25.03 0.863 612 9.51, 8.53, 9.06

Figure 11 shows the results for different intensities of salt-and-pepper noise added to
the container images. Similar to Gaussian noise, visually, when the intensity of the salt and
pepper noise increased, the reconstructed network could still reconstruct the secret image,
and most of the details were perceptible. When magnified 16 times, the loss of color and
details could be found to be greater than in the case of Gaussian noise. From Table 2, it can
be seen that the PSNR, MSSIM and APE indeed became worse with increasing intensity of
the salt and pepper noise. However, the secret image was still acceptable, in terms of visual
quality. When the noise intensity increased, the image quality decreased, but at a slower
rate. Therefore, it could be concluded that the recovery network could resist the attack of
salt and pepper noise to a certain extent and recover high-quality secret images.

4.5. Performance of Resistance to Cropping and Compression Attacks

In this section, the performance of the recovery network in response to different
cropping and compression attacks is discussed. Figure 12 shows the results with respect to
the sizes of the cropped blocks in the container. The position of cropping was determined
randomly. When the cutting size was small, such as 10 × 10 or 25 × 30, it was impossible
to distinguish between the secret image reconstructed from the cropped container and
the secret image reconstructed from the compressed container, and there was no visual
difference between them. When the size of the cropping became larger, the reconstructed
secret image became blurred as a whole, rather than the local blurring that occurred
immediately around the corresponding cropping position, which indicated that the overall
embeddedness of the secret image contributed to the reconstruction of the secret image,
even in the case of partial loss of the container. The more the loss, the worse the quality of
the recovery. This can also be seen from the image quality evaluation indicators in Table 3.

Table 3. Evaluation indexes of the reconstructed secret images from container images in Figures 12
and 13 subject to different attacks.

Attack Mode Attack Intensity PSNR (dB) MSSIM MSE APE(R,G,B)

Cropping attacks
(pixels)

10 × 10 31.98 0.963 126 3.43,3.33,3.53
25 × 30 28.73 0.913 217 5.23,5.67,5.15

Two of 25 × 30 25.56 0.844 588 9.98,9.08,10.56
Three of 25 × 30 25.12 0.832 751 11.89,11,34,12.20

PCA
compression
(compression

ratio)

1.53 24.32 0.835 1237 16.72,17.66,17.60
2.98 23.14 0.822 1594 18.81,18.73,19,21
5.88 21.51 0.806 1874 21.14,22.84,22.83

11.77 20.63 0.783 2325 22.36,24.21,24.27
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Figure 11. Recovery results of secret images with different intensities of salt-and-pepper noise added to
container images: (a) 0, (b) 0.01, (c) 0.05, (d) 0.1 and (e) 0.2 dBW. From left to right correspond to containers,
reconstructed secret images and magnified hand areas in the reconstructed images, respectively.
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Figure 12. Comparison of reconstructed secret images from containers cropped at different sizes (the
black areas indicate the cropped area): (a) no cropping, (b) 10 × 10, (c) 25 × 30, (d) two of 25 × 30,
and (e) three of 25 × 30. From left to right correspond to cropped containers, reconstructed secret
images, and magnified hand areas in the reconstructed secret images, respectively.
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Figure 13. Comparison of secret images reconstructed from container images with different compression
ratios: (a) 1, (b) 1.53, (c) 2.98, (d) 5.88 and (e) 11.77. From left to right correspond to compressed containers,
reconstructed secret images, and magnified hand areas in the reconstructed secret images, respectively.
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Figure 13 shows the results of the reconstructed secret image when the container was
compressed at different compression ratios and then decompressed. It can be seen from
Figure 13 that the compression of the container image had some impact on the quality
of the reconstructed secret image. In the reconstructed secret image, some blocks became
black. The larger the compression ratio was, the greater the number of black blocks there
were. In addition, it can be seen from the data in Table 3 that the quality of the reconstructed
secret images changed. When the compression ratio increased from 1.53 to 11.77, the PSNR
decreased from 24.32 dB to 20.63 dB and the MSSIM decreased from 0.835 to 0.783. Meanwhile,
the MSE rose rapidly and the APE of pixels became larger, but a slightly blurred reconstructed
secret image could also be obtained. Visually, there were only subtle differences in color and
edges between the reconstructed secret image and the secret image. Therefore, the proposed
Resen-Hi-Net had certain resistance to cropping and compression attacks.

4.6. Resistance to Steganalyses

The ability to effectively resist steganalysis is a very important indicator of steganalysis
algorithms. SRM [44], maxSRM [45] and Ye-Net [46] are three commonly used open source
steganalysis algorithms. SRM and maxSRM are spatial domain-based image steganalysis
tools. Ye-Net is a steganalysis model based on CNN. These three steganalysis algorithms
were used to detect whether the extracted algorithm could effectively resist steganalysis. A
total of 500 container images were randomly generated and tested using their corresponding
carriers. The results are shown in Figure 14.
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Figure 14. ROC and AUC detected by SRM, maxSRM and Ye-Net steganalysis algorithms.

It is worth noting that when the secret images were encrypted and hidden in the carrier
images, the secret images hidden in the container images were more difficult for the above
steganalysis algorithms to detect. The results showed that our proposed Resen-Hi-Net with
embedded pre-encryption was more robust to image steganalysis algorithms and improved
the security of image steganography.

4.7. Ablation Study

To find a balance between hiding and recovery effects, we conducted ablation ex-
periments on the parameters, α, in the loss function. The results of steganography and
steganalysis were calculated for 1000 groups of images, as shown in Table 4. Table 4 shows
that when α = 0.2, the probability of 69% could be detected by steganalysis, and with
the increase of a, the probability of detection also increased. When α = 0.1, although the
probability of detection was reduced, the quality of the reconstructed secret image was
poor and many details were lost. Considering comprehensively, α was taken as 0.2.
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Table 4. Average PSNR and MSSIM between carriers and containers, as well as reconstructed secret
images and secret images for different α values, and average AUC for attacking containers using
different steganalysis algorithms.

α
Container vs. Carrier Reconstructed vs. Secret AUC

PSNR (dB) MSSIM PSNR (dB) MSSIM SRM MaxSRM Ye-Net

1 37.98 0.973 37.68 0.971 0.67 0.76 0.81
0.8 38.73 0.978 36.42 0.968 0.66 0.73 0.79
0.6 39.16 0.984 36.13 0.964 0.63 0.69 0.76
0.4 39.75 0.988 35.53 0.963 0.57 0.63 0.73
0.2 40.60 0.993 34.23 0.960 0.51 0.58 0.69
0.1 41.39 0.994 32.07 0.952 0.51 0.57 0.64

4.8. Comparison with Other State-of-the-Art CNN Steganography Approaches

In this section, the proposed algorithm was compared with other state-of-the-art CNN
approaches, as shown in Table 5. The results in Table 5 were the average experimental
results for 100 groups of container and carrier images.

Table 5. Comparative experimental results of the proposed, Baluja-Net [34] and ISN [35] hiding
algorithms.

Methods
Container vs. Carrier Reconstructed vs. Secret Against Steganalysis (AUC)

PSNR (dB) MSSIM APE (R,G,B) PSNR (dB) MSSIM APE (R,G,B) SRM MaxSRM Ye-Net

Baluja-Net [34] 36.49 0.95 0.48, 0.49, 0.43 30.56 0.90 4.79, 4,37, 4.53 0.63 0.72 0.79
ISN [35] 39.28 0.977 N/A 40.42 0.985 N/A 0.59 0.65 0.73

Proposed
Resen-Hi-Net 40.13 0.983 0.45, 0.46, 0.44 34.25 0.951 3.95, 4.34, 4.46 0.51 0.58 0.69

As can be seen from Table 5, the steganography performance of our model outper-
formed the other two methods in terms of resistance to steganalysis algorithms. Specifically,
the AUCs of the proposed model were 0.51, 0.58 and 0.69 in resisting the steganalysis algo-
rithms of SRM, MaxSRM and Ye-Net, respectively, which were lower than the other two
image hiding methods of Baluja-Net and ISN. This implied that the proposed Resen-Hi-Net
had the least possibility of being broken. In addition, the performance of recovery of the
proposed model was the same as that of Baluja-Net, but slightly worse than that of ISN.

5. Conclusions and Discussion

A new highly secure image hiding algorithm, Resen-Hi-Net, is proposed. The secret
image is encrypted and then hidden in the carrier image to obtain the container image. The
encrypted secret image has a uniform distribution of pixel values and is visually a white
noise-like image. The resulting container image cannot be visually distinguished from the
carrier image. Furthermore, the recovery network can effectively reconstruct high-quality
secret images. In the comparative experiments, the proposed algorithm could better resist
steganalysis algorithm detection, as well as noise, clipping, compression and other attacks.
The proposed Resen-Hi-Net performed well in terms of steganography metrics, such as
PSNR, MSSIM and other indicators, between container and carrier images and between
reconstructed and original secret images. In addition, it had a certain degree of resistance
to several commonly used steganalysis algorithms and common attacks, such as cropping,
noise and compression attacks. Consequently, the proposed Resen-Hi-Net is stable in terms of
resistance to different attacks and reversible in terms of its ability to recover secret images.
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