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We combine Stein’s method with a version of Malliavin calculus on the
Poisson space. As a result, we obtain explicit Berry–Esséen bounds in Central
limit theorems (CLTs) involving multiple Wiener–Itô integrals with respect to
a general Poisson measure. We provide several applications to CLTs related
to Ornstein–Uhlenbeck Lévy processes.

1. Introduction. In a recent series of papers, Nourdin and Peccati [13, 14],
Nourdin, Peccati and Réveillac [15] and Nourdin, Peccati and Reinert [16] have
shown that one can effectively combine Malliavin calculus on a Gaussian space
(see, e.g., [17]) and Stein’s method (see, e.g., [3, 28]) in order to obtain explicit
bounds for the normal and nonnormal approximation of smooth functionals of
Gaussian fields.

The aim of the present paper is to extend the analysis initiated in [13] to the
framework of the normal approximation (in the Wasserstein distance) of regu-
lar functionals of Poisson measures defined on abstract Borel spaces. As in the
Gaussian case, the main ingredients of our analysis are the following:

1. A set of Stein differential equations, relating the normal approximation in the
Wasserstein distance to first-order differential operators.

2. A (Hilbert space-valued) derivative operator D, acting on real-valued square-
integrable random variables.

3. An integration by parts formula, involving the adjoint operator of D.
4. A “pathwise representation” of D which, in the Poisson case, involves standard

difference operators.

As a by-product of our analysis, we obtain substantial generalizations of the
Central limit theorems (CLTs) for functionals of Poisson measures (for instance,
for sequences of single and double Wiener–Itô integrals) recently proved in [22–
24] (see also [4, 21] for applications of these results to Bayesian nonparametric sta-
tistics). In particular, one of the main results of the present paper (see Theorem 5.1
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below) is a CLT for sequences of multiple Wiener–Itô integrals of arbitrary (fixed)
order with respect to a general Poisson measure. Our conditions are expressed in
terms of contraction operators, and can be seen as a Poisson counterpart to the
CLTs on Wiener space proved by Nualart and Peccati [19] and Nualart and Ortiz-
Latorre [18]. The reader is referred to Decreusefond, Joulin and Savy [5] for other
applications of Stein-type techniques and Malliavin operators to the assessment of
Rubinstein distances on configuration spaces.

The remainder of the paper is organized as follows. In Section 2, we discuss
some preliminaries, involving multiplication formulae, Malliavin operators, limit
theorems and Stein’s method. In Section 3, we derive a general inequality con-
cerning the Gaussian approximation of regular functionals of Poisson measures.
Section 4 is devoted to upper bounds for the Wasserstein distance, and Section 5
to CLTs for multiple Wiener–Itô integrals of arbitrary order. Section 6 deals with
sums of a single and a double integral. In Section 7, we apply our results to non-
linear functionals of Ornstein–Uhlenbeck Lévy processes.

2. Preliminaries.

2.1. Poisson measures. Throughout the paper, (Z, Z,μ) indicates a measure
space such that Z is a Borel space and μ is a σ -finite nonatomic Borel measure. We
define the class Zμ as Zμ = {B ∈ Z :μ(B) < ∞}. The symbol N̂ = {N̂(B) :B ∈
Zμ} indicates a compensated Poisson random measure on (Z, Z) with control μ.

This means that N̂ is a collection of random variables defined on some probability
space (�, F ,P), indexed by the elements of Zμ, and such that: (i) for every B,C ∈
Zμ such that B ∩ C = ∅, N̂(B) and N̂(C) are independent, (ii) for every B ∈ Zμ,

N̂(B)
law= P(B) − μ(B),

where P(B) is a Poisson random variable with parameter μ(B). Note that proper-
ties (i) and (ii) imply, in particular, that N̂ is an independently scattered (or com-
pletely random) measure (see, e.g., [24]).

REMARK 2.1. According to [27], Section 1, and due to the assumptions on
the space (Z, Z,μ), it is always possible to define (�, F ,P) in such a way that

� =
{
ω =

n∑
j=0

δzj
, n ∈ N ∪ {∞}, zj ∈ Z

}
,(2.1)

where δz denotes the Dirac mass at z, and N̂ is the compensated canonical map-
ping given by

N̂(B)(ω) = ω(B) − μ(B), B ∈ Zμ.(2.2)
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Also, in this case one can take F to be the P-completion of the σ -field generated
by the mapping (2.2). Note that, under these assumptions, one has that

P{ω :ω(B) < ∞,∀B s.t. μ(B) < ∞} = 1 and
(2.3)

P
{
ω :∃z s.t. ω({z}) > 1

} = 0.

REMARK 2.2. From now on, and for the rest of the paper, the hypotheses (2.2)
and (2.3), on the structure of � and N̂ , are implicitly satisfied. In particular, F is
the P-completion of the σ -field generated by the mapping in (2.2).

For every deterministic function h ∈ L2(Z, Z,μ) = L2(μ), we write N̂(h) =∫
Z h(z)N̂(dz) to indicate the Wiener–Itô integral of h with respect to N̂ (see, e.g.,

[9] or [29]). We recall that, for every h ∈ L2(μ), the random variable N̂(h) has an
infinitely divisible law, with Lévy–Khinchine exponent (see again [29]) given by

ψ(h,λ) = log E
[
eiλN̂(h)] =

∫
Z

[
eiλh(z) − 1 − iλh(z)

]
μ(dz), λ ∈ R.(2.4)

Recall also the isometric relation: for every g,h ∈ L2(μ), E[N̂(g)N̂(h)] =∫
Z h(z)g(z)μ(dz).

Fix n ≥ 2. We denote by L2(μn) the space of real-valued functions on Zn that
are square-integrable with respect to μn, and we write L2

s (μ
n) to indicate the sub-

space of L2(μn) composed of symmetric functions. For every f ∈ L2
s (μ

n), we
denote by In(f ) the multiple Wiener–Itô integral of order n, of f with respect
to N̂ . Observe that, for every m,n ≥ 2, f ∈ L2

s (μ
n) and g ∈ L2

s (μ
m), one has the

isometric formula (see, e.g., [33]):

E[In(f )Im(g)] = n!〈f,g〉L2(μn)1(n=m).(2.5)

Now fix n ≥ 2 and f ∈ L2(μn) (not necessarily symmetric) and denote by f̃ the
canonical symmetrization of f : for future use we stress that, as a consequence of
Jensen’s inequality,

‖f̃ ‖L2(μn) ≤ ‖f ‖L2(μn).(2.6)

The Hilbert space of random variables of the type In(f ), where n ≥ 1 and
f ∈ L2

s (μ
n) is called the nth Wiener chaos associated with N̂ . We also use

the following conventional notation: I1(f ) = N̂(f ), f ∈ L2(μ); In(f ) = In(f̃ ),
f ∈ L2(μn), n ≥ 2 [this convention extends the definition of In(f ) to nonsym-
metric functions f ]; I0(c) = c, c ∈ R. The following proposition, whose content
is known as the chaotic representation property of N̂ , is one of the crucial results
used in this paper. (See, e.g., [20] or [34] for a proof.)
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PROPOSITION 2.3 (Chaotic decomposition). Every random variable F ∈
L2(F ,P) = L2(P) admits a (unique) chaotic decomposition of the type

F = E(F ) +
∞∑

n≥1

In(fn),(2.7)

where the series converges in L2 and, for each n ≥ 1, the kernel fn is an element
of L2

s (μ
n).

2.2. Contractions, stars and products. We now recall a useful version of the
multiplication formula for multiple Poisson integrals. To this end, we define, for
q,p ≥ 1, f ∈ L2

s (μ
p), g ∈ L2

s (μ
q), r = 0, . . . , q ∧p and l = 1, . . . , r , the (contrac-

tion) kernel on Zp+q−r−l , which reduces the number of variables in the product
fg from p + q to p + q − r − l as follows: r variables are identified and, among
these, l are integrated out. This contraction kernel is formally defined as follows:

f �l
r g(γ1, . . . , γr−l, t1, . . . , tp−r , s1, . . . , sq−r )

=
∫
Zl

f (z1, . . . , zl, γ1, . . . , γr−l, t1, . . . , tp−r )(2.8)

× g(z1, . . . , zl, γ1, . . . , γr−l, s1, . . . , sq−r )μ
l(dz1 · · ·dzl)

and, for l = 0,

f �0
r g(γ1, . . . , γr , t1, . . . , tp−r , s1, . . . , sq−r )

(2.9)
= f (γ1, . . . , γr , t1, . . . , tp−r )g(γ1, . . . , γr , s1, . . . , sq−r ),

so that f �0
0 g(t1, . . . , tp, s1, . . . , sq) = f (t1, . . . , tp)g(s1, . . . , sq). For example, if

p = q = 2,

f �0
1 g(γ, t, s) = f (γ, t)g(γ, s),

(2.10)
f �1

1 g(t, s) =
∫
Z

f (z, t)g(z, s)μ(dz),

f �1
2 g(γ ) =

∫
Z

f (z, γ )g(z, γ )μ(dz),(2.11)

f �2
2 g =

∫
Z

∫
Z

f (z1, z2)g(z1, z2)μ(dz1)μ(dz2).(2.12)

The quite suggestive “star-type” notation is standard, and has been first used by
Kabanov in [8] (but see also Surgailis [33]). Plainly, for some choice of f,g, r, l the
contraction f �l

r g may not exist, in the sense that its definition involves integrals
that are not well defined. On the positive side, the contractions of the following
three types are well defined (although possibly infinite) for every q ≥ 2 and every
kernel f ∈ L2

s (μ
q):
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(a) f �0
r f (z1, . . . , z2q−r ), where r = 0, . . . , q , as obtained from (2.9), by setting

g = f ;
(b) f �l

q f (z1, . . . , zq−l) = ∫
Zl f 2(z1, . . . , zq−l , ·) dμl , for every l = 1, . . . , q;

(c) f �r
r f , for r = 1, . . . , q − 1.

In particular, a contraction of the type f �l
q f , where l = 1, . . . , q − 1 may equal

+∞ at some point (z1, . . . , zq−l). The following (elementary) statement ensures
that any kernel of the type f �r

r g is square-integrable.

LEMMA 2.4. Let p,q ≥ 1, and let f ∈ L2
s (μ

q) and g ∈ L2
s (μ

p). Fix r =
0, . . . , q ∧ p. Then, f �r

r g ∈ L2(μp+q−2r ).

PROOF. Just use equation (2.8) in the case l = r , and deduce the conclusion
by a standard use of the Cauchy–Schwarz inequality. �

We also record the following identity (which is easily verified by a standard
Fubini argument), valid for every q ≥ 1, every p = 1, . . . , q:∫

Z2q−p
(f �0

p f )2 dμ2q−p =
∫
Zp

(f �q−p
q f )2 dμp(2.13)

for every f ∈ L2
s (μ

q). The forthcoming product formula for two Poisson multiple
integrals is proved, for example, in [8] and [33].

PROPOSITION 2.5 (Product formula). Let f ∈ L2
s (μ

p) and g ∈ L2
s (μ

q),
p,q ≥ 1, and suppose moreover that f �l

r g ∈ L2(μp+q−r−l) for every r =
0, . . . , p ∧ q and l = 1, . . . , r such that l �= r . Then

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

) r∑
l=0

(
r

l

)
Iq+p−r−l(f̃ �l

r g),(2.14)

where the tilde “˜” stands for symmetrization, that is,

f̃ �l
r g(x1, . . . , xq+p−r−l) = 1

(q + p − r − l)!
∑
σ

f �l
r g

(
xσ(1), . . . , xσ(q+p−r−l)

)
,

where σ runs over all (q +p−r − l)! permutations of the set {1, . . . , q +p−r − l}.

REMARK 2.6 (Multiple integrals and Lévy processes). In the multiple
Wiener–Itô integrals introduced in this section, the integrators are compensated
Poisson measures of the type N̂(dz), defined on some abstract Borel space. It
is well known that one can also build similar objects in the framework of Lévy
processes indexed by the real line. Suppose indeed that we are given a cadlag Lévy
process X = {Xt, t ≥ 0} (that is, X has stationary and independent increments, X

is continuous in probability and X0 = 0), defined on a complete probability space
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(�, F ,P ), and with Lévy triplet (γ, σ 2, ν) where γ ∈ R, σ ≥ 0 and ν is a Lévy
measure on R (see, e.g., [29]). The process X admits a Lévy–Itô representation

Xt = γ t + σWt +
∫ ∫

(0,t]×{|x|>1}
x dN(s, x)

(2.15)
+ lim

ε↓0

∫ ∫
(0,t]×{ε<|x|≤1}

x dÑ(s, x),

where: (i) {Wt, t ≥ 0} is a standard Brownian motion, (ii)

N(B) = #{t : (t,�Xt) ∈ B}, B ∈ B
(
(0,∞) × R0

)
,

is the jump measure associated with X (where R0 = R − {0}, �Xt = Xt − Xt−
and #A denotes the cardinal of a set A) and (iii)

dÑ(t, x) = dN(t, x) − dt dν(x)

is the compensated jump measure. The convergence in (2.15) is a.s. uniform (in t)
on every bounded interval. Following Itô [7], the process X can be extended to an
independently scattered random measure M on (R+ × R, B(R+ × R)) as follows.
First, consider the measure dμ∗(t, x) = σ 2 dt dδ0(x) + x2 dt dν(x), where δ0 is
the Dirac measure at point 0, and dt is the Lebesgue measure on R. This means
that, for E ∈ B(R+ × R),

μ∗(E) = σ 2
∫
E(0)

dt +
∫ ∫

E′
x2 dt dν(x),

where E(0) = {t ∈ R+ : (t,0) ∈ E} and E′ = E − {(t,0) ∈ E}; this measure is
continuous (see Itô [7], page 256). Now, for E ∈ B(R+ × R) with μ∗(E) < ∞,
define

M(E) = σ

∫
E(0)

dWt + lim
n

∫ ∫
{(t,x)∈E : 1/n<|x|<n}

x dÑ(t, x)

[with convergence in L2(�)], that is, M is a centered independently scattered ran-
dom measure such that

E[M(E1)M(E2)] = μ∗(E1 ∩ E2)

for E1,E2 ∈ B(R+ × R) with μ∗(E1) < ∞ and μ∗(E2) < ∞. Now write L2
n =

L2((R+ ×R)n, B(R+ ×R)n,μ∗⊗n). For every f ∈ L2
n, one can now define a mul-

tiple stochastic integral In(f ), with integrator M , by using the same procedure
as in the Poisson case (the first construction of this type is due to Itô—see [7]).
Since M is defined on a product space, in this scenario, we can separate the time
and the jump sizes. If the Lévy process has no Brownian components, then M has
the representation M(dz) = M(ds, dx) = xÑ(ds, dx), that is, M is obtained by
integrating a factor x with respect to the underlying compensated Poisson mea-
sure of intensity dt ν(dx). Therefore, in order to define multiple integrals of order
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n with respect to M , one should consider kernels that are square-integrable with
respects the measure (x2 dt ν(dx))⊗n. The product formula of multiple integrals
in this different context would be analogous to the one given in Proposition 2.5,
but in the definitions of the contraction kernels one has to to take into account the
supplementary factor x (see, e.g., [10] for more details on this point).

2.3. Four Malliavin-type operators. In this section, we introduce four opera-
tors of the Malliavin-type, that are involved in the estimates of the subsequent sec-
tions. Each of these operators is defined in terms of the chaotic expansions of the
elements in its domain, thus implicitly exploiting the fact that the chaotic represen-
tation property (2.7) induces an isomorphism between L2(P) and the symmetric
Fock space canonically associated with L2(μ). The reader is referred to [20] or
[30] for more details on the construction of these operators, as well as for further
relations with chaotic expansions and Fock spaces. One crucial fact in our analy-
sis is that the derivative operator D (to be formally introduced below) admits a
neat characterization in terms of a usual difference operator (see the forthcoming
Lemma 2.8).

For later reference, we recall that the space L2(P;L2(μ)) � L2(� × Z, F ⊗
Z,P ⊗ μ) is the space of the measurable random functions u :� × Z → R such
that

E

[∫
Z

u2
zμ(dz)

]
< ∞.

In what follows, given f ∈ L2
s (μ

q) (q ≥ 2) and z ∈ Z, we write f (z, ·) to indicate
the function on Zq−1 given by (z1, . . . , zq−1) → f (z, z1, . . . , zq−1).

(i) The derivative operator D. The derivative operator, denoted by D, trans-
forms random variables into random functions. Formally, the domain of D, writ-
ten domD, is the set of those random variables F ∈ L2(P) admitting a chaotic
decomposition (2.7) such that∑

n≥1

nn!‖fn‖2
L2(μn)

< ∞.(2.16)

If F verifies (2.16) (that is, if F ∈ domD), then the random function z �→ DzF is
given by

DzF = ∑
n≥1

nIn−1(f (z, ·)), z ∈ Z.(2.17)

For instance, if F = I1(f ), then DzF is the nonrandom function z �→ f (z). If
F = I2(f ), then DzF is the random function

z �→ 2I1(f (z, ·)).(2.18)

By exploiting the isometric properties of multiple integrals, and thanks to (2.16),
one sees immediately that DF ∈ L2(P;L2(μ)), for every F ∈ domD.
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REMARK 2.7. Strictly speaking, the random function appearing in (2.17)
provides a version of the Malliavin derivative of F . In particular, any u ∈
L2(P;L2(μ)) such that u(ω, z) equals the right-hand side of (2.17) for dP × dμ-
almost every (ω, z) can be used as a definition of DF .

Now recall that, in this paper, the underlying probability space (�, F ,P) is
such that � is the collection of discrete measures given by (2.1). Fix z ∈ Z; given
a random variable F :� → R, we define Fz to be the random variable obtained by
adding the Dirac mass δz to the argument of F . Formally, for every ω ∈ �, we set

Fz(ω) = F(ω + δz).(2.19)

A version of the following result, whose content is one of the staples of our analy-
sis, is proved, for example, in [20], Theorem 6.2 (see also [30], Proposition 5.1).
One should also note that the proof given in [20] applies to the framework of a
Radon control measure μ: however, the arguments extend immediately to the case
of a Borel control measure considered in the present paper, and we do not re-
produce them here (see, however, the remarks below). It relates Fz to DzF and
provides a representation of D as a difference operator.

LEMMA 2.8. For every F ∈ domD,

DzF = Fz − F, a.e.-μ(dz).(2.20)

REMARK 2.9.

1. In the Itô-type framework detailed in Remark 2.6, we could alternatively use
the definition of the Malliavin derivative introduced in [30], that is,

D(t,x)F = F(t,x) − F

x
, a.e.-x2 dt ν(dx).

See also [11].
2. When applied to the case F = I1(f ), formula (2.20) is just a consequence of

the straightforward relation

Fz − F =
∫
Z

f (x)
(
N̂(dx) + δz(dx)

)−
∫
Z

f (x)N̂(dx)

=
∫
Z

f (x)δz(dx) = f (z).

3. To have an intuition of the proof of (2.20) in the general case, consider
for instance a random variable of the type F = N̂(A) × N̂(B), where the
sets A,B ∈ Zμ are disjoint. Then one has that F = I2(f ) where f (x, y) =
2−1{1A(x)1B(y) + 1A(y)1B(x)}. Using (2.18), we have that

DzF = N̂(B)1A(z) + N̂(A)1B(z), z ∈ Z,(2.21)
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and

Fz − F = {N̂ + δz}(A) × {N̂ + δz}(B) − N̂(A)N̂(B), z ∈ Z.

Now fix z ∈ Z. There are three possible cases: (i) z /∈ A and z /∈ B , (ii) z ∈ A,
and (iii) z ∈ B . If z is as in (i), then Fz = F . If z is as in (ii) [resp., as in (iii)],
then

Fz − F = {N̂ + δz}(A) × N̂(B) − N̂(A)N̂(B) = N̂(B)

[resp.,

Fz − F = N̂(A) × {N̂ + δz}(B) − N̂(A)N̂(B) = N̂(A)].
As a consequence, one deduces that Fz − F = N̂(B)1A(z) + N̂(A)1B(z), so
that relation (2.20) is obtained from (2.21).

4. Observe also that Lemma 2.8 yields that, if F,G ∈ domD are such that FG ∈
domD, then

D(FG) = FDG + GDF + DGDF,(2.22)

(see [20], Lemma 6.1, for a detailed proof of this fact).

(ii) The Skorohod integral δ. Observe that, due to the chaotic representation
property of N̂ , every random function u ∈ L2(P,L2(μ)) admits a (unique) repre-
sentation of the type

uz = ∑
n≥0

In(fn(z, ·)), z ∈ Z,(2.23)

where, for every z, the kernel fn(z, ·) is an element of L2
s (μ

n). The domain of the
Skorohod integral operator, denoted by dom δ, is defined as the collections of those
u ∈ L2(P,L2(μ)) such that the chaotic expansion (2.23) verifies the condition∑

n≥0

(n + 1)!‖fn‖2
L2(μn+1)

< ∞.(2.24)

If u ∈ dom δ, then the random variable δ(u) is defined as

δ(u) = ∑
n≥0

In+1(f̃n),(2.25)

where f̃n stands for the canonical symmetrization of f (as a function in n + 1
variables). For instance, if u(z) = f (z) is a deterministic element of L2(μ), then
δ(u) = I1(f ). If u(z) = I1(f (z, ·)), with f ∈ L2

s (μ
2), then δ(u) = I2(f ) (we stress

that we have assumed f to be symmetric). The following classic result, proved, for
example, in [20], provides a characterization of δ as the adjoint of the derivative D.
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LEMMA 2.10 (Integration by parts formula). For every G ∈ domD and every
u ∈ dom δ, one has that

E[Gδ(u)] = E
[〈DG,u〉L2(μ)

]
,(2.26)

where

〈DG,u〉L2(μ) =
∫
Z

DzG × u(z)μ(dz).

(iii) The Ornstein–Uhlenbeck generator L. The domain of the Ornstein–
Uhlenbeck generator (see [17], Chapter 1), written domL, is given by those
F ∈ L2(P) such that their chaotic expansion (2.7) verifies∑

n≥1

n2n!‖fn‖2
L2(μn)

< ∞.

If F ∈ domL, then the random variable LF is given by

LF = −∑
n≥1

nIn(fn).(2.27)

Note that E(LF) = 0, by definition. The following result is a direct consequence
of the definitions of D, δ and L.

LEMMA 2.11. For every F ∈ domL, one has that F ∈ domD and DF ∈
dom δ. Moreover,

δDF = −LF.(2.28)

PROOF. The first part of the statement is easily proved by applying the defini-
tions of domD and dom δ given above. In view of Proposition 2.3, it is now enough
to prove (2.28) for a random variable of the type F = Iq(f ), q ≥ 1. In this case,
one has immediately that DzF = qIq−1(f (z, ·)), so that δDF = qIq(f ) = −LF .

�

(iv) The inverse of L. The domain of L−1, denoted by L2
0(P), is the space of

centered random variables in L2(P). If F ∈ L2
0(P) and F = ∑

n≥1 In(fn) (and thus
is centered) then

L−1F = −∑
n≥1

1

n
In(fn).(2.29)
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2.4. Normal approximation in the Wasserstein distance, via Stein’s method.
We shall now give a short account of Stein’s method, as applied to normal approx-
imations in the Wasserstein distance. We denote by Lip(1) the class of real-valued
Lipschitz functions, from R to R, with Lipschitz constant less or equal to one, that
is, functions h that are absolutely continuous and satisfy the relation ‖h′‖∞ ≤ 1.
Given two real-valued random variables U and Y , the Wasserstein distance be-
tween the laws of U and Y , written dW(U,Y ) is defined as

dW(U,Y ) = sup
h∈Lip(1)

|E[h(U)] − E[h(Y )]|.(2.30)

We recall that the topology induced by dW on the class of probability measures
over R is strictly stronger than the topology of weak convergence (see, e.g., [6]).
We will denote by N (0,1) the law of a centered standard Gaussian random vari-
able.

Now let X ∼ N (0,1). Consider a real-valued function h : R → R such that the
expectation E[h(X)] is well defined. The Stein equation associated with h and X

is classically given by

h(x) − E[h(X)] = f ′(x) − xf (x), x ∈ R.(2.31)

A solution to (2.31) is a function f depending on h which is Lebesgue a.e.-
differentiable, and such that there exists a version of f ′ verifying (2.31) for every
x ∈ R. The following result is basically due to Stein [31, 32]. The proof of point (i)
(whose content is usually referred as Stein’s lemma) involves a standard use of the
Fubini theorem (see, e.g., [3], Lemma 2.1). Point (ii) is proved, for example, in [2],
Lemma 4.3.

LEMMA 2.12. (i) Let W be a random variable. Then W
Law= X ∼ N (0,1) if,

and only if,

E[f ′(W) − Wf (W)] = 0(2.32)

for every continuous and piecewise continuously differentiable function f verify-
ing the relation E|f ′(X)| < ∞.

(ii) If h is absolutely continuous with bounded derivative, then (2.31) has
a solution fh which is twice differentiable and such that ‖f ′

h‖∞ ≤ ‖h′‖∞ and
‖f ′′

h ‖∞ ≤ 2‖h′‖∞.

Let FW denote the class of twice differentiable functions, whose first deriva-
tive is bounded by 1 and whose second derivative is bounded by 2. If h ∈ Lip(1)

and thus ‖h′‖∞ ≤ 1, then the solution fh, appearing in Lemma 2.12(ii), satisfies
‖f ′

h‖∞ ≤ 1 and ‖f ′′
h ‖∞ ≤ 2, and hence fh ∈ FW .

Now consider a Gaussian random variable X ∼ N (0,1), and let Y be a generic
random variable such that EY 2 < ∞. By integrating both sides of (2.31) with re-
spect to the law of Y and by using (2.30), one sees immediately that point (ii) of
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Lemma 2.12 implies that

dW(Y,X) ≤ sup
f ∈FW

∣∣E(f ′(Y ) − Yf (Y )
)∣∣.(2.33)

Note that the square-integrability of Y implies that the quantity E[Yf (Y )] is well
defined (recall that f is Lipschitz). In the subsequent sections, we will show that
one can effectively bound the quantity appearing on the right-hand side of (2.33)
by means of the operators introduced in Section 2.3.

3. A general inequality involving Poisson functionals. The following es-
timate, involving the normal approximation of smooth functionals of N̂ , will be
crucial for the rest of the paper. We use the notation introduced in the previous
section.

THEOREM 3.1. Let F ∈ domD be such that E(F ) = 0. Let X ∼ N (0,1).
Then,

dW(F,X) ≤ E
[∣∣1 − 〈DF,−DL−1F 〉L2(μ)

∣∣]
(3.1)

+
∫
Z

E[|DzF |2|DzL
−1F |]μ(dz)

≤
√

E
[(

1 − 〈DF,−DL−1F 〉L2(μ)

)2]
(3.2)

+
∫
Z

E[|DzF |2|DzL
−1F |]μ(dz),

where we used the standard notation

〈DF,−DL−1F 〉L2(μ) = −
∫
Z
[DzF × DzL

−1F ]μ(dz).

Moreover, if F has the form F = Iq(f ), where q ≥ 1 and f ∈ L2
s (μ

q), then

〈DF,−DL−1F 〉L2(μ) = q−1‖DF‖2
L2(μ)

,(3.3) ∫
Z

E[|DzF |2|DzL
−1F |]μ(dz) = q−1

∫
Z

E[|DzF |3]μ(dz).(3.4)

PROOF. By virtue of the Stein-type bound (2.33), it is sufficient to prove that,
for every function f such that ‖f ′‖∞ ≤ 1 and ‖f ′′‖∞ ≤ 2 (that is, for every f ∈
FW ), the quantity |E[f ′(F )−Ff (F )]| is smaller than the right-hand side of (3.2).
To see this, fix f ∈ FW and observe that, by using (2.19), for every ω and every
z one has that Dzf (F )(ω) = f (F )z(ω)−f (F )(ω) = f (Fz)(ω)−f (F )(ω). Now
use twice Lemma 2.8, combined with a standard Taylor expansion, and write

Dzf (F ) = f (F )z − f (F ) = f (Fz) − f (F )
(3.5)

= f ′(F )(Fz − F) + R(Fz − F) = f ′(F )(DzF ) + R(DzF),
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where (due to the fact that ‖f ′′‖∞ ≤ 2) the mapping y �→ R(y) is such that
|R(y)| ≤ y2 for every y ∈ R. We can therefore apply (in order) Lemmas 2.10
and 2.11 [in the case u = DL−1F and G = f (F )] and infer that

E[Ff (F )] = E[LL−1Ff (F )] = E[−δ(DL−1F)f (F )]
= E

[〈Df (F),−DL−1F 〉L2(μ)

]
.

According to (3.5), one has that

E
[〈Df (F),−DL−1F 〉L2(μ)

] = E
[
f ′(F )〈DF,−DL−1F 〉L2(μ)

]
+ E

[〈R(DF),−DL−1F 〉L2(μ)

]
.

It follows that

|E[f ′(F ) − Ff (F )]| ≤ ∣∣E[f ′(F )
(
1 − 〈DF,−DL−1F 〉L2(μ)

)]∣∣
+ ∣∣E[〈R(DF),−DL−1F 〉L2(μ)

]∣∣.
By the fact that ‖f ′‖∞ ≤ 1 and by Cauchy–Schwarz,∣∣E[f ′(F )

(
1 − 〈DF,−DL−1F 〉L2(μ)

)]∣∣ ≤ E
[∣∣1 − 〈DF,−DL−1F 〉L2(μ)

∣∣]
≤

√
E
[(

1 − 〈DF,−DL−1F 〉L2(μ)

)2]
.

On the other hand, one sees immediately that∣∣E[〈R(DF),−DL−1F 〉L2(μ)

]∣∣ ≤ ∫
Z

E[|R(DzF)DzL
−1F |]μ(dz)

≤
∫
Z

E[|DzF |2|DzL
−1F |]μ(dz).

Relations (3.3) and (3.4) are immediate consequences of the definition of L−1

given in (2.29). The proof is complete. �

REMARK 3.2. Note that, in general, the bounds in formulae (3.1) and (3.2)
can be infinite. In the forthcoming Sections 4–7, we will exhibit several examples
of random variables in domD such that the bounds in the statement of Theorem 3.1
are finite.

REMARK 3.3. Let G be an isonormal Gaussian process (see [17]) over some
separable Hilbert space H, and suppose that F ∈ L2(σ (G)) is centered and differ-
entiable in the sense of Malliavin. Then, the Malliavin derivative of F , noted DF ,
is a H-valued random element, and in [13] it is proved that one has the following
upper bound on the Wasserstein distance between the law of F and the law of
X ∼ N (0,1):

dW(F,X) ≤ E|1 − 〈DF,−DL−1F 〉H|,
where L−1 is the inverse of the Ornstein–Uhlenbeck generator associated with G.
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Now fix h ∈ L2(μ). It is clear that the random variable I1(h) = N̂(h) is an el-
ement of domD. One has that DzN̂(h) = h(z); moreover −L−1N̂(h) = N̂(h).
Thanks to these relations, one deduces immediately from Theorem 3.1 the follow-
ing refinement of Part A of Theorem 3 in [24].

COROLLARY 3.4. Let h ∈ L2(μ) and let X ∼ N (0,1). Then the following
bound holds:

dW(N̂(h),X) ≤ ∣∣1 − ‖h‖2
L2(μ)

∣∣+ ∫
Z

|h(z)|3μ(dz).(3.6)

As a consequence, if μ(Z) = ∞ and if a sequence {hk} ⊂ L2(μ) ∩ L3(μ) verifies,
as k → ∞,

‖hk‖L2(μ) → 1 and ‖hk‖L3(μ) → 0,(3.7)

one has the CLT

N̂(hk)
law−→ X(3.8)

and inequality (3.6) provides an explicit upper bound in the Wasserstein distance.

In the following section, we will use Theorem 3.1 in order to prove general
bounds for the normal approximation of multiple integrals of arbitrary order. As a
preparation, we now present two simple applications of Corollary 3.4.

EXAMPLE 3.5. Consider a centered Poisson measure N̂ on Z = R+, with
control measure μ equal to the Lebesgue measure. Then, the random variable
k−1/2N̂([0, k]) = N̂(hk), where hk = k−1/21[0,k], is an element of the first Wiener
chaos associated with N̂ . Plainly, since the random variables N̂((i − 1, i]) (i =
1, . . . , k) are i.i.d. centered Poisson with unitary variance, a standard application

of the central limit theorem yields that, as k → ∞, N̂(hk)
law→ X ∼ N (0,1). More-

over, N̂(hk) ∈ domD for every k, and DN̂(hk) = hk . Since

‖hk‖2
L2(μ)

= 1 and
∫
Z

|hk|3μ(dz) = 1

k1/2 ,

one deduces from Corollary 3.4 that

dW(N̂(hk),X) ≤ 1

k1/2 ,

which is consistent with the usual Berry–Esséen estimates.

EXAMPLE 3.6. Fix λ > 0. We consider the Ornstein–Uhlenbeck Lévy process
given by

Yλ
t = √

2λ

∫ t

−∞

∫
R

u exp
(−λ(t − x)

)
N̂(du, dx), t ≥ 0,(3.9)
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where N̂ is a centered Poisson measure over R × R, with control measure given by
μ(du, dx) = ν(du)dx, where ν(·) is positive, nonatomic and normalized in such
a way that

∫
R u2 dν = 1. We assume also that

∫
R |u|3 dν < ∞. Note that Yλ

t is a
stationary moving average Lévy process. According to [24], Theorem 4, one has
that, as T → ∞,

Aλ
T = 1√

2T/λ

∫ T

0
Yλ

t dt
law→ X ∼ N (0,1).

We shall show that Corollary 3.4 implies the existence of a finite constant qλ > 0,
depending uniquely on λ, such that, for every T > 0

dW(Aλ
T ,X) ≤ qλ

T 1/2 .(3.10)

To see this, first use a Fubini theorem in order to represent Aλ
T as an integral with

respect to N̂ , that is, write

Aλ
T =

∫ T

−∞

∫
R

u

[(
2λ

2T/λ

)1/2 ∫ T

x∨0
exp

(−λ(t − x)
)
dt

]
N̂(du, dx) := N̂(hλ

T ).

Clearly, Aλ
T ∈ domD and DAλ

T = hλ
T . By using the computations contained

in [24], proof of Theorem 4, one sees immediately that there exists a constant βλ,
depending uniquely on λ and such that∫

R×R
|hλ

T (u, x)|3ν(du)dx ≤ βλ

T 1/2 .

Since one has also that |‖hλ
T ‖2

L2(μ)
− 1| = O(1/T ), the estimate (3.10) is immedi-

ately deduced from Corollary 3.4.

4. Bounds on the Wasserstein distance for multiple integrals of arbitrary
order. In this section, we establish general upper bounds for multiple Wiener–
Itô integrals of arbitrary order q ≥ 2, with respect to the compensated Poisson
measure N̂ . Our techniques hinge on the forthcoming Theorem 4.2, which uses
the product formula (2.14) and inequality (3.2).

4.1. The operators G
q
p and Ĝ

q
p . Fix q ≥ 2 and let f ∈ L2

s (μ
q). The operator

G
q
p transforms the function f , of q variables, into a function G

q
pf of p variables,

where p can be as large as 2q . When p = 0, we set

G
q
0f = q!‖f ‖2

L2(μq)

and, for every p = 1, . . . ,2q , we define the function (z1, . . . , zp) → G
q
pf (z1, . . . ,

zp), from Zp into R, as follows:

Gq
pf (z1, . . . , zp) =

q∑
r=0

r∑
l=0

1{2q−r−l=p}r!
(

q

r

)2 (
r

l

)
f̃ �l

r f (z1, . . . , zp),(4.1)



458 PECCATI, SOLÉ, TAQQU AND UTZET

where the “star” contractions have been defined in formulae (2.8) and (2.9), and
the tilde “˜” indicates a symmetrization. The notation (4.1) is mainly introduced in
order to give a more compact representation of the right-hand side of (2.14) when
g = f . Indeed, suppose that f ∈ L2

s (μ
q) (q ≥ 2), and that f �l

r f ∈ L2(μ2q−r−l)

for every r = 0, . . . , q and l = 1, . . . , r such that l �= r ; then, by using (2.14)
and (4.1), one deduces that

Iq(f )2 =
2q∑

p=0

Ip(Gq
pf ),(4.2)

where I0(G
q
0f ) = G

q
0f = q!‖f ‖2

L2(μq)
. Note that the advantage of (4.2) [over

(2.14)] is that the square Iq(f )2 is now represented as an orthogonal sum of mul-
tiple integrals. As before, given f ∈ L2

s (μ
q) (q ≥ 2) and z ∈ Z, we write f (z, ·)

to indicate the function on Zq−1 given by (z1, . . . , zq−1) → f (z, z1, . . . , zq−1). To
simplify the presentation of the forthcoming results, we now introduce a further
assumption.

ASSUMPTION A. For the rest of the paper, whenever considering a kernel
f ∈ L2

s (μ
q), we will implicitly assume that every contraction of the type

(z1, . . . , z2q−r−l) −→ |f | �l
r |f |(z1, . . . , z2q−r−l)

is well defined and finite for every r = 1, . . . , q , every l = 1, . . . , r and every
(z1, . . . , z2q−r−l) ∈ Z2q−r−l .

Assumption A ensures, in particular, that the following relations are true for
every r = 0, . . . , q − 1, every l = 0, . . . , r and every (z1, . . . , z2(q−1)−r−l) ∈
Z2(q−1)−r−l : ∫

Z
[f (z, ·) �l

r f (z, ·)]μ(dz) = {f �l+1
r+1 f }

and ∫
Z
[ ˜f (z, ·) �l

r f (z, ·)]μ(dz) = { ˜
f �l+1

r+1 f }
(note that the symmetrization on the left-hand side of the second equality does not
involve the variable z).

The notation G
q−1
p f (z, ·) [p = 0, . . . ,2(q − 1)] stands for the action of the

operator G
q−1
p [defined according to (4.1)] on f (z, ·), that is,

Gq−1
p f (z, ·)(z1, . . . , zp)

=
q−1∑
r=0

r∑
l=0

1{2(q−1)−r−l=p}r!
(

q − 1
r

)2 (
r

l

)
(4.3)

× ˜f (z, ·) �l
r f (z, ·)(z1, . . . , zp).
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For instance, if f ∈ L2
s (μ

3), then

G2
1f (z, ·)(a) = 4 × f (z, ·) �1

2 f (z, ·)(a) = 4
∫
Z

f (z, a,u)2μ(du).

Note also that, for a fixed z ∈ Z, the quantity G
q−1
0 f (z, ·) is given by the following

constant

G
q−1
0 f (z, ·) = (q − 1)!

∫
Zq−1

f 2(z, ·) dμq−1.(4.4)

Finally, for every q ≥ 2 and every f ∈ L2
s (μ

q), we set

Ĝ
q
0f =

∫
Z

G
q−1
0 f (z, ·)μ(dz) = q−1G

q
0f = (q − 1)!‖f ‖2

L2(μq)

and, for p = 1, . . . ,2(q − 1), we define the function (z1, . . . , zp) → Ĝ
q
pf (z1, . . . ,

zp), from Zp into R, as follows:

Ĝq
pf (·) =

∫
Z

Gq−1
p f (z, ·)μ(dz)(4.5)

or, more explicitly,

Ĝq
pf (z1, . . . , zp)

=
∫
Z

q−1∑
r=0

r∑
l=0

1{2(q−1)−r−l=p}r!
(

q − 1
r

)2 (
r

l

)
(4.6)

× ˜f (z, ·) �l
r f (z, ·)(z1, . . . , zp)μ(dz)

=
q∑

t=1

t∧(q−1)∑
s=1

1{2q−t−s=p}(t − 1)!
(

q − 1
t − 1

)2 (
t − 1
s − 1

)
(4.7)

× f̃ �s
t f (z1, . . . , zp),

where in (4.7) we have used the change of variables t = r +1 and s = l +1, as well
as the fact that p ≥ 1. We stress that the symmetrization in (4.6) does not involve
the variable z.

4.2. Bounds on the Wasserstein distance. When q ≥ 2 and μ(Z) = ∞, we
shall focus on kernels f ∈ L2

s (μ
q) verifying the following technical condition: for

every p = 1, . . . ,2(q − 1),∫
Z

[√∫
Zp

{Gq−1
p f (z, ·)}2 dμp

]
μ(dz) < ∞.(4.8)

As will become clear from the subsequent discussion, the requirement (4.8) is used
to justify a Fubini argument.
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REMARK 4.1.

1. When q = 2, one deduces from (4.3) that G1
1f (z, ·)(x) = f (z, x)2 and

G1
2f (z, ·)(x, y) = f (z, x)f (z, y). It follows that, in this case, condition (4.8) is

verified if, and only if, the following relation holds:

∫
Z

√∫
Z

f (z, a)4μ(da)μ(dz) < ∞.(4.9)

Indeed, since f is square-integrable, the additional relation

∫
Z

√∫
Z2

f (z, a)2f (z, b)2μ(da)μ(db)μ(dz) < ∞(4.10)

is always satisfied, since

∫
Z

√∫
Z2

f (z, a)2f (z, b)2μ(da)μ(db)μ(dz) = ‖f ‖2
L2(μ2)

.

2. From relation (4.3), one deduces immediately that (4.8) is implied by the fol-
lowing (stronger) condition: for every p = 1, . . . ,2(q − 1) and every (r, l) such
that 2(q − 1) − r − l = p

∫
Z

[√∫
Zp

{f (z, ·) �l
r f (z, ·)}2 dμp

]
μ(dz) < ∞.(4.11)

3. When μ(Z) < ∞ and∫
Z

[∫
Zp

{Gq−1
p f (z, ·)}2 dμp

]
μ(dz) < ∞,

condition (4.8) is automatically satisfied (to see this, just apply the Cauchy–
Schwarz inequality).

4. Arguing as in the previous point, a sufficient condition for (4.8) to be satisfied,
is that the support of the symmetric function f is contained in a set of the type
A × · · · × A where A is such that μ(A) < ∞.

THEOREM 4.2 (Wasserstein bounds on a fixed chaos). Fix q ≥ 2 and let X ∼
N (0,1). Let f ∈ L2

s (μ
q) be such that:

(i) whenever μ(Z) = ∞, condition (4.8) is satisfied for every p = 1, . . . ,

2(q − 1);
(ii) for dμ-almost every z ∈ Z, every r = 1, . . . , q − 1 and every l = 0, . . . ,

r − 1, the kernel f (z, ·) �l
r f (z, ·) is an element of L2(μ2(q−1)−r−l).
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Denote by Iq(f ) the multiple Wiener–Itô integral, of order q , of f with respect
to N̂ . Then the following bound holds:

dW(Iq(f ),X)

≤
√√√√√(

1 − q!‖f ‖2
L2(μq)

)2 + q2
2(q−1)∑
p=1

p!
∫
Zp

{Ĝq
pf }2 dμp(4.12)

+ q2
√

(q − 1)!‖f ‖2
L2(μq)

(4.13)

×
√√√√√2(q−1)∑

p=0

p!
∫
Z

{∫
Zp

G
q−1
p f (z, ·)2 dμp

}
μ(dz),

where the notation Ĝ
q
pf and G

q−1
p f (z, ·) are defined, respectively, in (4.5)–(4.7)

and (4.3). Moreover, the bound appearing on the right-hand side of (4.12) and
(4.13) can be assessed by means of the following estimate:√√√√√(

1 − q!‖f ‖2
L2(μq)

)2 + q2
2(q−1)∑
p=1

p!
∫
Zp

{Ĝq
pf }2 dμp

(4.14)
≤ ∣∣1 − q!‖f ‖2

L2(μq)

∣∣
+ q

q∑
t=1

t∧(q−1)∑
s=1

1{2≤t+s≤2q−1}(2q − t − s)!1/2(t − 1)!(4.15)

×
(

q − 1
t − 1

)2 (
t − 1
s − 1

)
‖f �s

t f ‖L2(μ2q−t−s).

Also, if one has that

f �q−b
q f ∈ L2(μb) ∀b = 1, . . . , q − 1,(4.16)

then √√√√√2(q−1)∑
p=0

p!
∫
Z

{∫
Zp

G
q−1
p f (z, ·)2 dμp

}2

μ(dz)(4.17)

≤
q∑

b=1

b−1∑
a=0

1{1≤a+b≤2q−1}(a + b − 1)!1/2(q − a − 1)!(4.18)

×
(

q − 1
q − 1 − a

)2 (
q − 1 − a

q − b

)
‖f �a

b f ‖L2(μ2q−a−b).
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REMARK 4.3.

1. There are contraction norms in (4.18) that do not appear in the previous for-
mula (4.15), and vice versa. For example, in (4.18) one has ‖f �0

b f ‖L2(μ2q−b),
where b = 1, . . . , q (this corresponds to the case b ∈ {1, . . . , q} and a = 0). By
using formula (2.13), these norms can be computed as follows:

‖f �0
b f ‖L2(μ2q−b) = ‖f �q−b

q f ‖L2(μb), b = 1, . . . , q − 1;(4.19)

‖f �0
q f ‖L2(μq) =

√∫
Zq

f 4 dμq.(4.20)

We stress that f 2 = f �0
q f , and therefore f �0

q f ∈ L2(μq) if, and only if,
f ∈ L4(μq).

2. One should compare Theorem 4.2 with Proposition 3.2 in [13], which provides
upper bounds for the normal approximation of multiple integrals with respect
to an isonormal Gaussian process. The bounds in [13] are also expressed in
terms of contractions of the underlying kernel.

EXAMPLE 4.4 (Double integrals). We consider a double integral of the type
I2(f ), where f ∈ L2

s (μ
2) satisfies (4.9) [according to Remark 4.1(1), this implies

that (4.8) is satisfied]. We suppose that the following three conditions are satisfied:
(a) EI2(f )2 = 2‖f ‖2

L2(μ2)
= 1, (b) f �1

2 f ∈ L2(μ1) and (c) f ∈ L4(μ2). Since

q = 2 here, one has f (z, ·) �0
1 f (z, ·)(a) = f (z, a)2 which is square-integrable,

and hence assumption (ii) and condition (4.16) in Theorem 4.2 are verified. Using
relations (4.19) and (4.20), we can deduce the following bound on the Wasserstein
distance between the law of I2(f ) and the law of X ∼ N (0,1):

dW(I2(f ),X) ≤ √
8‖f �1

1 f ‖L2(μ2) + {
2 + √

8
(
1 + √

2
)}‖f �1

2 f ‖L2(μ2)
(4.21)

+
√

8
∫
Z2

f 4 dμ2.

To obtain (4.21), observe first that, since assumption (a) above is in order, then
relations (4.12) and (4.13) in the statement of Theorem 4.2 yield that

dW(I2(f ),X) ≤ 0 + (4.15) + 23/2 × (4.18).

To conclude, observe that

(4.15) = 2
{
21/2‖f �1

1 f ‖L2(μ2) + ‖f �1
2 f ‖L2(μ)

}
and

(4.18) = ‖f �1
2 f ‖L2(μ){21/2 + 1} + ‖f ‖2

L4(μ2)
,

since ‖f �1
2 f ‖L2(μ) = ‖f �0

1 f ‖L2(μ3). A general statement, involving random
variables of the type F = I1(g) + I2(h) is given in Theorem 6.1.
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EXAMPLE 4.5 (Triple integrals). We consider a random variable of the type
I3(f ), where f ∈ L2

s (μ
3) verifies (4.8) [for instance, according to Remark 4.1(4),

we may assume that f has support contained in some rectangle of finite μ3-
measure]. We shall also suppose that the following three conditions are satis-
fied: (a) EI3(f )2 = 3!‖f ‖2

L2(μ3)
= 1, (b) for every r = 1, . . . ,3, and every l =

1, . . . , r ∧ 2, one has that f �l
r f ∈ L2(μ6−r−l), and (c) f ∈ L4(μ3). One can

check that all the assumptions in the statement of Theorem 4.2 (in the case q = 3)
are satisfied. In view of (4.19) and (4.20), we therefore deduce (exactly as in the
previous example and after some tedious bookkeeping) the following bound on the
Wasserstein distance between the law of I3(f ) and the law of X ∼ N (0,1):

dW(I3(f ),X)

≤ 3
√

24‖f �1
1 f ‖L2(μ4) + (

4
√

54 + 12
√

6
)‖f �1

2 f ‖L2(μ3)

+ 12
√

2‖f �2
2 f ‖L2(μ2) + {

12
√

2 + 4
√

27
}‖f �1

3 f ‖L2(μ2)(4.22)

+ {
12 + √

27
(
1 + √

24
)}‖f �2

3 f ‖L2(μ1)

+ 2
√

54

√∫
Z3

f 4 dμ3.

PROOF OF THEOREM 4.2. First, observe that, according to Theorem 3.1, we
have that

dW(Iq(f ),X) ≤
√√√√E

[(
1 − 1

q
‖DIq(f )‖2

L2(μ)

)2]

+ 1

q

∫
Z

E|DzIq(f )|3μ(dz).

The rest of the proof is divided in four steps:

(S1) Proof of the fact that
√

E[(1 − 1
q
‖DIq(f )‖2

L2(μ)
)2] is less or equal to the

quantity appearing at the line (4.12).
(S2) Proof of the fact that 1

q

∫
Z E|DzIq(f )|3μ(dz) is less or equal to the quantity

appearing at the line (4.13).
(S3) Proof of the estimate displayed in formulae (4.14) and (4.15).
(S4) Proof of the estimate in formulae (4.17) and (4.18), under the assumption

(4.16).

Step (S1). Use (2.17) to write the Malliavin derivative DzIq(f )(ω) = q ×
Iq−1(f (z, ·))(ω), and recall that DIq(f ) is uniquely defined up to subsets of
�×Z with dP×dμ-measure zero. By selecting an appropriate version of DIq(f ),
thanks to the multiplication formulae (2.14) and (4.2) [and by adopting the notation
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(4.1)] one has that, a.e.-dP × dμ,

{DzIq(f )}2 = qq!
∫
Zq−1

f 2(z, ·) dμq−1 + q2
2(q−1)∑
p=1

Ip(Gq−1
p f (z, ·)),(4.23)

where the stochastic integrals are set equal to zero for every z belonging to the
exceptional set where assumption (ii) in the statement is not verified. Since (4.8)
is in order, one has that, for every p = 1, . . . ,2(q − 1),

E

∫
Z

|Ip(Gq−1
p f (z, ·))|μ(dz)

(4.24)

≤
∫
Z

√
p!

∫
Zp

G
q−1
p f (z, ·)2 dμpμ(dz) < ∞,

where we have used the Cauchy–Schwarz inequality combined with the isometric
properties of multiple integrals. Relations (4.23) and (4.24) yield that one can write

1

q
‖DIq(f )‖2

L2(μ)
− 1

(4.25)

= 1

q

∫
Z
{DzIq(f )}2μ(dz) − 1

= q!‖f ‖2
L2(μq)

− 1 + q

2(q−1)∑
p=1

∫
Z

Ip(Gq−1
p f (z, ·))μ(dz).(4.26)

Note that (4.24) ensures that each integral appearing in (4.26) is P -a.s. well
defined and finite. Since assumption (4.8) is in order, one has that, for every
p = 1, . . . ,2(q − 1),

E

[(∫
Z

Ip(Gq−1
p f (z, ·))μ(dz)

)2]
≤

∫
Z2

E|Ip(Gq−1
p f (z, ·))Ip(Gq−1

p f (z′, ·))|μ(dz)μ(dz′)(4.27)

≤ p!
{∫

Z

√∫
Zp

{Gq−1
p f (z, ·)}2 dμpμ(dz)

}2

< ∞

and one can easily verify that, for 1 ≤ p �= l ≤ 2(q − 1), the random variables∫
Z

Ip(Gq−1
p f (z, ·))μ(dz)

and ∫
Z

Il(G
q−1
l f (z, ·))μ(dz)
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are orthogonal in L2(P). It follows that

E

[(
1 − 1

q
‖DIq(f )‖2

L2(μ)

)2]

= (
q!‖f ‖2

L2(μq)
− 1

)2 + q2
2(q−1)∑
p=1

E

[(∫
Z

Ip(Gq−1
p f (z, ·))μ(dz)

)2]
,

so that the estimate √√√√E

[(
1 − 1

q
‖DIq(f )‖2

L2(μ)

)2]
≤ (4.12)

is proved, once we show that

E

[(∫
Z

Ip(Gq−1
p f (z, ·))μ(dz)

)2]
≤ p!

∫
Zp

{Ĝq
pf }2 dμp.(4.28)

The proof of (4.28) can be achieved by using the following relations:

E

[(∫
Z

Ip(Gq−1
p f (z, ·))μ(dz)

)2]
=

∫
Z

∫
Z

E[Ip(Gq−1
p f (z, ·))Ip(Gq−1

p f (z′, ·))]μ(dz)μ(dz′)

= p!
∫
Z

∫
Z

[∫
Zp

Gq−1
p f (z, ·)Gq−1

p f (z′, ·) dμp

]
μ(dz)μ(dz′)(4.29)

= p!
∫
Zp

[∫
Z

Gq−1
p f (z, ·)μ(dz)

]2

dμp

= p!
∫
Zp

{Ĝq
pf }2 dμp.

Note that the use of the Fubini theorem in the equality (4.29) is justified by the
chain of inequalities (4.27), which is in turn a consequence of assumption (4.8).

Step (S2). First, recall that

E
[
q−1‖DIq(f )‖2

L2(μ)

] = E[Iq(f )2] = q!‖f ‖2
L2(μq)

.

Now use the Cauchy–Schwarz inequality, in order to write

1

q
E

[∫
Z

|DzIq(f )|3μ(dz)

]
(4.30)

≤ 1

q

√
E
[‖DIq(f )‖2

L2(μ)

]×
√∫

Z
E[(DzIq(f ))4]μ(dz)

=
√

(q − 1)!‖f ‖2
L2(μq)

×
√∫

Z
E[(DzIq(f ))4]μ(dz).(4.31)
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By using (4.4) and (4.23), one deduces immediately that

{DzIq(f )}2 = q2
2(q−1)∑
p=0

Ip[Gq−1
p f (z, ·)].

As a consequence,√∫
Z

E[DzIq(f )4]μ(dz)

(4.32)

≤ q2

√√√√√2(q−1)∑
p=0

p!
∫
Z

{∫
Zp

G
q−1
p f (z, ·)2 dμp

}
μ(dz),

yielding the desired inequality.
Step (S3). By using several times the inequality

√
a + b ≤ √

a + √
b (a, b ≥ 0)

one sees that, in order to prove (4.14) and (4.15), it is sufficient to show that
2(q−1)∑
p=1

p!1/2

√∫
Zp

{Ĝq
pf }2 dμp

≤
q∑

t=1

t∧(q−1)∑
s=1

1{2≤t+s≤2q−1}(2q − t − s)!1/2(t − 1)!

×
(

q − 1
t − 1

)2 (
t − 1
s − 1

)
‖f �s

t f ‖L2(μ2q−t−s ).

To see this, use (4.7) and the fact that [by (2.6)] ‖f̃ �s
t f ‖L2(μ2q−t−s ) ≤ ‖f �s

t

f ‖L2(μ2q−t−s ), to obtain that

2(q−1)∑
p=1

p!1/2

√∫
Zp

{Ĝq
pf }2 dμp

≤
2(q−1)∑
p=1

p!1/2
q∑

t=1

t∧(q−1)∑
s=1

1{2q−t−s=p}(t − 1)!
(

q − 1
t − 1

)2

×
(

t − 1
s − 1

)
‖f �s

t f ‖L2(μ2q−t−s )

and then exploit the relation
2(q−1)∑
p=1

p!1/2
q∑

t=1

t∧(q−1)∑
s=1

1{2q−t−s=p}

=
q∑

t=1

t∧(q−1)∑
s=1

1{2≤t+s≤2q−1}(2q − t − s)!1/2.
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Step (S4). By using (4.3) and some standard estimates, we deduce that

2(q−1)∑
p=0

p!1/2

√∫
Z

{∫
Zp

G
q−1
p f (z, ·)2 dμp

}
μ(dz)

≤
2(q−1)∑
p=0

p!1/2
q−1∑
r=0

r∑
l=0

1{2(q−1)−r−l=p}r!
(

q − 1
r

)2 (
r

l

)
(4.33)

×
√∫

Z

∫
Zp

[f (z, ·) �l
r f (z, ·)]2 dμpμ(dz).(4.34)

We claim that, if (4.16) is satisfied, then, for every r = 0, . . . , q−1 and l = 0, . . . , r∫
Z

∫
Zp

[f (z, ·) �l
r f (z, ·)]2 dμpμ(dz) =

∫
Zl+r+1

[f �
q−1−r
q−l f ]2 dμl+r+1.(4.35)

In the two “easy” cases,

(a) r = q − 1 and l = 1, . . . , q − 1,
(b) r = 1, . . . , q − 1 and l = 0,

relation (4.35) can be deduced by a standard use of the Fubini theorem [assumption
(4.16) is not needed here]. Now fix p = 1, . . . ,2q − 2, as well as r = 1, . . . , q − 2
and l = 0, . . . , r in such a way that 2(q − 1) − r − l = p. For every fixed z ∈
Z, write |f (z, ·)| �l

r |f (z, ·)| to indicate the contraction of indices (r, l) obtained
from the positive kernel |f (z, ·)|. Note that, for z fixed, such a contraction is a
function on Zp , and also, in general, |f (z, ·)| �l

r |f (z, ·)| ≥ f (z, ·) �l
r f (z, ·) and

|f (z, ·)| �l
r |f (z, ·)| �= f (z, ·) �l

r f (z, ·). By a standard use of the Cauchy–Schwarz
inequality and of the Fubini theorem, one sees that∫

Z

∫
Zp

[|f (z, ·)| �l
r |f (z, ·)|]2 dμpμ(dz)

(4.36)
≤ ‖f �q−1−r+l

q f ‖2
L2(μr−l−1)

< ∞,

where the last relation is a consequence of assumption (4.16) as well as of the fact
that, by construction, 1 ≤ 1 + r − l ≤ q − 1. Relation (4.36) implies that one can
apply the Fubini theorem to the quantity∫

Z

∫
Zp

[f (z, ·) �l
r f (z, ·)]2 dμpμ(dz)

[by first writing the contractions f (z, ·) �l
r f (z, ·) in an explicit form], so to obtain

the desired equality (4.35). By plugging (4.35) into (4.33) and by applying the
change of variables a = q − 1 − r and b = q − l, one deduces (4.17) and (4.18).
This concludes the proof of Theorem 4.2. �



468 PECCATI, SOLÉ, TAQQU AND UTZET

5. Central limit theorems. We consider here CLTs. The results of this sec-
tion generalize the main findings of [24]. The following result uses Theorem 4.2
in order to establish a general CLT for multiple integrals of arbitrary order.

THEOREM 5.1 (CLTs on a fixed chaos). Let X ∼ N (0,1). Suppose that
μ(Z) = ∞, fix q ≥ 2, and let Fk = Iq(fk), k ≥ 1, be a sequence of multiple sto-
chastic Wiener–Itô integrals of order q . Suppose that, as k → ∞, the normaliza-
tion condition E(F 2

k ) = q!‖fk‖2
L2(μq)

→ 1 takes place. Assume moreover that the
following three conditions hold:

(I) For every k ≥ 1, the kernel fk verifies (4.8) for every p = 1, . . . ,2(q − 1).
(II) For every r = 1, . . . , q and every l = 1, . . . , r ∧ (q − 1), one has that fk �l

r

fk ∈ L2(μ2q−r−l) and also ‖fk �l
r fk‖L2(μ2q−r−l ) → 0 (as k → ∞).

(III) For every k ≥ 1, one has that
∫
Zq f 4

k dμq < ∞ and, as k → ∞,∫
Zq

f 4
k dμq → 0.

Then, Fk
law→ X, as k → ∞, and formulae (4.14)–(4.20) provide explicit bounds in

the Wasserstein distance dW(Iq(fk),X).

PROOF. First, note that the fact that fk �l
r fk ∈ L2(μ2q−r−l) for every r =

1, . . . , q and every l = 1, . . . , r ∧ (q − 1) [due to assumption (II)] imply that as-
sumption (ii) in the statement of Theorem 4.2 holds for every k ≥ 1 (with fk re-
placing f ), and also [by using (4.19)] that condition (4.16) is satisfied by each
kernel fk . Now observe that, if assumptions (I)–(III) are in order and if E(F 2

k ) =
q!‖fk‖2

L2(μq)
→ 1, then relations (4.14)–(4.20) imply that dW(Fk,X) → 0. Since

convergence in the Wasserstein distance implies convergence in law, the conclu-
sion is immediately deduced. �

EXAMPLE 5.2. Consider a sequence of double integrals of the type I2(fk),
k ≥ 1 where fk ∈ L2

s (μ
2) satisfies (4.9) [according to Remark 4.1(1), this implies

that (4.8) is satisfied]. We suppose that the following three conditions are satisfied:
(a) EI2(fk)

2 = 2‖fk‖2
L2(μ2)

= 1, (b) fk �1
2 fk ∈ L2(μ1) and (c) fk ∈ L4(μ2). Then,

according to Theorem 5.1, a sufficient condition in order to have that (as k → ∞)

I2(fk)
law→ N (0,1)(5.1)

is that

‖fk‖L4(μ2) → 0,(5.2)

‖fk �1
2 fk‖L2(μ) → 0 and ‖fk �1

1 fk‖L2(μ2) → 0.(5.3)

This last fact coincides with the content of Part 1 of Theorem 2 in [24], where
one can find an alternate proof based on a decoupling technique, known as the
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“principle of conditioning” (see, e.g., Xue [35]). Note that an explicit upper bound
for the Wasserstein distance can be deduced from relation (4.21).

EXAMPLE 5.3. Consider a sequence of random variables of the type I3(fk),
k ≥ 1, with unitary variance and verifying assumption (I) in the statement of The-
orem 5.1. Then, according to the conclusion of Theorem 5.1, a sufficient condition
in order to have that, as k → ∞,

I3(fk)
law−→ X ∼ N (0,1),

is that the following six quantities converge to zero:

‖fk �1
1 fk‖L2(μ4), ‖fk �1

2 fk‖L2(μ3), ‖fk �2
2 fk‖L2(μ2),

‖fk �1
3 fk‖L2(μ2), ‖fk �2

3 fk‖L2(μ1) and ‖fk‖L4(μ3).

Moreover, an explicit upper bound in the Wasserstein distance is given by the
estimate (4.22).

The following result, proved in [24], Theorem 2, represents a counterpart to the
CLTs for double integrals discussed in Example 5.2.

PROPOSITION 5.4 (See [24]). Consider a sequence Fk = I2(fk), k ≥ 1, of
double integrals verifying assumptions (a), (b) and (c) of Example 5.2. Suppose
moreover that (5.2) takes place. Then:

1. if Fk ∈ L4(P) for every k, a sufficient condition to have (5.3) is that

E(F 4
k ) → 3;(5.4)

2. if the sequence {F 4
k :k ≥ 1} is uniformly integrable, then conditions (5.1), (5.3)

and (5.4) are equivalent.

REMARK 5.5. For the time being, it seems rather hard to prove a result anal-
ogous to Proposition 5.4 for a sequence of multiple integrals of order q ≥ 3. The
main reason for this is that the explicit computation of the fourth moments of these
integrals requires the use of quite complicated (and not very tractable) diagram
formulae (see, e.g., [25, 34]). One should compare this situation with the explicit
formulae for fourth moments of multiple Gaussian integrals obtained, for example,
in [19].

6. Sum of a single and a double integral. As we will see in the forthcoming
Section 7, when dealing with quadratic functionals of stochastic processes built
from completely random measures, one needs explicit bounds for random variables
of the type F = I1(g)+ I2(h), that is, random variables that are the sum of a single
and a double integral. The following result, that can be seen as a generalization of
Part B of Theorem 3 in [24], provides explicit bounds for random variables of this
type.
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THEOREM 6.1. Let F = I1(g) + I2(h) be such that:

(I) The function g belongs to L2(μ) ∩ L3(μ).
(II) The kernel h ∈ L2

s (μ
2) is such that: (a) h �1

2 h ∈ L2(μ1), (b) relation (4.9) is
verified, with h replacing f , and (c) h ∈ L4(μ2).

Then, one has the following upper bound on the Wasserstein distance between the
law of F and the law of X ∼ N (0,1):

dW(F,X) ≤ ∣∣1 − ‖g‖2
L2(μ)

− 2‖h‖2
L2(μ2)

∣∣+ 2‖h �1
2 h‖L2(μ)

+ √
8‖h �1

1 h‖L2(μ2) + 3‖g �1
1 h‖L2(μ) + 4‖g‖3

L3(μ)
(6.1)

+ 32‖h‖L2(μ2) × {‖h‖2
L4(μ2)

+ 21/2‖h �1
2 h‖L2(μ)

}
.

The following inequality also holds:

‖g �1
1 h‖L2(μ) ≤ ‖g‖L2(μ) × ‖h �1

1 h‖1/2
L2(μ2)

.(6.2)

PROOF. Thanks to Theorem 3.1, we know that dW(F,X) is less or equal to
the right-hand side of (3.2). We also know that

DzF = g(z) + 2I1(h(z, ·)) and −DzL
−1F = g(z) + I1(h(z, ·)).

By using the multiplication formula (2.14) (in the case p = q = 1) as well as a
Fubini argument, one easily deduces that∫

Z
DzF × (−DzL

−1F)μ(dz) = ‖g‖2
L2(μ)

+ 2‖h‖2
L2(μ2)

+ 2I1(h �1
2 h)

+ 2I2(h �1
1 h) + 3I1(g �1

1 h).

This last relation yields√
E
[(

1 − 〈DF,−DL−1F 〉L2(μ)

)2]
≤ ∣∣1 − ‖g‖2

L2(μ)
− 2‖h‖2

L2(μ2)

∣∣+ 2‖h �1
2 h‖L2(μ)(6.3)

+ √
8‖h �1

1 h‖L2(μ2) + 3‖g �1
1 h‖L2(μ).

To conclude the proof, one shall use the following relations, holding for every real
a, b:

(a + 2b)2|a + b| ≤ (|a| + 2|b|)2(|a| + |b|) ≤ (|a| + 2|b|)3

(6.4)
≤ 4|a|3 + 32|b|3.

By applying (6.4) in the case a = g(z) and b = I1(h(z, ·)), one deduces that∫
Z

E[|DzF |2|DzL
−1F |]μ(dz)

(6.5)
≤ 4

∫
Z

|g(z)|3μ(dz) + 32E

∫
Z

|I1(h(z, ·))|3μ(dz).
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By using the Cauchy–Schwarz inequality, one infers that

32E

∫
Z

|I1(h(z, ·))|3μ(dz)

≤
√

E

∫
Z

|I1(h(z, ·))|4μ(dz) × 32‖h‖L2(μ2)(6.6)

and (6.1) is deduced from the equality

E

∫
Z

|I1(h(z, ·))|4μ(dz) = 2‖h �1
2 h‖2

L2(μ)
+ ‖h‖4

L4(μ2)
.

Formula (6.2) is once again an elementary consequence of the Cauchy–Schwarz
inequality. �

REMARK 6.2. Consider a sequence of vectors (Fk,Hk), k ≥ 1, such that:
(i) Fk = I2(fk), k ≥ 1, is a sequence of double integrals verifying assumptions
(a), (b) and (c) in Example 5.2, and (ii) Hk = I1(hk), k ≥ 1, is a sequence of single
integrals with unitary variance. Suppose moreover that the asymptotic relations
in (3.7), (5.2) and (5.3) take place. Then, the estimates (6.1)–(6.2) yield that, for
every (α,β) �= (0,0), the Wasserstein distance between the law of

1√
α2 + β2

(αFk + βHk)

and the law of X ∼ N (0,1), converges to zero as k → ∞, thus implying that
(Fk,Hk) converges in law to a vector (X,X′) of i.i.d. standard Gaussian random
variables. Roughly speaking, this last fact implies that, when assessing the asymp-
totic joint Gaussianity of a vector such as (Fk,Hk), one can study separately the
one-dimensional sequences {Fk} and {Hk}. This phenomenon coincides with the
content of Part B of Theorem 3 in [24]. See [15, 18] and [26] for similar results
involving vectors of multiple integrals (of arbitrary order) with respect to Gaussian
random measures.

7. Applications to nonlinear functionals of Ornstein–Uhlenbeck Lévy
processes. As an illustration, in this section, we focus on CLTs related to
Ornstein–Uhlenbeck Lévy processes, that is, processes obtained by integrating
an exponential kernel of the type

x → √
2λ × e−λ(t−x)1{x≤t}

with respect to an independently scattered random measure. Ornstein–Uhlenbeck
Lévy processes have been recently applied to a variety of frameworks, such as
finance (where they are used to model stochastic volatility—see, e.g., [1]) or
nonparametric Bayesian survival analysis (where they represent random hazard
rates—see, e.g., [4, 12, 21]). In particular, in the references [4] and [21] it is shown
that one can use some of the CLTs of this section in the context of Bayesian prior
specification.
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7.1. Quadratic functionals of Ornstein–Uhlenbeck processes. We consider the
stationary Ornstein–Uhlenbeck Lévy process given by

Yλ
t = √

2λ

∫ t

−∞

∫
R

u exp
(−λ(t − x)

)
N̂(du, dx), t ≥ 0,(7.1)

where N̂ is a centered Poisson measure over R × R, with control measure given
by ν(du)dx, where ν(·) is positive, nonatomic and σ -finite. We assume also that∫

ujν(du) < ∞ for j = 2,3,4,6, and
∫

u2ν(du) = 1. In particular, these assump-
tions yield that

E[(Y λ
t )2] = 2λ

∫ t

−∞

∫
R

u2e−2λ(t−x)ν(du)dx = 1.

The following result has been proved in [24], Theorem 5.

THEOREM 7.1 (See [24]). For every λ > 0, as T → ∞,

Q(T,λ) := √
T

{
1

T

∫ T

0
(Y λ

t )2 dt − 1
}

law−→
√

1

λ
+ c2

ν × X,(7.2)

where c2
ν := ∫

u4ν(du) and X ∼ N (0,1) is a centered standard Gaussian random
variable.

By using Theorem 6.1, one can obtain the following Berry–Esséen estimate on
the CLT appearing in (7.2) (compare also with Example 3.6).

THEOREM 7.2. Let Q(T,λ), T > 0, be defined as in (7.2), and set

Q̃(T ,λ) := Q(T,λ)

/√
1

λ
+ c2

ν.

Then, there exists a constant 0 < γ (λ) < ∞, independent of T and such that

dW(Q̃(T ,λ),X) ≤ γ (λ)√
T

.(7.3)

PROOF. Start by introducing the notation

Hλ,T (u, x;u′, x′)

= (u × u′)
1(−∞,T ]2(x, x′)

T
√

1/λ + c2
ν

× {
eλ(x+x′)(1 − e−2T )1(x∨x′≤0)

+ eλ(x+x′)(e−2λ(x∨x′) − e−2λT )1(x∨x′>0)

}
,(7.4)
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H ∗
λ,T (u, x) = u2 1(−∞,T ](x)

T
√

1/λ + c2
ν

{
e2λx(1 − e−2T )1(x≤0)

+ e2λx(e−2λx − e−2λT )1(x>0)

}
.

As a consequence of the multiplication formula (2.14) and of a standard Fubini
argument, one has (see [24], proof of Theorem 5)

Q̃(T ,λ) = I1
(√

T H ∗
λ,T

)+ I2
(√

T Hλ,T

)
,

a combination of a single and of a double integral. To apply Theorem 6.1, we use
the following asymptotic relations [that one can verify by resorting to the explicit
definitions of Hλ,T and H ∗

λ,T given in (7.4)], holding for T → ∞:

∣∣1 − ∥∥√T H ∗
λ,T

∥∥2
L2(dν dx) − 2

∥∥√T Hλ,T

∥∥2
L2((dν dx)2)

∣∣ = O

(
1

T

)
,(a)

∥∥√T H ∗
λ,T

∥∥3
L3(dν dx) ∼ 1√

T
,(b)

∥∥√T Hλ,T

∥∥2
L4((dν dx))2 ∼ 1√

T
,(c)

∥∥(√T Hλ,T

)
�1

2
(√

T Hλ,T

)∥∥
L2(dν dx) ∼ 1√

T
,(d)

∥∥(√T Hλ,T

)
�1

1
(√

T Hλ,T

)∥∥
L2((dν dx)2) ∼ 1√

T
,(e)

∥∥(√T H ∗
λ,T

)
�1

1
(√

T Hλ,T

)∥∥
L2(dν dx) ∼ 1√

T
.(f)

The conclusion is obtained by using the estimates (6.1) and (6.2) and applying
Theorem 6.1. �

7.2. Berry–Esséen bounds for arbitrary tensor powers of Ornstein–Uhlenbeck
kernels. Let N̂ be a centered Poisson measure over R × R, with control measure
given by μ(du, dx) = ν(du)dx, where ν(·) is positive, nonatomic and σ -finite.
We assume that

∫
u2ν(du) = 1 and

∫
u4ν(du) < ∞. Fix λ > 0, and, for every

t ≥ 0, define the Ornstein–Uhlenbeck kernel

ft (u, x) = u × √
2λ exp{−λ(t − x)}1{x≤t}, (u, x) ∈ R × R.(7.5)

For every fixed q ≥ 2, we define the qth tensor power of ft , denoted by f
⊗q
t , as

the symmetric kernel on (R × R)q given by

f
⊗q
t (u1, x1; . . . ;uq, xq) =

q∏
j=1

ft (uj , xj ).(7.6)



474 PECCATI, SOLÉ, TAQQU AND UTZET

We sometimes set y = (u, x). Note that, for every t ≥ 0, one has that∫
f 2

t (y)μ(dy) = ∫
f 2

t (u, x)ν(du)dx = 1, and therefore f
⊗q
t ∈ L2

s (μ
q); it follows

that the multiple integral

Zt(q) := Iq(f
⊗q
t )

is well defined for every t ≥ 0.

REMARK 7.3. Fix q ≥ 2, and suppose that
∫ |u|j dν < ∞, ∀j = 1, . . . ,2q .

Then, one can prove that Zt(1)q is square-integrable and also that the random
variable Zt(q) coincides with the projection of Zt(1)q on the qth Wiener chaos
associated with N̂ . This fact can be easily checked when q = 2: indeed (using
Proposition 2.5 in the case f = g = ft ) one has that

Zt(1)2 = I1(f
2
t ) + I2(f

⊗2
t ) = I1(f

2
t ) + Zt(2),

thus implying the desired relation. The general case can be proved by induction
on q .

The main result of this section is the following application of Theorems 4.2
and 5.1.

THEOREM 7.4. Fix λ > 0 and q ≥ 2, and define the positive constant c =
c(q,λ) := 2(q − 1)!/λ. Then, one has that, as T → ∞,

MT (q) := 1√
cT

∫ T

0
Zt(q) dt

law−→ X ∼ N (0,1),(7.7)

and there exists a finite constant ρ = ρ(λ, q, ν) > 0 such that, for every T > 0,

dW(MT (q),X) ≤ ρ√
T

.(7.8)

PROOF. The crucial fact is that, for each T , the random variable MT (q) has
the form of a multiple integral, that is, MT (q) = Iq(FT ), where FT ∈ L2

s (μ
q) is

given by

FT (u1, x1; . . . ;uq, xq) = 1√
cT

∫ T

0
f

⊗q
t (u1, x1; . . . ;uq, xq) dt,

where f
⊗q
t has been defined in (7.6). By using the fact that the support of FT is

contained in the set (R× (−∞, T ])q as well as the assumptions on the second and
fourth moments of ν, one easily deduces that the technical condition (4.8) (with
FT replacing f ) is satisfied for every T ≥ 0. According to Theorems 4.2 and 5.1,
both claims (7.7) and (7.8) are proved, once we show that, as T → ∞, one has that

|1 − E(MT (q))2| ∼ 1/T ,(7.9)
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and also that

‖FT ‖2
L4(μq)

= O
(
1/

√
T
)

(7.10)

and

‖FT �l
r FT ‖L2(μ2q−r−l ) = O(1/T )

(7.11)
∀r = 1, . . . , q,∀l = 1, . . . , r ∧ (q − 1)

[relation (7.9) improves the bounds in Theorem 4.2]. In order to prove (7.9)–(7.11),
for every t1, t2 ≥ 0 we introduce the notation

〈ft1, ft2〉μ =
∫

R×R
ft1(y)ft2(y)μ(dy) = e−λ(t1+t2)e2λ(t1∧t2)(7.12)

(recall that
∫

u2 dν = 1) and also, for t1, t2, t3, t4 ≥ 0,

〈ft1ft2, ft3ft4〉μ =
∫

R×R
ft1(y)ft2(y)ft3(y)ft4(y)μ(dy)(7.13)

=
[∫

R
u4ν(du)

]
× λe−λ(t1+t2+t3+t4)e4λ(t1∧t2∧t3∧t4).(7.14)

To prove (7.9), one uses the relation (7.12) to get

E[MT (q)2] = q!
cT

∫ T

0

∫ T

0
〈ft1, ft2〉qμ dt1 dt2 = 1 − 1

T qλ
(1 − e−λqT ).

In the remainder of the proof, we will write κ in order to indicate a strictly
positive finite constant independent of T , that may change from line to line. To
prove (7.10), one uses the fact that∫

(R×R)q
F 4

T dμq = 1

c2T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0
〈ft1ft2, ft3ft4〉qμ dt1 dt2 dt3 dt4 ≤ κ

T
,

where the last relation is obtained by resorting to the explicit representation (7.14),
and then by evaluating the restriction of the quadruple integral to each simplex
of the type {tπ(1) > tπ(2) > tπ(3) > tπ(4)}, where π is a permutation of the set
{1,2,3,4}. We shall now verify the class of asymptotic relations (7.11) for r = q

and l = 1, . . . , q . With y = (u, x), one has

FT �l
q FT (y1, . . . , yq−l) = 1

cT

∫ T

0

∫ T

0

[q−l∏
i=1

ft1(yi)ft2(yi)

]
〈ft1ft2〉lμ dt1 dt2

and hence

‖FT �l
q FT ‖2

L2(μq−l )

= κ

T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0
〈ft1ft2, ft3ft4〉q−l

μ 〈ft1ft2〉lμ〈ft3ft4〉lμ dt1 dt2 dt3 dt4

≤ κ

T
,
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where the last relation is verified by first using (7.12)–(7.14), and then by assessing
the restriction of the quadruple integral to each one of the 4! = 24 simplexes of the
type {tπ(1) > tπ(2) > tπ(3) > tπ(4)}. To deal with (7.11) in the case r = 1, . . . , q − 1
and l = 1, . . . , r , one uses the fact that

FT �l
r FT (y1, . . . , yr−l ,w1, . . . ,wq−r , z1, . . . , zq−r )

= 1

cT

∫ T

0

∫ T

0

[
r−l∏
i=1

ft1(yi)ft2(yi)

]

× (
ft1(w1) · · · ft1(wq−r )ft2(z1) · · · ft2(zq−r )

)〈ft1ft2〉lμ dt1 dt2

and therefore

‖FT �l
r FT ‖2

L2(μ2q−r−l )

= κ

T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0
〈ft1ft2, ft3ft4〉r−l

μ 〈ft1ft3〉q−r
μ

× 〈ft2ft4〉q−r
μ 〈ft1ft2〉lμ〈ft3ft4〉lμ dt1 dt2 dt3 dt4

≤ κ

T
,

where the last relation is once again obtained by separately evaluating each re-
striction of the quadruple integral over a given simplex. This concludes the proof.
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