
Stein’s Method: Expository Lectures and
Applications

Persi Diaconis and Susan Holmes, Editors

March 22nd, 2004



2



3

Stein’s Method for Birth and Death Chains

Susan Holmes

Abstract
This article presents a review of Stein’s method applied to the case of discrete random variables. We
attempt to complete one of Stein’s open problems, that of providing a discrete version for chapter 6 of
his book. This is illustrated by first studying the mechanics of comparison between two distributions
whose characterizing operators are known, for example the binomial and the Poisson. Then the case
where one of the distributions has an unknown characterizing operator is tackled. This is done for
the hypergeometric which is then compared to a binomial. Finally the general case of the comparison
of two probability distributions that can be seen as the stationary distributions of two birth and death
chains is treated and conditions of the validity of the method are conjectured.

3.1 Overview

Stein’s method provides ways of proving weak-convergence results using test functions and approxi-
mations to expectations. It is a method that many have found quite difficult to infiltrate because it does
not use any of the more classical tools such characteristic functions.

My thanks go to Charles Stein who painstakingly led me through the intricacies of his approach while
I was visiting Stanford in 1993, and to Persi Diaconis who first tried to explain his picture of the method
to me. I made my own picture of the procedure by trying to make a discrete version of chapter 6 of
Charles’ book (stein, 1986) upon his suggestion.

A little history: Stein’s method of exchangeable pairs and characterizing operators, not to be confused
with shrinkage, was first used by Charles in the early 70’s, at the 6th Berkeley Symposium to prove
central limit theorems for dependent random variables (Stein, 1992).

His approach was a complete innovation, because he does not use characteristic functions. Instead
Charles based his argument on what he called a characterizing operator for the normal distribution.

Here is how this characterization is stated in his book (Stein, page 21, 1986).

Proposition 3.1.1 A random variable has a standard normal distribution iff for allh : R −→ R,
piecewise continuously differentiable whose absolute value of first derivative has a finite expectation
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with regards to the normalN |h′| <∞ we have :

E{h′(W )−Wh(W )} = 0

which we will also write

(3.1) ∀h ∈ FN , E(TNh)(W ) = 0, whereTNh(x) = h′(x)− xh(x).

TN is a function from the space of piecewise continuously differentiable functionsFN to the space of
continuously differentiable functions, we will call it the characterizing operator for the normal.Nh
denotes the expectation ofh with regards to the normal.

After following Stein’s proof of the central limit theorem, I realized that he not only associated an
operator to the normal, but also built one for the other distribution then compared the two operators,
bounding the expectation of their difference on special test functions.

Following Charles’ work, many authors have built characterizing operators, Chen (1974) for the
Poisson, Loh (1992) for the multinomial, Diaconis (1998) for the uniform, Mann (1995) and Reinert
(1997) for theχ2. Barbour, Holst and Janson(1992) have written a book on the use of the method in
the context of Poisson approximation.

The question arises of how to construct the characterizing operator for any given distribution. Once
this has been done and certain properties have been proved for both operator and inverse, limit theorems
become reasonably straightforward to prove. Let us start exploring with this latter part of the method.
How can we compare two distributions for which the characterizing operators are well studied?

We begin with the binomial distribution as thetarget, playing the same role as the normal in Charles’
first work. The Poisson will be the random variable we want to approximate.

3.2 Examples

3.2.1 Bounds on the distance between Poisson and binomial

As a first motivation we will show the procedure for proving a bound for the total variation distance
between a PoissonP(λ) and a binomialB(n, p) distribution. Of course, to make the distributions close
we will suppose thatλ = np.

We will not worry about how to build the characterizing operators for the time being, and we will just
use the fact that Charles Stein (1986) proved the following:

Proposition 3.2.1 A random variable is binomialB(n, p) if and only if for every bounded functionf ,
the expectation computed with respect to that random variableE(T0f) is zero, where

T0f(w) = p(n− w)f(w + 1)− w(1− p)f(w).

ThisT0 is called the characterizing operator of the binomialB(n, p) distribution.

Remark on notation. In this example, our target distribution is the binomial we will denote anything
related to the target with the index0, for instance the expectation under the binomial will beE0, this
is a convention that extends to the sequel as well, where the target distributions will not necessarily be
the binomial, but will always be identified by the index0.

The other distribution is Poisson with matching meanµ = np which also has a characterizing opera-
tor denotedTα, which we will prove later to be:

(3.2) (Tα)f(w) = npf(w + 1)− wf(w) = µf(w + 1)− wf(w).

We expect the fit to depend onp, in particular, the fit should be good forp small, of an order1n . All we
have to remember about these operators for the moment is that
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1. ETαf = 0, for all f , iff the expectation is computed with respect to the Poisson, and

2. ET0f = 0, for all f , iff the expectation is taken with respect to a binomial distribution.

For any functionf defined on[0, 1, . . . , n] the difference between these operators is

(3.3) (Tα− T0)f(w) = pw(f(w + 1)− f(w)) = pw∆f(w), defined forw ∈ [0, 1, . . . , n− 1]

Where∆f(w) = f(w + 1)− f(w) denotes the first order difference forf atw.
If we take as our functionf a function whose image byT0 is preciselyIm − P0(m) = T0f , where

Im denotes the indicator function for the set{m}, by computing the expected value of the difference
between operators we will obtain the difference in expectations at that functionf :

P (m)− P0(m) = (E − E0)(Im − P0(m)) = ET0f = E(T0 − Tα)f

Using (2.3), the right hand side will be easy to bound if for this particularf , we can bound its increase
|∆f |.

It has been proved by Stein (1986), in the casep = 1/2 and by Barbour, Holst and Janson, (1992),
page 190, for generalp, that forf such that:Im − P0(m) = T0f , we have:

(3.4) |∆f(w)| < 1
npq

, ∀w.

This provides the following uniform pointwise bound:

For everym, |P (m)− P0(m)| < Epw(
1
npq

) =
p

q
, whereq = 1− p

Remarks:

1. This bound would usually be used whenp is small (for instancep = 1
n , soq close to 1).

2. This translates to the following inequality:∣∣∣∣∣(np)ke−(np)

k!
−

(
n

m

)
pmqn−m

∣∣∣∣∣ < p

q

which might not be so easy to prove by simple calculus. We will see in section 4, that there is a
better bound available, reversing the roles of the two distributions, making the Poisson the target
and using the bound on the first order difference of its pseudo-inverse.

3. Actually one is usually more interested in the total variation distance between the two distribu-
tions then in the pointwise distance. The bound on|∆f | is available even forf a solution to
T0f = IA − P0(A), for anyA ⊂ [0, n]. Barbour, Holst and Janson (1992) proved that (2.4) still
holds for these more generalf . This provides the bound:

dTV (P, P0) <
p

q
.

4. Bounds such as (2.4) are crucial properties of characterizing operators that must be proved anew
for each new target distribution.
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3.2.2 Hypergeometric and binomial

Now, we will do a more original example. Suppose that the target is binomialB(n, p) again, but that
the other distribution’s characterizing operator is unknown.

We will bound the distance between a binomialB(n, p) distribution and the hypergeometricH(N,R, n).
That is, suppose we are pickingn balls without replacement from an urn ofN balls of whichR are

red and we look at the distribution of the number of red balls denotedk. We are going to compare it to
a binomialB(n, R

N ).
We start by finding an exchangeable pair denoted(k, k′). This is used to define a characterizing

operator for the hypergeometric distribution with parametersR,N ,n: H(N,R, n).
Suppose we lay out the balls uniformly at random in a line, the leftn ones are the ones in the sample,

among whichk are red andn− k are black. Now suppose that we exchange two different balls picked
uniformly at random and then count again how many red ones among the leftn, this will be our random
variablek′.

(k, k′) is an exchangeable pair because the procedure is obviously reversible. Repeating these switches
defines a birth and death chain:k will at most change by one. Callβk the probability, given that the
variable was atk, that it will go tok+1 after one move, andδk the probability that it will go down one
given that it was atk. Thusβk = P ( hit a black ball among leftn and switch it with a red ball among
the rightN − n).
This gives

βk = P (k′ = k + 1|k) =
n− k

N

R− k

N − 1
× 2,

δk = P ( hit a red ball among the left n ones and switch it with a black ball in the right ones),

δk = P (k′ = k − 1|k) =
k

N

N −R− (n− k)
N − 1

× 2.

From these definitions we may compute

(3.5) Ek(k′ − k) = βk − δk = −λ(k − µ), with λ =
2

N − 1

because

Ek(k′ − k) = (+1)βk + (−1)δk = βk − δk

=
2

N(N − 1)
[
nR− nk − kR+ k2 − kN − k2 + kn+Rk

]
=

2
N(N − 1)

[nR− kN ] = − 1
N − 1

(k − n
R

N
)

= −λ(k − µ) with µ = n
R

N
andλ =

2
N − 1

In order to construct the characterizing operator we define a mapα from functionsf on{0, 1, . . . , n}
to the space of antisymmetric functions as

(αf)(w,w′) =
1
λ

(
f(w′)Iw′=w+1 − f(w)Iw=w′+1

)
Note: Given any exchangeable pair(w,w′) of random variables, any antisymmetric real functionA
defined for all pairs(w,w′) with finite expectation, has to satisfyEA(w,w′) = 0. This is going to
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provide a good way of finding functions in the kernel ofE. To constructT , as is usual in Stein’s
method of use of exchangeable pairs, we take an exchangeable pair(w,w′) and an antisymmetricF
and define:(TF )(w) = EwF (w,w′). In this case:

(3.6) (Tα)f(k) =
βk

λ
∆f(k) +

βk − δk
λ

f(k)

Note that by construction, because(w,w′) is exchangeable and(αf) antisymmetric, we haveETα =
0.

This operatorTα is a characterizing operator for the hypergeometric. We will see that for any func-
tion f the difference betweenTα andT0 will again be of particular utility. In fact, originally the
characterizing operator of the binomial was constructed in a similar fashion and can be written as:

T0f(k) = p(n− k)∆f − (k − np)f(k)

Here we will havep = R
N . We compare the two operators:

(Tα− T0)f(k) =
[
βk

λ
− (n− k)

R

N

]
1
n(3.7)

=
(n− k)
N

(−k)∆f(k).(3.8)

First consider the simple case bounding pointwise probabilities, say at the pointm. We would like to
bound|P (m)−P0(m)| = |EIm−E0Im|, this is done takingf in the equations above to be the solution
to:

(3.9) T0f(k) = Im(k)− P0(m)

Theorem 3.1 ( Distance between binomial and hypergeometric)Let PH denote the hypergeomet-
ric probability distribution andP0 the binomialB(n, p) then:

|PH(m)− P0(m)| ≤ n− 1
N − 1

Proof. Through (2.4) we have, forf the solution to (2.9), a bound on∆f .
Note that ifk has aH(N,R, n) distribution andp = R

N :

E(k2) = var(k) + n2p2 = npq{1− n− 1
N − 1

}+ n2p2

E(Tα− T0)f(k) ≤ 1
N

1
npq

(Ekn− Ek2)

≤ 1
N

1
npq

(n2p− n2p2 − npq{1− n− 1
N − 1

})

≤ 1
N

(n− 1 +
n− 1
N − 1

)

≤ n− 1
N − 1

Remark 3.2.1 Actually if we are more ambitious and want to bound theTV distance between the two
distributions, as in the first example, exactly the same argument follows through, replacing (2.9) by:

T0fA = IA − P0(A)
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whereA is a set of[0, n]. As above Barbour et al. [1992] show that we still have the bound

∆fA <
1
npq

and all the other computations are the same. This proves:

Theorem 3.2 The total variation distance between the hypergeometricH(N,R, n) and the relevant
binomialB(n, R

N ) is bounded by(n− 1)/(N − 1), uniformly in R, forR > n.

This can be compared to Diaconis and Freedman (1981):

dTV (PH,P0) ≤
4n
N
,

which they proved to be sharp, up to constants.
Let us now generalize each step of this procedure. The next section sets the scene for extensions

of the method from situations where we know the characterizing operators to cases where we need to
build them and the ‘pseudo-inverse’ for a new target and bound the increase in this ‘pseudo-inverse’.

3.3 Notation and Context

Suppose we have a probability space(Ω,B, P ) we will call E : X → R the expectation associated to
P onX , the space of real-valued random variables defined onΩ that have finite expectation.

We will be trying to computeEZ the expectation of some random variable or an approximation
thereof. To this end we will consider the null-space ofE: ker E = {y : Ey = 0}, we will look for a
random variable close toZ−c (c a constant). Thus we will be able to sayEZ ≈ c. We will callX 0 the
space of real valued functions that have finite expectation with the target distribution. Here,X 0 will be
considered a subset ofX andβ will denote a natural embedding ofX 0 intoX .

3.3.1 Exchangeable Variables

Strange as it may seem, the study ofker E is done through a pair of exchangeable variables, the
definition of which I recall to be:

(X,X ′) is a pair of exchangeable variables iff the joint distribution of the pair(X,X ′) is identical to

the distribution of(X ′, X), written sometimes(X,X ′) d= (X ′, X).
In what follows(X,X ′) is used to denote an exchangeable pair.

3.3.2 Operators of Antisymmetric Functions

CallF the set of antisymmetric functions defined onΩ2.
In what follows we will denote byT the operatorT : F −→ X which associates to every antisym-

metricF in F the function:

TF such thatTF (x) = EX=xF (X,X ′)

whereEX is the conditional expectation givenX.
A simple computation showsImF ⊂ kerE, the reverse is also true as long as any two elements

of the state space can be connected through a sequence of exchangeable pairs. (Diaconis, personal
communication)

ThenImT = kerE and the following diagram is exact:

F T−→ X E−→ R−→0

Thus the image ofT completely defines the null spacekerE. Now if we’re trying to find the distribution
ofW = ψ(X) we may try and give an approximation ofEh(ψ(X)) for functionsh such as indicators.
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3.3.3 A Characterizing Operator for the Target Distribution

It has to be the case that we have an idea about the relevant target. That is, we know which approxima-
tion to choose. In most cases the expectations with respect to this distribution are denotedE0.

We will define an operatorT0 that characterizes the target distribution. Later we will explain more in
detail how such a characterization is built. For the time being, we will look at cases where this operator
is known.

3.3.4 A Useful Diagram

The point of view we are going to stress here starts through the comparison of the two exact sequences:

F Tα−→ X E−→ R−→0

F0
T0−→ X 0

E0−→ R−→0

we will show that we can write

Eh(x) = E0h+ E(Qh)(x, x′)

where the last term on the right provides an indication of how good the approximation is. It is especially
important to notice that this residual is an expectation with regards to the ‘unknown’ distribution.
Bounds on|Qh| will provide bounds for the approximation.

We will now detail this decomposition through what will be called the basic diagram:

- -

-
�

-
�

6 6 6

R

R

α β γ

T E

T0

ι0U0

E0

F X

X 0F0

The top part of the diagram contains the setsF andX and the operatorsT andE defined above.
X0 is a subspace ofX . F0 is a subspace ofF andα will denote a natural embedding ofF0 intoF .
The functionι0 transforms a real number into the random variable always equal to that real value.
U0 is the ‘pseudo-inverse’ for the functionIm. In the examples above, we looked for a functionf

such thatT0f = Im − P0(m) = Im − E0Im, this can be expressed as the condition that for anyg in
X 0 we can defineU0(g) such that

T0 ◦ U0g = g − ι0 ◦ E0(g)

We will call U0 the ‘pseudo-inverse’ ofT0 in all that follows.
An algebraic lemma of Stein [1986] is the basis for the approximations used here.

Lemma 3.1 (Commutation of the Diagram) When the sets of the diagram are vector spaces and the
functions linear and when the following conditions are fulfilled:

• E ◦ T = 0

• ι0 ◦ E0 + T0 ◦ U0 = IX0
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• E ◦ β ◦ ι0 ◦ E0 = γ ◦ E0

Then we can write:
E ◦ β − γ ◦ E0 = E ◦ (T ◦ α− β ◦ T0) ◦ U0

It is often possible to bound the right hand side of this equation.

3.4 Birth and Death Chains

3.4.1 Exchangeable Pairs

We will start with the case of a random variable taking its values in{0, . . . , n}. We suppose that this
random variableW has a distribution:

P (W = k) = pk, for 0 ≤ k ≤ n

and a mean denoted

µ = EW =
n∑

k=0

pkk

We would like to find aW ′ such that:

• (W,W ′) is exchangeable

• a general contraction property is satisfied, i. e.

(3.10) EWW ′ −W = −λ(W − µ), with 0 < λ < 1 .

This is the generalization of (2.5).

• W andW ′ differ by at most 1 (thus forming a birth and death chain).

These conditions specify enough equations so that we can define as follows:

P (W ′ = W + 1|W = k) = βk

P (W ′ = W − 1|W = k) = δk

βn = 0 andδ0 = 0
δk + βk ≤ 1

(W,W ′) exchangeable implies:

β0p0 = δ1p1

β1p1 = δ2p2

βkpk = δk+1pk+1
...

...

We rewrite the contraction property:

βk − δk = −λ(k − µ)

δk andβk have to be of the form:

β0 = λµ

δk = − λ

pk

k−1∑
j=0

pj(j − µ), 1 ≤ k ≤ n(3.11)

βk = − λ

pk

k∑
j=0

pj(j − µ), 1 ≤ k ≤ n− 1
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In order for this to be possibleλ must satisfy0 ≤ δk + βk ≤ 1. This is equivalent to

0 ≤ λ ≤ −pk

2
∑k−1

j=0 pj(j − µ) + pk(k − µ)

3.4.2 A generalization of Todhunter’s formula

Mills ratio type bounds for binomial tail probabilities can be derived from the following formula due
to Todhunter (see Diaconis and Zabell (1991)). We can generalize this idea to give bounds for the
stationary distribution of the birth and death chains constructed above.

m∑
`

(i− np)pi = (1− p)`p` − (n−m)pm, ∀m,∀`

The definition of the birth rate in the above birth and death chains enables us to write:
m∑
`

(i− µ)pi =
1
λ

(β`+1p`+1 − βmpm)

We will now look at how this can be used in examples.

Uniform Distribution on {0, . . . , n}

In this case we have:

pk =
1

n+ 1

µ =
n

2

βk =
λ

2
(k + 1)(n− k)

δk =
λ

2
k(n− k + 1)

If n is even we must have:λ ≤ 4
n2 + 2n

If n is odd we must have:λ ≤ 4
n2 + 2n− 1

In the appendix some of the numerical simulations show how the value ofλ influences the speed of
convergence to stationarity.

Note the “standard birth and death chain with a uniform stationary distribution is the random walk on
a path with holding1

2 at each end. This does not giveE(W ) = (1− λ)W for anyλ.

Binomial Distribution

The algebraic construction obtained through the above formula gives exactly the exchangeable pair we
find for the binomial by using the construction:

Define the exchangeable pair(W,W ′) as follows:

- WriteW =
∑n

i=1Xi, sum of independent Bernoulli variables withp = P (Xi = 1)

- Choose a randomI uniformly in {1 . . . n}
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- XI is changed intoX ′
I with P (X ′

I = 1) = p

- W ′ = W −XI +X ′
I

The computations then give in this case:βk = p× (n− k) andδk = q × k

Poisson Distribution

In our development we have not used the fact that the random variable is bounded. By induction we
can generalize the definition ofβ andδ to N. For example if the stationary distribution is Poisson:

pk =
µke−µ

k!
and

pj

pj+1
=
j + 1
µ

By induction as before:

β0 = λµ

δ1 =
p0

p1
β0 = λ

β1 = δ1 − λ(1− µ) = λµ

δ2 =
p1

p2
β1 = 2λ

β2 = δ2 − λ(2− µ) = λµ

...
...
...

δk = kλ

βk = λµ

Hypergeometric Distribution

This construction provides the same birth and death chain the exchangeable pair did, withλ = 1
N−1 .

The general form gives in this case:

δk = λk
(N −R− (n− k))

N

βk = λ(
(n− k)(R− k)

N
)

3.4.3 Characterizing Operators

From any functionf we build an antisymmetric function(αf) defined ‘locally’ as:

(αf)(w,w′) =
1
λ

(
f(w′)Iw′=w+1 − f(w)Iw=w′+1

)
ForT , we take an exchangeable pair(w,w′) and an antisymmetricF and define:(TF )(w) = EwF (w,w′)
so that in this case:

(3.12) T (αf)(w) = Ew(αf)(w,w′) =
1
λ

(βwf(w + 1)− δwf(w)) .

Because of the exchangeability and the antisymmetry we will haveETf = 0, for all f so that:

ImT ⊂ KerE.
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Further, if the birth and death chain is connectedImT = KerE andTα is a characterizing operator.
In the four examples considered above this gives:

Uniform

Tαf(w) = (w + 1)(n− w)f(w + 1)− w(n− w + 1)f(w)

Binomial(n, p)

Tαf(w) = p× (n− w)f(w + 1)− q × wf(w)

Poisson(µ)

Tαf(w) = µf(k + 1)− kf(k)

Hypergeometric((n,N,R))

Tαf(w) =
(n− k)(R− k)

N
f(k + 1)− k((N −R)− (n− k))

N
f(k)

It is sometimes a good idea, given the contraction property to rewrite (2.12) as follows:

(3.13) T (αf)(w) =
βw

λ
∆f(w) +

βw − δw
λ

f(w) =
βw

λ
∆f(w)− (w − µ)f(w).

Because then, in comparisons between two birth and death chains whose means are equal, the second
part of the right hand side cancels. The following section presents a few specific examples. We will
return to the general birth and death chains and the definition of the inverse toTα, and its bounds in
the section 5.3.

3.4.4 Examples

Comparison of the binomial and Poisson

Just to illustrate how the machinery we installed works formally, we can turn over the first example,
taking the target to be Poisson. We will show how the algebraic lemma and the properties of the pseudo-
inverseg of an indicator functionIA provide bounds for the distances between these two distributions.

Let’s define the elements of the diagram. In this case the target is Poisson with meannp (largely
developed in the book by Barbour, Holst and Jansen (1992)) the characterizing operator is:

(3.14) T0f(w) = npf(w + 1)− wf(w).

We will take the binomial characterization obtained above

(3.15) T (αf)(w) = p(n− w)f(w + 1)− w(1− p)f(w).

XO is the space of functionsN −→ R having at most exponential increase,
F0 = X0 ∩ {f : f(0) = 0}. X the same asX 0 but restricted to functions defined on{0...n}. β is the
relevant restriction function:

βf(w) =
{
f(w) if w ≤ n
0 if w > n

By takingf = Ik andU0f = g defined such that:

T0 ◦ U0(Ik) = Ik − pµ(k)
npg(w + 1)− wg(w) = f(w)− E0f = f(w)− E0f,∀w.
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Lemma 3.2 (Bound on the pseudo-inverse and its increase)For gA the solution to the equation:

µgA(w + 1)− wgA(w) = IA(w)− Po(A),

we have the bounds:

‖g‖ = sup
j
g(j) ≤ min(1,

1
√
µ

)(3.16)

∆g = sup
j
|g(j + 1)− g(j)| ≤ min(1,

1
µ

).(3.17)

For a proof one can look at Barbour, Holst and Jansen (page 7 and page 223).
Then, the algebraic lemma implies that for any setA and functiongA defined as above:

|P (A)− Po(A)| = E[TαgA − T0gA]
= E[npg(w + 1)− wg(w)− npg(w + 1)

+wpg(w + 1) + wg(w)− wpg(w)]
= E[wp(g(w + 1)− g(w))]
≤ E(wp)∆

≤ np2∆ ≤ np2 min(1,
1
µ

).

This is sharper than the result in remark 3 of Section 3.2.1.

The number of ones in the binary expansion of an integer

This is an example treated in different ways by Diaconis (1977), Stein (1986) and Barbour and Chen
(1992). This presentations follows the first two authors closely.

Let n be fixed. Choose uniformly an integerX between0 andn. We want to study:
W = Number of1’s in the binary expansion ofX.
Let’s write this expansion:XmXm−1 . . . X1 with m the maximal number of possible digits thatX
could take:

m = [log2 n] + 1

following Diaconis (1977) we will callQ(x) the number of0’s in x’s binary expansion which can’t be
changed without making the new number bigger thann. For instanceQ(17) = 2 if n = 23.

Exchangeable Pair
ChooseI uniformly in {0 . . .m}. ChangeXI into its contrary as long as this doesn’t make the new
integer larger thann.{

W ′ = W −XI + (1−XI) if X + (1− 2XI)2I−1 ≤ n
W ′ = W otherwise

(W,W ′) is exchangeable, and this example is the first we define that is a birth and death chain.

EEW (W ′ −W ) = 0.(3.18)

EW (W ′ −W ) =
m−W −Q

m
− W

m
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(2.18) =⇒ E

(
m− 2W −Q

m

)
= 0

=⇒ E(W ) =
1
2
(m− E(Q))

The function(w,w′) −→ (w′ − w)(w + w′) being antisymmetric, we have

EEW (W ′2 −W 2) = 0(3.19)

Thus var(W ) =
1
2
EEW (W ′ −W )2(3.20)

asEW (W ′ −W )2 =
m−Q

m
.(3.21)

We will take for our operatorTα:

T (αf)(w) =
βwf(w + 1)− δwf(w)

2
m

=
m

2

(
m− w −Q

m
f(w + 1)− w

m
f(w)

)
=

m− w

2
f(w + 1)− w

2
f(w)− Q

2
f(w + 1)

= T0f(w)− Q

2
f(w + 1)

WhereT0f(w) =
m− w

2
f(w + 1)− w

2
f(w)

is thecharacterizing operatorof the binomialB(m, 1
2).

Forg the solution to

Ik − P0(k) =
m− w

2
g(w + 1)− w

2
g(w)

Stein (1980) shows|g(w)| ≤ 4
m .

And P (Q > k) ≤ 1
2k

= P (X ≥ n− 2m−k)

impliesEQ =
∞∑

k=0

P (Q > k) ≤ 1
1− 1

2

= 2

Therefore |p(k)− P0(k)| ≤
4
m

Contingency Tables

Diaconis and Saloff-Coste(1996) take the following example to show how Nash inequalities can be
used to bound rates of convergence of Markov Chains.

CallM2
n the set of alln × n contingency tables whose margins are all equal to2. We are going to

considerW= Number of 2’s inM , a table chosen uniformly among tables ofM2
n. Forn large these

are sparse tables with2 a rare event.
In this case we will start by creating an approximate birth and death chain through construction of

an exchangeable pair, this will make clear what the mean and variance are. Seeing that they are equal
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points to a Poisson target. We then explore the distance to the Poisson using the bound we have on the
inverse to the Poisson characterizing operator.

Exchangeable Pair
We will use the pair(M ′,M) constructed as a reversible Markov chain for generating uniformly such
tables as our basis for the exchangeable pair(W ′,W ).

Note: When we have a procedure for generating a reversible Markov chain, we will always have an
exchangeable pair. See Chapter 1 of this book.

• Choose a pair of different rows at random

• Choose a pair of different columns at random

• As long as it doesn’t make any table value negative make the following change to the2 by 2

square thus defined:

(
+ −
− +

)
or

(
− +
+ −

)
choosing one of the above with probability

1
2 . Otherwise the chain stays at the original table.

An exchangeable pair(W ′,W ) is thus defined naturally from the pair(M,M ′).
Let’s computeβw = P (W ′ = W + 1|W ), the probability that the number of2’s increases by1.

For that to happen a configuration of the

∣∣∣∣ 1 0
1 1

∣∣∣∣ must be chosen as the2 by 2 square, this can be

decomposed into the product:
-Probability of choosing two columns without any2’s.

(n− w)(n− w − 1)
(n− 1)n

-and the probability of choosing the two1’s amongn, when there are only two of them:

2
n(n− 1)

,

-and the probability that the second column is(0, 1):

(n− 2)
(n− 1)

1
(n− 1)

.

There are four configurations of this type (four positions of0’s), only half of which will be compatible
with the choice of+ and− patterns to enable a step, thus:

βw =
4(n− w)(n− w − 1)(n− 2)

n2(n− 1)4
=

4
n(n− 1)2

[(1− w

n
)(1− w

n− 1
)(1− 1

n− 1
)]

For the probability that the number of2’s to decreases by1, we look for the probability of a configu-

ration of a:

∣∣∣∣ 2 0
0 1

∣∣∣∣ configuration.

By a similar decomposition as above, this configuration has probability

w

n
× (n− w)

(n− 1)
× 1
n
× 2
n− 1
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Of which only two out of four will produce a move, thus:

δw = P (W ′ = w − 1|W = w) =
4w(n− w)
n2(n− 1)2

Note that

P (W ′ = w − 2|W = w) =
w(w − 1)

2n2(n− 1)2

is of an ordern−1 smaller, we are going to ignore it, as well as

P (W ′ = w + 2|W = w) =
4(n− w)(n− w − 1)

n3(n− 1)3
.

In fact, if the original chain is modified to hold whenW jumps by two, the following calculations are
all valid. We can start by computing the mean simply by exchangeability:

EEwW ′ −W = E(βw − δw) = 0

βw − δw =
4(n− w)
n2(n− 1)2

[
(n− w − 1)(n− 2)

(n− 1)2
− w

]
=

4(n− w)
n3(n− 1)3

[
(2− w)n2 − n(w + 6) + 4(w + 1)

]
=

4
n(n− 1)2

[
−(w − 1)− w(1− w)

n
− (1 + w)

n− 1
· · ·
n2

]
thusE(βw − δw) .= 0 impliesE(W ) .= 1.

We remark that:

βw − δw
.=

4
n(n− 1)2

[−(w − 1)]

providing an approximate contraction property

EwW ′ −W
.= − 1

λ
(W − E(W ))

with λ =
4

n(n− 1)2

For the variance we can use the fact that:

E(W ′2 −W 2) = E(W ′ −W )(W ′ +W ) = 0 by antisymmetry

Ew(W ′ −W )2 = Ew(W ′2 −W 2) + 2WEw(W −W ′)
= Ew(W ′2 −W 2)− 2WEw(W ′ −W )

thus var(W ) .=
(W − E(W ))
2(βw − δw)

EEw(W ′ −W )2

ThenEEw(W ′ −W )2 .= 2λEW (W − E(W ))

ButEw(W ′ −W )2 .=
4

n(n− 1)2
[
(w + 1)− w

n
(w + 2) +

· · ·
n2

]
var(W ) .=

1
2
E(w + 1) .= 1
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As usual we define:

(αf)(w,w′) =
1
λ

[
Iw′=w+1f(w′)− Iw=w′+1f(w)

]
T (αf)(w) = Ew(αf)(w,w′) =

βw

λ
f(w + 1)− δw

λ
f(w)

As suggested by the first two moments, a Poisson(1) approximation seems appropriate, so we are
going to compare the operator constructed above with the Poisson(1) operator:T0f(w) = 1 × f(w +
1)− wf(w) :

Tα(f)(w)− T0f(w) = (
βw

λ
− 1)∆f(w) + (

βw − δw
λ

)f(w) + (w − 1)f(w)

βw

λ
− 1 = −w

n
− w

n− 1
− 1
n− 1

+
· · ·
n2

βw − δw
λ

.=
[
−(w − 1) +

w(w − 2)
n

]
Tα(f)(w)− T0f(w) = −2w + 1

n
∆f(w)− w(w − 2)

n
f(w)

The pseudo-inversef and its increase are both bounded by 1. To bound the total variation distance
between these two measures, for any setA its measure is the expectation of the indicatorIA, call the
Poisson onePo(A) and denote begA = U0IA the solution to the equation:

T0g = 1× gA(w + 1)− wgA(w) = IA − Po(A).

Lemma 5 of Barbour, Holst and Janson (1992) provides, as shown above:

∆gA ≤ 1 and‖g‖ ≤ 1.

Thus bounding the expectation ofTα(gA)(w)− T0gA(w) gives:

dTV (P, Po) ≤ |E(
2w + 1
n

) + E(
(w − 2)w

n
)| ≤ 3

n
+O(

1
n2

).

3.5 General Discrete Target distribution

This section is the discrete version of chapter 6 of Stein (1986) which he suggests for development in
the section on open problems.

For a given target distribution (2.14) provides a general form of characterizing operator. In order for
the method to be useful we need to define and bound the inverse of some very specific test functions
such asIA − pA.

First we will define the inverse, then we will give conditions on the stationary distribution that will
ensure that the increase in the solution is bounded. This section concludes with a large class of new
examples, related to distance regular graphs, where our conditions are satisfied.

Pseudo-Inverse forT0

Suppose that the target distribution is also defined from a birth and death chain (δk, βk defined in (2.11))
that is we haveT0 of the form :

(3.22) T0f(w) =
1
λ

(βwf(w + 1)− δwf(w))
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Given a functiong defined on{0 . . . n}, how and when can we define its inverse byT0? This can be
reduced to a set of recurrence equations, settingfk = f(k) andgk = g(k), we want:

βkfk+1 − δkfk = λgk 0 < k < n
β0f1 = λg0
−δnfn = λgn

(3.23)

The last condition of the recurrence implies:

fn−k = − 1
δn−k

(
βn−k

δn−k+1

βn−k+1

δn−k+2
· · · βn−2

δn−1

βn−1

δn
gn + · · · gn−k

)
.

Exchangeability of the chain imposes :

βkpk = δk+1pk+1.

From this we can do the simplifications :

β1

δ2

β2

δ3
· · · βn−1

δn
=
pn

p1

In particular

f1 = − λ

δ1

(
pn

p1
gn +

pn−1

p1
gn−1 + · · ·+ g1

)
.

Coherent with the initial conditionβ0f1 = g0 if

n∑
k=0

pkgk = 0.

When this is fulfilled the general form of the inverse is:

(3.24) fk = − λ

δkpk
(pkgk + . . . pngn) =

(pkgk + . . . pngn)∑n
j=k pj(j − µ)

Because of the definition (2.11) ofδk. For such a definition, (Barbour, Holst and Janson (1992), page
189, Lemma 9.2.1) give a general bound for∆f , under the condition that theβk are non-increasing and
theδk non-decreasing. This bound is valid for the inverse of the indicator of any set A : Iff satisfies
T0f(k) = IA − p(A) then

(3.25) ∆f = max
j
|f(j + 1)− f(j)| ≤ max

j
min(

λ

βj
,
λ

δj
).

Again taking into account the definitions ofβk andδk, we have

λ

δj
= −pkPk−1

j=0 pj(j−µ)
= pkPn

j=k pj(j−µ)

λ

βk
= −pkPk

j=0 pj(j−µ)
= pkPn

j=k+1 pj(j−µ)

We define the pseudo inverse of any function f by

g(k) = Uf(k) =
λ

βk−1pk−1

∑
i=0

pj(f(j)− Ef)



18

It is easy to check that such ag satisfies:Tg(k) = f(k)−Ef as before. Suppose the test functionf of
interest is the indicator functionf = I{k0}. In this case the expectation off will be Ef = p(k0) = pk0

and

U I{k0}(k) =

{
− λpk0

βk−1pk−1

∑k−1
0 pj , k ≤ k0

λpk0
βk−1pk−1

∑n
j=k pj , k ≤ k0

.

We know that if we match up the means of the distributions, we only need to bound the first order
difference ofU Ik0 , which we will denote by∆U Ik0 = U Ik0(k + 1)− U Ik0(k).

There are three possible cases for the form that this can take on, depending on wherek is situated
with regards tok0:

1.

If k < k0, then∆U Ik0(k) = −λpk0

(
Sk

βkpk
− Sk−1

βk−1pk−1

)
2.

∆U Ik0(k0) = −λpk0

(
(1− Sk0

βk0pk0

+
Sk0−1

βk0−1pk0−1

)
3.

If k > k0, then∆U Ik0(k) = λpk0

(
(1− Sk)
βkpk

− (1− Sk−1)
βk−1pk−1

)
Proposition 3.5.1 For βk decreasing andδk increasing, then the only case where∆U Ik0(k) > 0 is for
k = k0.

Proof.
We are going to look at : (

Sk

βkpk
− Sk−1

βk−1pk−1

)
and prove that it is always positive.(

Sk

βkpk
− Sk−1

βk−1pk−1

)
=

k∑
j=0

pj

pkβk
−

k−1∑
j=0

pj

βk−1pk−1

=
exch.

p0

pkβk
+

k∑
1

(
pj

pkβk
− pj−1

pkδk
)

=
p0

pkβk
+

1
pkβk

k∑
1

pj(1−
pj−1

pj

βk

δk
)

=
p0

pkβk
+

1
pkβk

k∑
1

pj(1−
δj
βj−1

βk

δk
)

Under the monotonicity conditions above forβk andδk, this last parenthesis on the right will always
be positive, thus proving that∆Ik0(k) < 0 for all k < k0.

A very similar argument gives the same result in casek > k0

Corollary 3.5.1 For βk decreasing andδk increasing and for any subsetA ⊂ {0, 1, 2, . . . , n}:

|∆U Ik0(A)| ≤ ∆U Ik0(k0).
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Proof.
n−1∑
j=0

∆U Ik0(j) = U Ik0(n)− U Ik0(0) = λ
pk0pn

βn−1pn−1
= λ

pk0

δn
> 0

So the overall sum of the sequence is positive, thus the one positive element is larger than any combi-
nation of the others.

A large class of examples of distributions on{0, 1, 2, . . . d} where the appropriate monotonicity con-
ditions for a natural birth and death chain are satisfied is the class of distance regular graphs. These
are connected graphsγ with vertex setΩ. Let d(x, y) be the graph distance between verticesx andy.
Let [(i, x)] be the vertices at distancei fromXi, 0 ≤ i ≤ d, with d the diameter of the graph. Thenγ
is distance regularif there are numbersci, ai, bi, 0 ≤ i ≤ d such that ifd(x, y) = i, then the number
of neightbors ofy which lie at distancei− 1, i, i+ 1 from x areci, ai, bi the nearest neighbor random
walk on a distance regular graph generates a birth and death chain by looking at the distance from the
starting state. This chain has stationary distributionπ(i), proportional tob0b1...bi−1

c1c2...ci
. A theorem of Smith

Smith, D. [1971] says that the birth and death rates satisfyc1 ≤ c2 . . . ≤ cd andb0 ≥ b1 ≥ . . . ≥ bd−1

(note thatc0 andbd are undefined for distance regular graphs). This result shows that our bounds on
the inverse are in force for all of these birth and death chains.

The classification of distance regular graphs is one of the most active topics in algebraic combina-
torics. Well-known examples include the hypercube (with binomial stationary distribution) and the
k-sets of ann-set (with hypergeometric stationary distribution). For a splendid introduction to the sub-
ject see Cameron (1999) chapter three. The definite work on the subject is by Brouwer, Cohen and Neu-
maier (1984). This contains hundreds of families of examples. Andries Brouwer (www.win.tue.nl/˜aeb )
maintains a website dedicated to this subject.

3.6 Appendix:Some Numbers

Here is the matrix of the birth and death chain that converges to uniform, withλ = 0.08, n = 6.

bd2(n = 7, lambda = 0.08)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.76 0.24 0 0 0 0 0
[2,] 0.24 0.36 0.40 0 0 0 0
[3,] 0 0.40 0.12 0.48 0 0 0
[4,] 0 0 0.48 0.04 0.48 0 0
[5,] 0 0 0 0.48 0.12 0.40 0
[6,] 0 0 0 0 0.40 0.36 0.24
[7,] 0 0 0 0 0 0.24 0.76

Here are a few powers showing how long it takes to converge:

puissance(bd2(n = 7, lambda = 0.08),2ˆ5)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1652 0.1577 0.1503 0.1428 0.1354 0.1280 0.1206
[2,] 0.1577 0.1528 0.1478 0.1429 0.1379 0.1329 0.1280
[3,] 0.1503 0.1478 0.1454 0.1429 0.1404 0.1379 0.1354
[4,] 0.1428 0.1429 0.1429 0.1429 0.1429 0.1429 0.1428
[5,] 0.1354 0.1379 0.1404 0.1429 0.1454 0.1478 0.1503
[6,] 0.1280 0.1329 0.1379 0.1429 0.1478 0.1528 0.1577
[7,] 0.1206 0.1280 0.1354 0.1428 0.1503 0.1577 0.1652
puissance(bd2(n = 7, lambda = 0.08),2ˆ6)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.1444 0.1439 0.1434 0.1429 0.1423 0.1418 0.1413
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[2,] 0.1439 0.1435 0.1432 0.1429 0.1425 0.1422 0.1418
[3,] 0.1434 0.1432 0.1430 0.1429 0.1427 0.1425 0.1423
[4,] 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
[5,] 0.1423 0.1425 0.1427 0.1429 0.1430 0.1432 0.1434
[6,] 0.1418 0.1422 0.1425 0.1429 0.1432 0.1435 0.1439
[7,] 0.1413 0.1418 0.1423 0.1429 0.1434 0.1439 0.1444

For a smallerλ, it’s slower :

bd2(n = 7, lambda = 0.04)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.88 0.12 0 0 0 0 0
[2,] 0.12 0.68 0.20 0 0 0 0
[3,] 0 0.20 0.56 0.24 0 0 0
[4,] 0 0 0.24 0.52 0.24 0 0
[5,] 0 0 0 0.24 0.56 0.20 0
[6,] 0 0 0 0 0.20 0.68 0.12
[7,] 0 0 0 0 0 0.12 0.88

puissance(bd2(n = 7, lambda = 0.04),2ˆ6)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1665 0.1586 0.1507 0.1428 0.1349 0.1271 0.1194
[2,] 0.1586 0.1533 0.1481 0.1429 0.1376 0.1324 0.1271
[3,] 0.1507 0.1481 0.1455 0.1429 0.1403 0.1376 0.1349
[4,] 0.1428 0.1429 0.1429 0.1429 0.1429 0.1429 0.1428
[5,] 0.1349 0.1376 0.1403 0.1429 0.1455 0.1481 0.1507
[6,] 0.1271 0.1324 0.1376 0.1429 0.1481 0.1533 0.1586
[7,] 0.1194 0.1271 0.1349 0.1428 0.1507 0.1586 0.1665
puissance(bd2(n = 7, lambda = 0.04),2ˆ7)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.1446 0.1440 0.1434 0.1429 0.1423 0.1417 0.1411
[2,] 0.1440 0.1436 0.1432 0.1429 0.1425 0.1421 0.1417
[3,] 0.1434 0.1432 0.1430 0.1429 0.1427 0.1425 0.1423
[4,] 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
[5,] 0.1423 0.1425 0.1427 0.1429 0.1430 0.1432 0.1434
[6,] 0.1417 0.1421 0.1425 0.1429 0.1432 0.1436 0.1440
[7,] 0.1411 0.1417 0.1423 0.1429 0.1434 0.1440 0.1446

For n=10, 11 possible values andλ = 0.03 < 1/30

round(bd2(n=11,lambda=0.03),3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.85 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[2,] 0.15 0.58 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[3,] 0.00 0.27 0.37 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[4,] 0.00 0.00 0.36 0.22 0.42 0.00 0.00 0.00 0.00 0.00 0.00
[5,] 0.00 0.00 0.00 0.42 0.13 0.45 0.00 0.00 0.00 0.00 0.00
[6,] 0.00 0.00 0.00 0.00 0.45 0.10 0.45 0.00 0.00 0.00 0.00
[7,] 0.00 0.00 0.00 0.00 0.00 0.45 0.13 0.42 0.00 0.00 0.00
[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.22 0.36 0.00 0.00
[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.37 0.27 0.00

[10,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.58 0.15
[11,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.85

round(puissance(bd2(n=11,lambda=0.03),8),3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
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[1,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[2,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[3,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[4,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[5,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[6,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[7,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[8,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[9,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[10,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[11,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

> round(puissance(bd2(n=11,lambda=0.03),7),3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.096 0.095 0.094 0.093 0.092 0.091 0.090 0.089 0.088 0.087 0.086
[2,] 0.095 0.094 0.093 0.092 0.092 0.091 0.090 0.089 0.089 0.088 0.087
[3,] 0.094 0.093 0.093 0.092 0.091 0.091 0.090 0.090 0.089 0.089 0.088
[4,] 0.093 0.092 0.092 0.092 0.091 0.091 0.091 0.090 0.090 0.089 0.089
[5,] 0.092 0.092 0.091 0.091 0.091 0.091 0.091 0.091 0.090 0.090 0.090
[6,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
[7,] 0.090 0.090 0.090 0.091 0.091 0.091 0.091 0.091 0.091 0.092 0.092
[8,] 0.089 0.089 0.090 0.090 0.091 0.091 0.091 0.092 0.092 0.092 0.093
[9,] 0.088 0.089 0.089 0.090 0.090 0.091 0.091 0.092 0.093 0.093 0.094

[10,] 0.087 0.088 0.089 0.089 0.090 0.091 0.092 0.092 0.093 0.094 0.095
[11,] 0.086 0.087 0.088 0.089 0.090 0.091 0.092 0.093 0.094 0.095 0.096

Here is the bd chain for the hypergeometric:

pi.hyper <- dhyper(0:5, 5, 7, 5)
pi.hyper

0.0265 0.221 0.442 0.265 0.0442 0.00126

puissance(bd2(n=6,p=pi.hyper,lambda=1/3),3)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0325 0.246 0.445 0.240 0.0355 0.000892
[2,] 0.0296 0.234 0.444 0.252 0.0396 0.001063
[3,] 0.0267 0.222 0.442 0.264 0.0438 0.001244
[4,] 0.0240 0.210 0.440 0.276 0.0481 0.001433
[5,] 0.0213 0.198 0.438 0.289 0.0526 0.001632
[6,] 0.0187 0.186 0.435 0.301 0.0571 0.001840

puissance(bd2(n=6,p=pi.hyper,lambda=1/3),4)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0267 0.222 0.442 0.264 0.0438 0.00125
[2,] 0.0266 0.221 0.442 0.265 0.0440 0.00125
[3,] 0.0265 0.221 0.442 0.265 0.0442 0.00126
[4,] 0.0264 0.221 0.442 0.266 0.0443 0.00127
[5,] 0.0263 0.220 0.442 0.266 0.0445 0.00128
[6,] 0.0262 0.220 0.442 0.267 0.0447 0.00128

puissance(bd2(n=6,p=pi.hyper,lambda=1/10),4)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.071 0.346 0.416 0.152 0.016 0.000
[2,] 0.041 0.287 0.446 0.201 0.025 0.001
[3,] 0.025 0.223 0.453 0.259 0.039 0.001
[4,] 0.015 0.168 0.432 0.321 0.062 0.002
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[5,] 0.009 0.124 0.392 0.373 0.098 0.004
[6,] 0.006 0.090 0.343 0.407 0.144 0.010
puissance(bd2(n=6,p=pi.hyper,lambda=1/10),5

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.032 0.244 0.444 0.243 0.037 0.001
[2,] 0.029 0.233 0.443 0.253 0.040 0.001
[3,] 0.027 0.222 0.442 0.264 0.044 0.001
[4,] 0.024 0.211 0.440 0.275 0.048 0.001
[5,] 0.022 0.201 0.437 0.286 0.052 0.002
[6,] 0.020 0.191 0.434 0.296 0.057 0.002
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