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Abstract

We develop Stein’s method for exchangeable pairs for a rich class of distributional approxima-
tions including the Gaussian distributions as well as the non-Gaussian limit distributions with
density proportional to exp(−µ|x |2k/(2k)!). As a consequence we obtain convergence rates in
limit theorems of partial sums Sn for certain sequences of dependent, identically distributed
random variables which arise naturally in statistical mechanics, in particular in the context of
the Curie-Weiss models. Our results include a Berry-Esseen rate in the Central Limit Theorem
for the total magnetization in the classical Curie-Weiss model, for high temperatures as well as
at the critical temperature βc = 1, where the Central Limit Theorem fails. Moreover, we ana-
lyze Berry-Esseen bounds as the temperature 1/βn converges to one and obtain a threshold for
the speed of this convergence. Single spin distributions satisfying the Griffiths-Hurst-Sherman
(GHS) inequality like models of liquid helium or continuous Curie-Weiss models are considered.
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1 Introduction

Stein’s method is a powerful tool to prove distributional approximation. One of its advantages is that
is often automatically provides also a rate of convergence and may be applied rather effectively also
to classes of random variables that are stochastically dependent. Such classes of random variables
are in natural way provided by spin system in statistical mechanics. The easiest of such models are
mean-field models. Among them the Curie–Weiss model is well known for exhibiting a number of
properties of real substances, such as spontaneous magnetization or metastability. The aim of this
paper is to develop Stein’s method for exchangeable pairs (see [20]) for a rich class of distributional
approximations and thereby prove Berry-Esseen bounds for the sums of dependent random variables
occurring in statistical mechanics under the name Curie-Weiss models. For an overview of results on
the Curie–Weiss models and related models, see [9], [11], [13].

For a fixed positive integer d and a finite subset Λ of Zd , a ferromagnetic crystal is described by
random variables XΛi which represent the spins of the atom at sites i ∈ Λ, where Λ describes the
macroscopic shape of the crystal. In Curie–Weiss models, the joint distribution at fixed temperature
T > 0 of the spin random variables is given by

PΛ,β((x i)) := PΛ,β
�

(XΛi )i∈Λ = (x i)i∈Λ
�

:=
1

ZΛ(β)
exp
�

β

2|Λ|
�

∑

i∈Λ
x i
�2
�

∏

i∈Λ
d%(x i). (1.1)

Here β := T−1 is the inverse temperature and ZΛ(β) is a normalizing constant, that turns PΛ,β
into a probability measure, known as the partition function and |Λ| denotes the cardinality of Λ.
Moreover % is the distribution of a single spin in the limit β → 0. We define SΛ =

∑

i∈Λ XΛi , the
total magnetization inside Λ. We take without loss of generality d = 1 and Λ = {1, . . . , n}, where
n is a positive integer. We write n, X (n)i , Pn,β and Sn, respectively, instead of |Λ|, XΛi , PΛ,β , and SΛ,
respectively. In the case where β is fixed we may even sometimes simply write Pn. In the classical
Curie–Weiss model, spins are distributed in {−1,+1} according to % = 1

2
(δ−1 + δ1). The measures

Pn,β is completely determined by the value of the total magnetization. It is therefore called an order
parameter and its behaviour will be studied in this paper.

The following is known about the fluctuation behaviour of Sn under Pn. In the classical model (%
is the symmetric Bernoulli measure), for 0 < β < 1, in [18] and [11] the Central Limit Theorem is

proved:
∑n

i=1 X ip
n
→ N(0,σ2(β)) in distribution with respect to the Curie–Weiss finite volume Gibbs

states with σ2(β) = (1 − β)−1. Since for β = 1 the variance σ2(β) diverges, the Central Limit
Theorem fails at the critical point. In [18] and [11] it is proved that for β = 1 there exists a random

variable X with probability density proportional to exp(− 1
12

x4) such that
∑n

i=1 X i

n3/4 → X as n→∞ in
distribution with respect to the finite-volume Gibbs states.

Stein introduced in [20] the exchangeable pair approach. Given a random variable W , Stein’s
method is based on the construction of another variable W ′ (some coupling) such that the pair
(W, W ′) is exchangeable, i.e. their joint distribution is symmetric. The approach essentially uses the
elementary fact that if (W, W ′) is an exchangeable pair, then Eg(W, W ′) = 0 for all antisymmetric
measurable functions g(x , y) such that the expectation exists. A theorem of Stein ([20, Theorem
1, Lecture III]) shows that a measure of proximity of W to normality may be provided in terms of
the exchangeable pair, requiring W ′ −W to be sufficiently small. He assumed the linear regression
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property
E(W ′|W ) = (1−λ)W

for some 0 < λ < 1. Stein proved that for any uniformly Lipschitz function h, |Eh(W )− Eh(Z)| ≤
δ‖h′‖ with Z denoting a standard normally distributed random variable and

δ = 4E
�

�

�

�

1−
1

2λ
E
�

(W ′−W )2|W
�

�

�

�

�

+
1

2λ
E|W −W ′|3. (1.2)

Stein’s approach has been successfully applied in many models, see e.g. [20] or [21] and references
therein. In [16], the range of application was extended by replacing the linear regression property
by a weaker condition.

For a motivation of our paper we consider the construction of an exchangeable pair (W, W ′) in the
classical Curie-Weiss model for W = (1/

p
n)
∑n

i=1 X i , proving an approximate regression property.
We produce a spin collection X ′ = (X ′i )i≥1 via a Gibbs sampling procedure: select a coordinate, say
i, at random and replace X i by X ′i drawn from the conditional distribution of the i’th coordinate
given (X j) j 6=i , independently form X i . Let I be a random variable taking values 1,2, . . . , n with equal
probability, and independent of all other random variables. Consider

W ′ :=W −
X Ip

n
+

X ′Ip
n
=

1
p

n

∑

j 6=I

X j +
X ′Ip

n
.

Hence (W, W ′) is an exchangeable pair and W −W ′ = X I−X ′Ip
n

. For F := σ(X1, . . . , Xn) we obtain

E[W −W ′|F ] =
1
p

n

1

n

n
∑

i=1

E[X i − X ′i |F ] =
1

n
W −

1
p

n

1

n

n
∑

i=1

E[X ′i |F ].

The conditional distribution at site i is given by

Pn
�

x i|(x j) j 6=i
�

=
exp
�

x i β mi(x)
�

exp
�

βmi(x)
�

+ exp
�

−βmi(x)
� , with mi(x) :=

1

n

∑

j 6=i

x j , i = 1, . . . , n.

It follows that
E[X ′i |F ] = E[X i|(X j) j 6=i] = tanh(βmi(X )).

The Taylor-expansion tanh(x) = x +O (x3) leads to

E[W −W ′|W] =
1− β

n
W + R=

λ

σ2 W + R (1.3)

with λ := 1
n
, σ2 := (1− β)−1 and E|R| = O

� 1
n3/2

�

. With (1.3) we are able to apply Theorem 1.2 in
[16]: for any uniformly Lipschitz function h, |Eh(W )−Eh(Z)| ≤ δ′‖h′‖ with

δ′ = 4E
�

�

�

�

1−
1

2λ
E
�

(W ′−W )2|W
�

�

�

�

�

+
1

2λ
E|W −W ′|3+ 19

p

ER2

λ
. (1.4)

Using (1.3) we will be able to prove a Berry-Esseen rate for W , see Section 3.
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In the critical case β = 1 of the classical Curie-Weiss model the Taylor expansion tanh(x) = x −
x3/3+O (x5), (1.3) would lead to

E[W −W ′|W] =
W 3

3

1

n2 + R̃

for some R̃. The prefactor λ := 1
n2 would give growing bounds. In other words, the criticality of the

temperature value 1/βc = 1 can also be recognized by Stein’s method. We already know that at the
critical value, the sum of the spin-variables has to be rescaled. Let us now define W := 1

n3/4

∑n
i=1 X i .

Constructing the exchangeable pair (W, W ′) in the same manner as before we will obtain

E[W −W ′|W] =
1

n3/2

W 3

3
+ R(W ) =:−λψ(W ) + R(W ) (1.5)

with λ = 1
n3/2 and a remainder R(W ) presented later. Considering the density p(x) =

C exp(−x4/12), we have p′(x)
p(x) = ψ(x). This is the starting point for developing Stein’s method

for limiting distributions with a regular Lebesgue-density p(·) and an exchangeable pair (W, W ′)
which satisfies the condition

E[W −W ′|W] =−λψ(W ) + R(W ) =−λ
p′(W )
p(W )

+ R(W )

with 0< λ < 1.

In Section 2 we develop Stein’s method for exchangeable pairs for a rich class of other distributional
approximations than normal approximation. Moreover, we prove certain refinements of Stein’s
method for exchangeable pairs in the case of normal approximation. In Section 3 we apply our
general approach to consider Berry-Esseen bounds for the rescaled total magnatization for general
single spin distributions % in (1.1) satisfying the GHS-inequality. This inequality ensures the appli-
cation of correlation-inequalities due to Lebowitz for bounding the variances and other low order
moments, which appear in Stein’s method. Rates of convergence in limit theorems for partial sums
in the context of the Curie-Weiss model will be proven (Theorems 3.1, 3.2 and 3.3). Moreover,
we prove a Berry-Essen rate in the Central Limit Theorem for the total magentization in the classi-
cal Curie-Weiss model, for high tempertaures (Theorem 3.7) as well as at the critical temperature
β = 1 (Theorem 3.8). We analyze Berry-Esseen bounds as the temperature 1/βn converges to one
and obtain a threshold for the speed of this convergence. Section 4 contains a collection of exam-
ples including the Curie-Weiss model with three states, modeling liquid helium, and a continuous
Curie-Weiss model, where the single spin distribution % is a uniform distribution.

During the preparation of our manusscript we became aware of a preprint of S. Chatterjee ans Q.-M.
Shao about Stein’s method with applications to the Curie-Weiss model [4]. As far as we understand,
there the authors give an alternative proof of Theorem 3.7 and 3.8.

2 The exchangeable pair approach for distributional approximations

We will begin with modifying Stein’s method by replacing the linear regression property by

E(W ′|W ) =W +λψ(W ) + R(W ),
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where ψ(x) depends on a continuous distribution under consideration. Let us mention that this is
not the first paper to study other distributional approximations via Stein’s method. For a rather large
class of continuous distributions, the Stein characterization was introduced in [21], following [20,
Chapter 6]. In [21], the method of exchangeable pairs was introduced for this class of distribution
and used in a simulation context. Recently, the exchangeable pair approach was introduced for
exponential approximation in [3, Lemma 2.1].

Given two random variables X and Y defined on a common probability space, we denote the Kol-
mogorov distance of the distributions of X and Y by

dK(X , Y ) := sup
z∈R
|P(X ≤ z)− P(Y ≤ z)|.

Motivated by the classical Curie-Weiss model at the critical temperature, we will develop Stein’s
method with the help of exchangeable pairs as follows. Let I = (a, b) be a real interval, where
−∞ ≤ a < b ≤ ∞. A function is called regular if f is finite on I and, at any interior point of I , f
possesses a right-hand limit and a left-hand limit. Further, f possesses a right-hand limit f (a+) at
the point a and a left-hand limit f (b−) at the point b. Let us assume, that the regular density p
satisfies the following condition:

Assumption (D) Let p be a regular, strictly positive density on an interval I = [a, b]. Suppose p has
a derivative p′ that is regular on I , has only countably many sign changes, and is continuous at the
sign changes. Suppose moreover that

∫

I
p(x)| log(p(x))| d x <∞ and that ψ(x) := p′(x)

p(x) is regular.

In [21] it is proved, that a random variable Z is distributed according to the density p if and only if
E
�

f ′(Z) +ψ(Z) f (Z)
�

= f (b−) p(b−)− f (a+) p(a+) for a suitably chosen class F of functions f .
The corresponding Stein identity is

f ′(x) +ψ(x) f (x) = h(x)− P(h), (2.6)

where h is a measurable function for which
∫

I
|h(x)| p(x) d x <∞, P(x) :=

∫ x

−∞ p(y) d y and P(h) :=
∫

I
h(y) p(y) d y . The solution f := fh of this differential equation is given by

f (x) =

∫ x

a

�

h(y)− Ph) p(y) d y

p(x)
. (2.7)

For the function h(x) := 1{x≤z}(x) let fz be the corresponding solution of (2.6). We will make the
following assumptions:

Assumption (B1) Let p be a density fulfilling Assumption (D). We assume that for any absolutely
continuous function h, the solution fh of (2.6) satisfies

‖ fh‖ ≤ c1‖h′‖, ‖ f ′h‖ ≤ c2‖h′‖ and ‖ f ′′h (x)‖ ≤ c3‖h′‖,

where c1, c2 and c3 are constants.

Assumption (B2) Let p be a density fulfilling Assumption (D) We assume that the solution fz of

f ′z (x) +ψ(x) fz(x) = 1{x≤z}(x)− P(z) (2.8)
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satisfies
| fz(x)| ≤ d1, | f ′z (x)| ≤ d2 and | f ′z (x)− f ′z (y)| ≤ d3

and

|(ψ(x) fz(x))
′|=

�

�(
p′(x)
p(x)

fz(x))
′
�

�≤ d4 (2.9)

for all real x and y , where d1, d2, d3 and d4 are constants.

Remark 2.1. In the case of the normal approximation, ψ(x) = −x . Assumption (B2) includes a
bound for (x fz(x))′ for the solution fz of the classical Stein equation. It is easy to observe that
|(x fz(x))′| ≤ 2 by direct calculation (see [5, Proof of Lemma 6.5]). However, in the normal approx-
imation case, using this bound leads to a worse Berry-Esseen constant. We will be able to improve
the Berry-Esseen constant applying d2 = d3 = 1 and d1 =

p
2π/4 (see Theorem 2.6 and Theorem

2.4).

We will see, that all limit laws in our class of Curie-Weiss models satisfy Condition (2.9):

Lemma 2.2. The densities fk,µ,β in (3.35) and (3.36) and the densities in Theorem 3.1 and Theorem
3.2 satisfy Assumptions (D), (B1) and (B2).

Proof. We defer the proof to the appendix, since they only involve careful analysis.

Remark 2.3. We restrict ourselves to solutions of the Stein equation characterizing distributions
with probability densities p of the form bk exp(−ak x2k). Along the lines of the proof of Lemma 2.2,
one would also be able to derive good bounds (in the sense that Assumption (B1) and (B2) are
fulfilled) even for measures with a probability density of the form

p(x) = bk exp
�

−akV (x)
�

, (2.10)

where V is even, twice continuously differentiable, unbounded above at infinity, V ′ 6= 0 and V ′ and
1/V ′ are increasing on [0,∞). Moreover one has to assume that V ′′(x)

|V ′(x)| can be bounded by a constant
for x ≥ d with some d ∈ R+. We sketch the proof in the appendix. It is remarkable, that this class
of measures is a subclass of measures which are GHS, see Section 3. A measure with density p in
(2.10) is usually called a Gibbs measure. Stein’s method for discrete Gibbs measures is developed
in [7]. Our remark might be of use for a potential application of Stein’s method to Gibbs measures
with continuous spins.

The following result is a refinement of Stein’s result [20] for exchangeable pairs.

Theorem 2.4. Let p be a density fulfilling Assumption (D). Let (W, W ′) be an exchangeable pair of
real-valued random variables such that

E[W ′|W] =W +λψ(W )− R(W ) (2.11)

for some random variable R= R(W ), 0< λ < 1 and ψ= p′/p. Then

E(W −W ′)2 =−2λE[Wψ(W )] + 2E[W R(W )]. (2.12)
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Moreover it holds for a random variable Z distributed according to p: (1): Under Assumption (B1), for
any uniformly Lipschitz function h, we obtain |Eh(W )−Eh(Z)| ≤ δ‖h′‖ with

δ := c2E
�

�

�

�

1−
1

2λ
E
�

(W −W ′)2|W
�

�

�

�

�

+
c3

4λ
E|W −W ′|3+

c1

λ

p

E(R2).

(2): Under Assumption (B2), we obtain for any A> 0

dK(W, Z) ≤ d2

È

E
�

1−
1

2λ
E[(W ′−W )2|W]

�2

+
�

d1+
3

2
A
�

p

E(R2)
λ

+
1

λ

�d4A3

4

�

+
3A

2
E(|ψ(W )|) +

d3

2λ
E
�

(W −W ′)21{|W−W ′|≥A}
�

. (2.13)

With (2.12) we obtain E
�

1− 1
2λ
E[(W−W ′)2|W]

�

= 1+E[Wψ(W )]− E(W R)
λ

. Therefore the bounds

in Theorem 2.4 are only useful, if −E[Wψ(W )] is close to 1 and E(W R)
λ

is small. Alternatively,
bounds can be obtained by comparing with a modified distribution that involves E[Wψ(W )]. Let
pW be a probability density such that a random variable Z is distributed according to pW if and only
if E
�

E[Wψ(W )] f ′(Z) +ψ(Z) f (Z)
�

= 0 for a suitably chosen class of functions.

Theorem 2.5. Let p be a density fulfilling Assumption (D). Let (W, W ′) be an exchangeable pair of
random variables such that (2.11) holds. If ZW is a random variable distributed according to pW , we
obtain under (B1), for any uniformly Lipschitz function h that |Eh(W )−Eh(ZW )| ≤ δ′‖h′‖ with

δ′ :=
c2

2λ

�

Var
�

E[(W −W ′)2|W]
��1/2+

c3

4λ
E|W −W ′|3+

c1+ c2

p

E(W 2)
λ

p

E(R2).

Under Assumption (B2) we obtain for any A> 0

dK(W, ZW ) ≤
d2

2λ

�

Var
�

E[(W −W ′)2|W]
�1/2+

�

d1+ d2

p

E(W 2) +
3

2
A
�

p

E(R2)
λ

+
1

λ

�d4A3

4

�

+
3A

2
E(|ψ(W )|) +

d3

2λ
E
�

(W −W ′)21{|W−W ′|≥A}
�

. (2.14)

Proof of Theorem 2.4. The proof is an adaption of the results in [20]. For any function f such that
E(ψ(W ) f (W )) exists we obtain

0 = E
�

(W −W ′)( f (W ′) + f (W ))
�

= E
�

(W −W ′)( f (W ′)− f (W ))
�

− 2λE(ψ(W ) f (W )) + 2E( f (W )R(W )), (2.15)

which is equivalent to

E(ψ(W ) f (W )) =−
1

2λ
E
�

(W −W ′)( f (W )− f (W ′))
�

+
1

λ
E( f (W )R(W )). (2.16)

Proof of (1): Let f = fh be the solution of the Stein equation (2.6), and define

bK(t) := (W −W ′)
�

1{−(W−W ′)≤t≤0}− 1{0<t≤−(W−W ′)}
�

≥ 0.
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By (2.16), following the calculations on page 21 in [5], we obtain

|Eh(W )−Eh(Z)| = |E
�

f ′(W ) +ψ(W ) f (W )
�

|

=
�

�E
�

f ′(W )
�

1−
1

2λ
(W −W ′)2

�

+
1

2λ
E
�
∫

R
( f ′(W )− f ′(W + t)) bK(t) d t

�

+
1

λ
E( f (W )R(W ))

�

�.

Using
∫

R |t|bK(t) d t = 1
2
E|W −W ′|3, the bounds in Assumption (B1) give:

|Eh(W )−Eh(Z)| ≤ ‖h′‖
�

c2E
�

�

�

�

1−
1

2λ
E
�

(W −W ′)2|W
�

�

�

�

�

+
c3

4λ
E|W −W ′|3+

c1

λ

p

E(R2)
�

. (2.17)

Proof of (2): Now let f = fz be the solution of the Stein equation (2.8). Using (2.16), we obtain

P(W ≤ z)− P(z) = E( f ′(W ) +ψ(W ) f (W ))

= E
�

f ′(W )
�

1−
1

2λ
(W −W ′)2

�

�

+
1

2λ
E(2 f (W )R)

−
1

2λ
E
�

(W −W ′)
�

f (W )− f (W ′)− (W −W ′) f ′(W )
�

�

= T1+ T2+ T3.

Now the bounds in Assumption (B2) give

|T1| ≤ d2

È

E
�

1−
1

λ
E[(W ′−W )2|W]

�2

and |T2| ≤
d1

λ

p

E(R2).

Bounding T3 we apply the concentration technique, see [17]:

(−2λ) T3 = E
�

(W −W ′)1{|W−W ′|>A}

∫ 0

−(W−W ′)
( f ′(W + t)− f ′(W ))d t

�

+ E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)
( f ′(W + t)− f ′(W ))d t

�

. (2.18)

The modulus of the first term can be bounded by d3E
�

(W −W ′)21{|W−W ′|>A}
�

. Using the Stein
identity (2.8), the second summand can be represented as

E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)

�

−ψ(W + t) f (W + t) +ψ(W ) f (W )
�

d t
�

+E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)
(1{W+t≤z}− 1{W≤z})d t

�

=: U1+ U2.

With g(x) := (ψ(x) f (x))′ we obtain −ψ(W + t) f (W + t)+ψ(W ) f (W ) =−
∫ t

0
g(W + s) ds. Since

|g(x)| ≤ d4 we obtain |U1| ≤
A3

2
d4.
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The term U2 can be bounded by E
�

(W −W ′)2 I{0≤(W−W ′)≤A} 1{z≤W≤z+A}
�

. Under the assumptions of
our Theorem we proceed as in [17] and obtain the following concentration inequality:

E
�

(W −W ′)2 I{0≤(W−W ′)≤a} 1{z≤W≤z+A}
�

≤ 3A(λE(|ψ(W )|) +E(|R|)). (2.19)

To see this, we apply the estimate E
�

(W −W ′)2 I0≤(W−W ′)≤A 1z≤W≤z+A
�

≤ E
�

(W −W ′)( f (W ) −
f (W ′))

�

, hence U2 can be bounded by E
�

(W − W ′)( f (W ) − f (W ′))
�

= 2E
�

f (W )R(W )
�

−
2λE

�

ψ(W ) f (W )
�

, where we applied (2.16), and where f is defined by f (x) :=−1.5A for x ≤ z−A,
f (x) := 1.5A for x ≥ z+2A and f (x) := x−z−A/2 in between. Thus U2 ≤ 3A

�

E(|R|)+λE(|ψ(W )|)
�

.
Similarly we obtain U2 ≥−3A

�

E(|R|) +λE(|ψ(W )|)
�

.

Proof of Theorem 2.5. The main observation is the following identity:

E
�

−E[Wψ(W )] f ′(W ) +ψ(W ) f (W )
�

= E
�

f ′(W )
�E[(W −W ′)2]− 2E[W R]

2λ

��

+E
�

ψ(W ) f (W )
�

= E
�

f ′(W )
�E[(W −W ′)2]−E[(W −W ′)2|W]

2λ

��

+
1

λ

�

E[ f (W )R]−E[E(WR) f ′(W )]
�

+ T3

with T3 defined as in the proof of Theorem 2.4. We apply the Cauchy-Schwarz inequality to get
E
�

�E[(W −W ′)2]−E[(W −W ′)2|W]
�

�≤
�

Var
�

E[(W −W ′)2|W]
��1/2. The proof follows the lines of

the proof of Theorem 2.4.

In the special case of normal approximation, the following Theorem improves Theorem 1.2 in [16]:

Theorem 2.6. Let (W, W ′) be an exchangeable pair of real-valued random variables such that

E(W ′|W ) = (1−λ)W + R

for some random variable R= R(W ) and with 0< λ < 1. Assume that E(W 2)≤ 1. Let Z be a random
variable with standard normal distribution. Then for any A> 0,

dK(W, Z) ≤

È

E
�

1−
1

2λ
E[(W ′−W )2|W]

�2

+
�

p
2π

4
+ 1.5A

�

p

E(R2)
λ

(2.20)

+
0.41A3

λ
+ 1.5A+

1

2λ
E
�

(W −W ′)21{|W−W ′|≥A}
�

. (2.21)

Remark 2.7. When |W −W ′| is bounded, our estimate improves (1.10) in [16, Theorem 1.2] with
respect to the Berry-Esseen constants.

Proof. Let f = fz denote the solution of the Stein equation

f ′z (x)− x fz(x) = 1{x≤z}(x)−Φ(z). (2.22)

We obtain

P(W ≤ z)−Φ(z) = E
�

f ′(W )
�

1−
1

2λ
(W −W ′)2

�

�

−
1

2λ
E(2 f (W )R)

−
1

2λ
E
�

(W −W ′)
�

f (W )− f (W ′)− (W −W ′) f ′(W )
�

�

=: T1+ T2+ T3. (2.23)
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Using | f ′(x)| ≤ 1 for all real x (see [5, Lemma 2.2]), we obtain the bound |T1| ≤
�

E
�

1− 1
2λ
E[(W ′−

W )2|W]
�2�1/2. Using 0 < f (x) ≤

p
2π/4 (see [5, Lemma 2.2]), we have |T2| ≤

p
2π

4λ
E(|R|) ≤

p
2π

4λ

p

E(R2). Bounding T3 we apply (2.18) for (−2λ)T3. The modulus of the first term can be
bounded by E

�

(W −W ′)21{|W−W ′|>A}
�

using | f ′(x)− f ′(y)| ≤ 1 for all real x and y (see [5, Lemma
2.2]). Using the Stein identity (2.22), the second summand can be represented as

E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)

�

(W + t) f (W + t)−W f (W )
�

d t
�

+E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)
(1{W+t≤z}− 1{W≤z})d t

�

=: U1+ U2.

Next observe that |U1| ≤ 0.82A3, see [17]: By the mean value theorem one gets

(W+t) f (W+t)−W f (W ) =W ( f (W+t)− f (W ))+t f (W+t) =W
�

∫ 1

0

f ′(W+ut)tdu
�

+t f (W+t).

Hence |(W + t) f (W + t) − W f (W )| ≤ |W | |t| + |t|
p

2π/4 = |t|(
p

2π/4 + |W |). Using
E|W | ≤

p

E(W 2) ≤ 1 gives the bound. The term U2 can be bounded by E
�

(W −
W ′)2 I{0≤(W−W ′)≤A} 1{z≤W≤z+A}

�

and E
�

(W −W ′)2 I{0≤(W−W ′)≤a} 1{z≤W≤z+A}
�

≤ 3A(λ + E(R)), see
[17]. Similarly, we obtain U2 ≥−3A(λ+E(R)).

Remark 2.8. In Theorem 2.6, we assumed E(W 2) ≤ 1. Alternatively, let us assume that E(W 2) is
finite. Then the proof of Theorem 2.6 shows, that the third and the fourth summand of the bound

(2.20) change to A3

λ

�

p
2π

16
+
p
E(W 2)

4

�

+ 1.5AE(|W |).

In the following corollary, we discuss the Kolmogorov-distance of the distribution of a random vari-
able W to a random variable distributed according to N(0,σ2).

Corollary 2.9. Let σ2 > 0 and (W, W ′) be an exchangeable pair of real-valued random variables such
that

E(W ′|W ) =
�

1−
λ

σ2

�

W + R (2.24)

for some random variable R = R(W ) and with 0 < λ < 1. Assume that E(W 2) is finite. Let Zσ be a
random variable distributed according to N(0,σ2). If |W −W ′| ≤ A for a constant A, we obtain the
bound

dK(W, Zσ) ≤

È

E
�

1−
1

2λ
E[(W ′−W )2|W]

�2

+
�

σ
p

2π

4
+ 1.5A

�

p

E(R2)
λ

+
A3

λ

�

p

2πσ2

16
+

p

E(W 2)
4

�

+ 1.5A
p

E(W 2). (2.25)

Proof. Let us denote by fσ := fσ,z the solution of the Stein equation

f ′σ,z(x)−
x

σ2 fσ,z(x) = 1{x≤z}(x)− Fσ(z) (2.26)
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with Fσ(z) := 1p
2πσ

∫ z

−∞ exp
�

− y2

2σ2

�

d y . It is easy to see that the identity fσ,z(x) = σ fz
� x
σ

�

, where
fz is the solution of the corresponding Stein equation of the standard normal distribution, holds
true. Using [5, Lemma 2.2] we obtain 0 < fσ(x) < σ

p
2π
4

, | f ′σ(x)| ≤ 1, and | f ′σ(x)− f ′σ(y)| ≤ 1.
With (2.24) we arrive at P(W ≤ z)− Fσ(z) = T1 + T2 + T3 with Ti ’s defined in (2.23). Using the
bounds of fσ and f ′σ, the bound of T1 is the same as in the proof of Theorem 2.6, whereas the bound

of T2 changes to |T2| ≤ σ
p

2π
4λ

p

E(R2). Since we consider the case |W −W ′| ≤ A, we have to bound

T3 =−
1

2λ
E
�

(W −W ′)1{|W−W ′|≤A}

∫ 0

−(W−W ′)
( f ′(W + t)− f ′(W ))d t

�

.

Along the lines of the proof of Theorem 2.6, we obtain |T3| ≤
A3

λ

�

p
E(W 2)

4
+ σ

p
2π

16

�

+1.5A
�

p

E(W 2)+
p
E(R2)
λ

�

. Hence the corollary is proved.

With (2.24) we obtain E(W −W ′)2 = 2λ
σ2E(W 2)− 2E(W R). Therefore

E
�

1−
1

2λ
E[(W ′−W )2|W]

�

= 1−
E(W 2)
σ2 +

E(W R)
λ

, (2.27)

so that the bound in Corollary 2.9 is only useful when E(W 2) is close to σ2 (and E(W R)/λ is small).
An alternative bound can be obtained comparing with a N(0,E(W 2))-distribution.

Corollary 2.10. In the situation of Corollary 2.9, let ZW denote the N(0,E(W 2)) distribution. We
obtain

dK(W, ZW ) ≤
σ2

2λ

�

Var
�

E[(W ′−W )2|W]
��1/2+σ2

�

p

E(W 2)
p

2π

4
+ 1.5A

�

p

E(R2)
λ

+σ2 A3

λ

�

p

E(W 2)
p

2π

16
+

p

E(W 2)
4

�

+σ2 1.5A
p

E(W 2) +σ2

p

E(W 2)
p

E(R2)
λ

. (2.28)

Proof. With (2.27) we get E(W 2) = σ2� 1
2λ
(E(W −W ′)2+2E(W R))

�

. With the definition of T2 and
T3 as in (2.23) we obtain

E
�

E(W 2) f ′(W )−W f (W )
�

= σ2E
�E(W −W ′)2+ 2E(W R)

2λ
f ′(W )

�

−E(W f (W ))

= σ2E
�

f ′(W )
�E(W −W ′)2−E[(W −W ′)2|W]

2λ

��

+σ2(T2+ T3) +σ
2E(W R)

λ
. (2.29)

Remark that now σ2 in (2.24) is a parameter of the exchangeable-pair identity and no longer the
parameter of the limiting distribution. We apply (2.26) and exchange every σ2 in (2.26) with
E(W 2). Applying Cauchy-Schwarz to the first summand and bounding the other terms as in the
proof of Corollary 2.9 leads to the result.
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3 Berry-Esseen bounds for Curie-Weiss models

We assume that % in (1.1) is in the classB of non-degenerate symmetric Borel probability measures
on R which satisfy

∫

exp
�

b x2

2

�

d%(x)<∞ for all b > 0. (3.30)

For technical reasons we introduce a model with non-negative external magnetic field, where the
strength may even depend on the site:

Pn,β ,h1,...,hn
(x) =

1

Zn,β ,h1,...,hn

exp
� β

2n
S2

n + β
n
∑

i=1

hi x i
�

d%⊗n(x), x = (x i). (3.31)

In the general case (1.1), we will see (analogously to the results in [11; 13]) that the asymptotic
behaviour of Sn depends crucially on the extremal points of a function G (which is a transform of
the rate function in a corresponding large deviation principle): define φ%(s) := log

∫

exp(s x) d%(x)
and

G%(β , s) :=
β s2

2
−φ%(β s). (3.32)

We shall drop β in the notation for G whenever there is no danger of confusion, similarly we will
suppress % in the notation for φ and G. For any measure % ∈ B , G was proved to have global
minima, which can be only finite in number, see [11, Lemma 3.1]. Define C = C% to be the discrete,
non–empty set of minima (local or global) of G. If α ∈ C , then there exists a positive integer
k := k(α) and a positive real number µ := µ(α) such that

G(s) = G(α) +
µ(α)(s−α)2k

(2k)!
+O ((s−α)2k+1) as s→ α. (3.33)

The numbers k and µ are called the type and strength, respectively, of the extremal
point α. Moreover, we define the maximal type k∗ of G by the formula k∗ =
max{k(α);α is a global minimum of G}. Note that the µ(α) can be calculated explicitly: one gets

µ(α) = β − β2φ′′(β α) if k = 1 while µ(α) =−β2kφ(2k)(β α) if k ≥ 2 (3.34)

(see [13]). An interesting point is, that the global minima of G of maximal type correspond to stable
states, meaning that multiple minima represent a mixed phase and a unique global minimum a pure
phase. For details see the discussions in [13]. In general, given % ∈ B , let α be one of the global
minima of maximal type k and strength µ of G%. Then Sn−nα

n1−1/2k → Xk,µ,β in distribution, where Xk,µ,β
is a random variable with probability density fk,µ,β , defined by

f1,µ,β(x) =
1

p

2πσ2
exp
�

−x2/2σ2� (3.35)

and for k ≥ 2

fk,µ,β(x) =
exp
�

−µx2k/(2k)!
�

∫

exp
�

−µx2k/(2k)!
�

d x
. (3.36)
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Here, σ2 = 1
µ
− 1
β

so that for µ = µ(α) as in (3.34), σ2 = ([φ′′(βα)]−1 − β)−1 (see [11], [13]).
Moderate deviation principles have been investigated in [6].

In [10] and [13], a class of measures % is described with a behaviour similar to that of the classical
Curie–Weiss model. Assume that % is any symmetric measure that satisfies the GHS-inequality,

d3

ds3φ%(s)≤ 0 for all s ≥ 0, (3.37)

(see also [12; 14]). One can show that in this case G has the following properties: There exists
a value βc , the inverse critical temperature, and G has a unique global minimum at the origin for
0 < β ≤ βc and exactly two global minima, of equal type, for β > βc . For βc the unique global
minimum is of type k ≥ 2 whereas for β ∈ (0,βc) the unique global minimum is of type 1. At
βc the fluctuations of Sn live on a larger scale than

p
n. This critical temperature can be explicitly

computed as βc = 1/φ′′(0) = 1/Var%(X1). By rescaling the X i we may thus assume that βc = 1.

By GHS we denote the set of measures % ∈B such that the GHS-inequality (3.37) is valid. We will
be able to obtain Berry-Esséen-type results for %-a.s. bounded single-spin variables X i:

Theorem 3.1. Given % ∈ B in GHS, let α be the global minimum of type k and strength µ of G%.
Assume that the single-spin random variables X i are bounded %-a.s. In the case k = 1 we obtain

dK
� Snp

n
, ZW

�

≤ Cn−1/2, (3.38)

where ZW denotes a random variable distributed according to he normal distribution with mean zero
and variance E(W 2) and C is an absolute constant depending on 0< β < 1. For k ≥ 2 we obtain

dK
�Sn− nα

n1−1/2k
, ZW,k

�

≤ Ck n−1/k, (3.39)

where ZW,k denotes a random variable distributed according to the density bfW,k defined by bfW,k(x) :=

C exp
�

− x2k

2kE(W 2k)

�

with C−1 =
∫

exp
�

− x2k

2kE(W 2k)

�

d x and W := Sn−nα
n1−1/2k and Ck is an absolute constant.

Theorem 3.2. Let % ∈ B satisfy the GHS-inequality and assume that βc = 1. Let α be the global
minimum of type k with k ≥ 2 and strength µk of G% and let the single-spin variable X i be bounded.
Let 0 < βn <∞ depend on n in such a way that βn→ 1 monotonically as n→∞. Then the following
assertions hold: (1): If βn− 1= γ

n1− 1
k

for some γ 6= 0, we have

sup
z∈R

�

�

�

�

Pn

�

Sn− nα

n1−1/2k
≤ z
�

− FW,k,γ(z)

�

�

�

�

≤ Ck n−1/k (3.40)

with

FW,k,γ(z) :=
1

Z

∫ z

−∞
exp
�

−c−1
W

�

µk

(2k)!
x2k −

γ

2
x2
��

d x .

where Z :=
∫

R exp
�

−c−1
W

� µk
(2k)! x2k − γ

2
x2�� d x, with W := Sn−nα

n1−1/2k , cW := µk
(2k)!E(W

2k)− γE(W 2) and
Ck is an absolute constant.

(2): If |βn − 1| � n−(1−1/k), Sn−nα
n1−1/2k converges in distribution to bFW,k, defined as in Theorem 3.1.

Moreover, if |βn− 1|= O (n−1), (3.39) holds true.
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(3): If |βn − 1| � n−(1−1/k), the Kolmogorov distance of the distribution of W :=
q

1−βn
n

∑n
i=1 X i and

the normal distribution N(0,E(W 2)) converges to zero. Moreover, if |βn−1| � n−(1/2−1/2k), we obtain

sup
z∈R

�

�

�

�

Pn

�

p

(1− βn)Sn
p

n
≤ z
�

−ΦW (z)

�

�

�

�

≤ C n−1/2

with an absolute constant C.

For arbitrary % ∈ GHS we are able to prove good bounds with respect to smooth test functions h.
For technical reasons, we consider a modified model. Let

bPn,β ,h(x) =
1
bZn,β ,h

exp
�

β

n

∑

1≤i< j≤n

x i x j + β h
n
∑

i=1

x i

�

d%⊗n(x), x = (x i).

Theorem 3.3. Given the Curie-Weiss model bPn,β and % ∈ B in GHS, let α be the global minimum of
type k and strength µ of G%. In the case k = 1, for any uniformly Lipschitz function h we obtain for
W = Sn/

p
n that

�

�E
�

h(W )
�

−ΦW (h)
�

�≤ ‖h′‖C
max

�

E|X1|3,E|X ′1|
3�

p
n

.

Here C is a constant depending on 0 < β < 1 and ΦW (h) :=
∫

R h(z)ΦW (dz). The random variable X ′i
is drawn from the conditional distribution of the i’th coordinate X i given (X j) j 6=i (this choice will be

explained in Section 3). For k ≥ 2 we obtain for any uniformly Lipschitz function h and for W := Sn−nα
n1−1/2k

�

�E
�

h(W )
�

− bFW,k(h)
�

�≤ ‖h′‖
�

C1
1

n1/k
+

C2 max
�

E|X1|3,E|X ′1|
3�

n1−1/2k

�

.

Here C1, C2 are constants, and bFW,k(h) :=
∫

R h(z)bFW,k(dz).

Remark 3.4. Note that for % ∈ GHS, φ%(s) ≤
1
2
σ2
%s2 for all real s, where σ2

% =
∫

R x2%(d x).
These measures are called sub-Gaussian. Very important for our proofs of Berry-Esseen bounds will
be the following correlation-inequality due to Lebowitz [15]: If E denotes the expectation with
respect to the measure Pn,β ,h1,...,hn

in (3.31), one observes easily that for any % ∈ B and sites
i, j, k, l ∈ {1, . . . , n} the following identity holds:

∂ 3

∂ hi ∂ h j ∂ hk
E(X l)

�

�

�

�

all hi=0
(3.41)

= E(X iX jXkX l)−E(X iX j)E(XkX l)−E(X iXk)E(X jX l)−E(X iX l)E(X jXk).

Lebowitz [15] proved that if % ∈ GHS, (3.41) is non-positive (see [9, V.13.7.(b)]). We will see in
the proofs of Theorem 3.1 and Theorem 3.2 Lebowitz’ inequality helps to bound the variances.

In the situation of Theorem 3.1 and Theorem 3.2 we can bound higher order moments as follows:

Lemma 3.5. Given % ∈B , let α be one of the global minima of maximal type k for k ≥ 1 and strength
µ of G%. For W := Sn−nα

n1−1/2k we obtain that E|W |l ≤ const. (l) for any l ∈ N .

975



We prepare for the proof of Lemma 3.5. It considers a well known transformation – sometimes
called the Hubbard–Stratonovich transformation – of our measure of interest.

Lemma 3.6. Let m ∈ R and 0 < γ < 1 be real numbers. Consider the measure Qn,β :=
�

Pn ◦
�

Sn−nm
nγ

�−1
�

∗ N (0, 1
βn2γ−1 ) where N (0, 1

βn2γ−1 ) denotes a Gaussian random variable with mean zero

and variance 1
βn2γ−1 . Then for all n≥ 1 the measure Qn,β is absolutely continuous with density

exp
�

−nG( s
n1−γ +m)

�

∫

R exp
�

−nG( s
n1−γ +m)

�

ds
, (3.42)

where G is defined in equation (3.32).

As shown in [11], Lemma 3.1, our condition (3.30) ensures that
∫

R exp
�

−nG
�

s
n1−γ +m

��

ds is
finite, such that the above density is well defined. The proof of the lemma can be found at many
places, e.g. in [11], Lemma 3.3.

Proof of Lemma 3.5. We apply the Hubbard-Stratonovich transformation with γ = 1 − 1/2k. It is
clear that this does not change the finiteness of any of the moments of W . Using the Taylor ex-
pansion (3.33) of G, we see that the density of Qn,β with respect to Lebesgue measure is given by
Const. exp(−x2k) (up to negligible terms, see e.g. [11], [6]). A measure with this density, of course,
has moments of any finite order.

Since the symmetric Bernoulli law is GHS, Theorems 3.1 and 3.2 include Berry-Esseen type results
for the classical model. However the limiting laws depend on moments of W . Approximations with
fixed limiting laws can be obtained in the classical case, since we can apply Corollary 2.9 and part
(2) of Theorem 2.4:

Theorem 3.7 (classical Curie-Weiss model, Berry-Esseen bounds outside the critical temperature).
Let % = 1

2
δ−1+

1
2
δ1 and 0< β < 1. We have

sup
z∈R

�

�

�

�

Pn

�

Sn/
p

n≤ z
�

−Φβ(z)
�

�

�

�

≤ C n−1/2, (3.43)

where Φβ denotes the distribution function of the normal distribution with expectation zero and variance
(1− β)−1, and C is an absolute constant, depending on β , only.

Theorem 3.8 (classical Curie-Weiss model, Berry-Esseen bounds at the critical temperature). Let
% = 1

2
δ−1+

1
2
δ1 and β = 1. We have

sup
z∈R

�

�

�

�

Pn

�

Sn/n
3/4 ≤ z

�

− F(z)

�

�

�

�

≤ C n−1/2, (3.44)

where F(z) := 1
Z

∫ z

−∞ exp(−x4/12) d x, Z :=
∫

R exp(−x4/12) d x and C is an absolute constant.

Berry-Esséen bounds for size-dependent temperatures for % = 1
2
δ−1+

1
2
δ1 and 0< βn <∞ depend-

ing on n in such a way that βn → 1 monotonically as n → ∞ can be formulated similarly to the
results in Theorem 3.2.
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Remark 3.9. In [1], Barbour obtained distributional limit theorems, together with rates of con-
vergence, for the equilibrium distributions of a variety of one-dimensional Markov population pro-
cesses. In section 3 he mentioned, that his results can be interpreted in the framework of [11]. As
far as we understand, his result (3.9) can be interpreted as the statement (3.44), but with the rate
n−1/4.

Proof of Theorem 3.1. Given % which satisfies the GHS-inequality and let α be the global minimum
of type k and strength µ(α) of G%. In case k = 1 it is known that the random variable Snp

n
converges

in distribution to a normal distribution N(0,σ2) with σ2 = µ(α)−1 − β−1 = (σ−2
% − β)

−1, see for
example [9, V.13.15]. Hence in this case we will apply Corollary 2.10 (to obtain better constants
for our Berry-Esséen bound in comparison to Theorem 2.5). Consider k ≥ 1. We just treat the case
α= 0 and denote µ= µ(0). The more general case can be done analogously. For k = 1, we consider
ψ(x) =− x

σ2 with σ2 = µ−1− β−1. For any k ≥ 2 we consider ψ(x) =− µ

(2k−1)! x2k−1. We define

W :=Wk,n :=
1

n1−1/(2k)

n
∑

i=1

X i

and W ′, constructed as in the Introduction, such that W −W ′ = X I−X ′I
n1−1/(2k) . We obtain

E[W −W ′|F ] =
1

n
W −

1

n1−1/(2k)

1

n

n
∑

i=1

E(X ′i |F ).

Lemma 3.10. In the situation of Theorem 3.1, if X1 is %-a.s. bounded, we obtain

E(X ′i |F ) =
�

mi(X )−
1

β
G′%(β , mi(X ))

��

1+O (1/n)
�

with mi(X ) := 1
n

∑

j 6=i X j = m(X )− X i

n
.

Proof. We compute the conditional density gβ(x1|(X i)i≥2) of X1 = x1 given (X i)i≥2 under the Curie-
Weiss measure:

gβ(x1|(X i)i≥2) =
eβ/2n(

∑

i≥2 x1X i+
∑

i 6= j≥2 X i X j+x2
1)

∫

eβ/2n(
∑

i≥2 x1X i+
∑

i 6= j≥2 X i X j+x2
1)%(d x1)

=
eβ/2n(

∑

i≥2 x1X i+x2
1)

∫

eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)

.

Hence we can compute E[X ′1|F ] as

E[X ′1|F ] =

∫

x1eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)

∫

eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)

.

Now, if |X1| ≤ c %-a.s

E[X ′1|F ]≤

∫

x1eβ/2n(
∑

i≥2 x1X i)%(d x1)eβ c2/2n

∫

eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)e−β c2/2n

and

E[X ′1|F ]≥

∫

x1eβ/2n(
∑

i≥2 x1X i)%(d x1)e−β c2/2n

∫

eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)eβ c2/2n

.
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By computation of the derivative of G% we see that
∫

x1eβ/2n(
∑

i≥2 x1X i)%(d x1)
∫

eβ/2n(
∑

i≥2 x1X i+x2
1)%(d x1)

e±β c2/n =
�

m1(X )−
1

β
G′%(β , m1(X ))

�

(1± β c2/n).

Remark 3.11. If we consider the Curie-Weiss model with respect to bPn,β , the conditional density

gβ(x1|(X i)i≥2) under this measure becomes gβ(x1|(X i)i≥2) =
eβ/2n(

∑

i≥2 x1Xi )
∫

eβ/2n(
∑

i≥2 x1Xi )%(d x1)
. Thus we obtain

E(X ′i |F ) =
�

mi(X )−
1
β

G′%(β , mi(X ))
�

without the boundedness assumption for the X1.

Applying Lemma 3.10 and the presentation (3.33) of G%, it follows that

E[W −W ′|W] =
1

n
W −

1

n1−1/(2k)

�

1

n

n
∑

i=1

�

mi(X )−
µ

β(2k− 1)!
mi(X )

2k−1+O
�

mi(X )
2k�
��

.

With mi(X ) = m(X )− X i

n
and m(X ) = 1

n1/(2k) we obtain 1
n1−1/(2k)

1
n

∑n
i=1 mi(X ) =

1
n
W − 1

n2 W and

1

n1−1/(2k)

1

n

n
∑

i=1

µ

β(2k− 1)!
mi(X )

2k−1 =
1

n1−1/(2k)

µ

β(2k− 1)!

2k−1
∑

l=0

�

2k− 1

l

�

m(X )2k−1−l (−1)l

nl

1

n

n
∑

i=1

X l
i .

For any k ≥ 1 the first summand (l = 0) is

1

n2− 1
k

µ

β(2k− 1)!
W 2k−1 =−

1

n2− 1
k

ψ(W ). (3.45)

To see this, let k = 1. Since we setφ′′(0) = 1, we obtain µ(0) = β−β2 and therefore 1
β
µ(0)W = (1−

β)W . In the case k ≥ 2 we know that β = 1. Hence in both cases, (3.45) is checked. Summarizing
we obtain for any k ≥ 1

E[W −W ′|W] =−
1

n2− 1
k

ψ(W ) + R(W ) =:−λψ(W ) + R(W )

with

R(W ) =
1

n2 W +
µ

β(2k− 1)!

2k−1
∑

l=1

�

2k− 1

l

�

1

n2− 1
k−

l
2k

W 2k−1−l (−1)l

nl

1

n

n
∑

i=1

X l
i +O (

W 2k

n
).

With Lemma 3.5 we know that E|W |2k ≤ const. Since the spin variables are assumed to be bounded
%-a.s, we have |W −W ′| ≤ const.

n1− 1
2k
=: A.

Let k = 1. Now λ= 1
n
, A= const./n−1/2, E(W 4)≤ const. The leading term of R is W/n2. Hence the

last four summands in (2.28) of Corollary 2.10 are O (n−1/2). For k ≥ 2 we obtain 3A
2
E(|ψ(W )|) =

O
�

n
1

2k−1� and 1
λ

� d4A3

4

�

= O
�

n
1

2k−1�. The leading term in the second term of R(W ) is the first

summand (l = 1), which is of order O (n−3+ 1
k+

1
2k ). With λ= n

1
k−2 we obtain

E(|R|)
λ
≤
E(|W |)
λn2 +O

�

n
1

2k−1� and
E(|W |)
λn2 = O

�

n1/k�.
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Hence the last four summands in (2.14) of Theorem 2.5 are O (n−1/k).

Finally we have to consider the variance of 1
2λ
E[(W −W ′)2|W]. Hence we have to bound the

variance of

1

2n

m
∑

i=1

X 2
i +

1

2n

n
∑

i=1

E[(X ′i )
2|F ] +

1

n

n
∑

i=1

X i

�

mi(X )−
1

β
G′%(β , mi(X ))

�

(1+O(1/n)). (3.46)

Since we assume that % ∈ GHS, we can apply the correlation-inequality due to Lebowitz (see Remark
3.4) E(X iX jXkX l)−E(X iX j)E(XkX l)−E(X iXk)E(X jX l)−E(X iX l)E(X jXk)≤ 0. The choice i = k and
j = l leads to the bound cov

�

X 2
i , X 2

j ) = E(X
2
i X 2

j )−E(X
2
i )E(X

2
j )≤ 2(E(X i X j))2. With Lemma 3.5 we

know that (E(X iX j))2 ≤ const.n−2/k. This gives

Var
� 1

2n

n
∑

i=1

X 2
i

�

=
1

4n2

n
∑

i=1

Var(X 2
i ) +

1

4n2

∑

1≤i< j≤n

Cov(X 2
i , X 2

j ) = O
�

n−1�+O
�

n−2/k).

Using a conditional version of Jensen’s inequality we have

Var
�

E
� 1

2n

n
∑

i=1

X 2
i

�

�F
��

≤ Var
� 1

2n

n
∑

i=1

X 2
i

�

.

Hence the variance of the second term in (3.46) is of the same order as the variance of the first
term. Applying (3.33) for G%, the variance of the third term in (3.46) is of the order of the variance
of W 2/n1/k. Summarizing the variance of (3.46) can be bounded by 9 times the maximum of the
variances of the three terms in (3.46), which is a constant times n−2/k, and therefore for k ≥ 1 we
obtain

�

Var
�

1

2λ
E[(W −W ′)2|W]

��1/2

= O (n−1/k).

Note that for k ≥ 2 ψ(x)
−E[Wψ(W )] =−

x2k−1

E(W 2k) . Hence we compare the distribution of W with a distribu-

tion with Lebesgue-probability density proportional to exp
�

− x2k

2kE(W 2k)

�

.

Proof of Theorem 3.2. Since α = 0 and k = 1 for β 6= 1 while α = 0 and k ≥ 2 for β = 1, G%(·) can
now be expanded as

G(s) = G(0) +
µ1

2
s2+

µk

(2k)!
s2k +O (s2k+1) as s→ 0.

Hence 1
βn

G′%(s) =
µ1

βn
s+ µk

βn(2k−1)! s
2k−1+O (s2k). With Lemma 3.10 and µ1 = (1− βn)βn we obtain

E[X i|F ] = βnmi(X )−
µk

βn(2k− 1)!
mi(X )

2k−1 (1+O (1/n)).

We get

E[W −W ′|W] =
1− βn

n
W +

βn

n2 W +
1

n2−1/k

µk

βn(2k− 1)!
W 2k+1+ R(βn, W ).

The remainder R(βn, W ) is the remainder in the proof of Theorem 3.1 with µ exchanged by µk and
β exchanged by βn.
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Let βn− 1= γ

n1−1/k and W = n1/(2k)−1
∑n

i=1 X i . We obtain

E[W −W ′|W] =−
1

n2−1/k
ψ(W ) +

βn

n2 W + R(βn, W ), (3.47)

where ψ(x) = γx − µk
βn (2k−1)! x2k−1. As in the proof of Theorem 3.1 we obtain that R(βn, W ) =

O (n−2). Now we only have to adapt the proof of Theorem 3.1 step by step, applying Lemma 3.5,
Lemma 2.2 and Theorem 2.5.

Let |βn − 1| = O (1/n) and W = n1/(2k)−1
∑n

i=1 X i . Now in (3.47), the term 1−βn
n

W will be a part of
the remainder:

E[W −W ′|W] =
1

n2−1/k

µk

βn(2k− 1)!
W 2k+1+ R(βn, W ) +

βn

n2 W +
1− βn

n
W

=: −
1

βn n2−1/k
ψ(W ) + R̂(β , W )

withψ(x) =− µk
(2k−1)! x2k−1. Along the lines of the proof of Theorem 3.1, we have to bound E|R̂(βn,W )|

λ

with λ := 1
βn n2−1/k . Since by our assumption for (βn)n we have limn→∞

1
λ

(1−βn)
n
= βn(1−βn)n1−1/k =

0. Thus with Theorem 2.5 we obtain convergence in distribution for any βn with |βn−1| � n−(1−1/k).
Moreover we obtain the Berry-Esséen bound of order O (n−1/k) for any |βn− 1|= O (n−1).

Finally we consider |βn− 1| � n−(1−1/2) and W =
q

(1−βn)
n

Sn. A little calculation gives

E[W−W ′|W] =
1− βn

n
W+

βn W

n2 +
µk

(2k− 1)!nk(1− βn)k−1βn
W 2k−1+R(βn, W ) =:−λψ(W )+R̂(βn, W )

with ψ(x) =−x and λ= 1−βn
n

. Now we apply Corollary 2.10. With A := const.(1−βn)1/2p
n

we obtain

A3

λ
≤

const.(1− βn)1/2p
n

and
E|R̂(βn, W )|

λ
≤

const

nk−1(1− βn)k
.

Remark that the bound on the right hand side is good for any |βn− 1| � n−(1−1/k). Finally we have
to bound the variance of 1

2λ
E[(W −W ′)2|W]. The leading term is the variance of

1

n

n
∑

i=1

X i

�

mi(X )−
1

β
G′%(β , mi(X ))

�

,

which is of order O
� βn

n(1−βn)

�

. Hence with |βn− 1| � n−(1−1/k) we get convergence in distributuion.

Under the additional assumption that |βn − 1| � n−(1/2−1/(2k)) we obtain the Berry-Esséen bound.

Proof of Theorem 3.3. We apply Theorem 2.5. For unbounded spin variables X i we consider bPn,β and

apply Lemma 3.10 to bound 1
λ

p

Var(E[(W −W ′)2|W]) exactly as in the proof of Theorem 3.1. By

Theorem 2.5 it remains to bound 1
λ
E|W −W ′|3. With λ= n−2+1/k we have

1

λ
E|W −W ′|3 =

1

n1−1/2k
E|X I − X ′I |

3 =
1

n1−1/2k
E|X1− X ′1|

3.
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Now E|X1− X ′1|
3 ≤ E|X1|3+ 3E|X 2

1 X ′1|+ 3E|X1(X ′1)
2|+E|X ′1|

3. Using Hölder’s inequality we obtain

E|X 2
1 X ′1| ≤

�

E|X1|3
�2/3 �E|X ′1|

3�1/3 = E|X1|3. Hence we have 1
λ
E|W −W ′|3 ≤ 8

n1−1/2kE|X i|3.

Proof of Theorem 3.7. With 1p
n

1
n

∑n
i=1 tanh(βmi(X )) =

1p
n

1
n

∑n
i=1

�

tanh(βmi(X ))− tanh(βm(X ))
�

+
1p
n

tanh(βm(X )) =: R1+R2, where m(X ) := 1
n

∑n
i=1 X i , Taylor-expansion tanh(x) = x+O (x3) leads

to

R2 =
1
p

n
βm(X ) +

1
p

n
O
�

m(X )3
�

=
β

n
W +O

�W 3

n2

�

.

Hence

E[W −W ′|W] =
1− β

n
W + R=

λ

σ2 W + R (3.48)

with λ := 1
n
, σ2 := (1 − β)−1 and R := O

�W 3

n2

�

− R1. Since |W −W ′| =
�

�

X I−X ′Ip
n

�

� ≤ 1p
n
=: A, we

are able to apply Corollary 2.9. From Lemma 3.5 we know that E(W 4) ≤ const.. Hence the fourth

term in (2.25) can be bounded by 1.5A
p
E(W 2)
σ2 ≤ (1−β)const.p

n
, and the third summand in (2.25) can be

estimated as follows: A3

λ

�p
2π

16

p

(1− β) + const.
4
(1− β)

�

≤ 1p
n

p

(1− β)const.. Moreover we obtain

E|R| ≤ E|R1|+ O
�E|W 3|

n2

�

. Since tanh(x) is 1-Lipschitz we obtain |R1| ≤
1p
n
|mi(X )−m(X )| ≤ 1

n3/2 .

Therefore, with Lemma 3.5, we get E|R| = O
� 1

n3/2

�

and thus, the second summand in (2.25) can

be bounded by const.
� p

2π
4
p
(1−β)

+ 1.5 1p
n

�

1p
n
= O

� 1p
n

�

. To bound the first summand in (2.25), we

obtain (W −W ′)2 = X 2
I

n
− 2X I X ′I

n
+ X ′I

n
. Hence E

�

(W −W ′)2|F
�

= 2
n
− 2

n2

∑n
i=1 X i tanh(βmi(X )), and

therefore

1−
1

2λ
E
�

(W −W ′)2|F
�

=
1

n

n
∑

i=1

X i
�

tanh(βmi(X ))− tanh(βm(X ))
�

+m(X ) tanh(βm(X ))

=: R1+ R2.

By Taylor expansion we get R2 =
β

n
W 2 + O

�W 4

n2

�

and using Lemma 3.5 we obtain E|R2| = O (n−1).
Since tanh(x) is 1-Lipschitz we obtain |R1| ≤

1
n
. Hence E|R1 + R2| = O (n−1) and Theorem 3.7 is

proved.

Proof of Theorem 3.8. We obtain

1

n3/4

1

n

n
∑

i=1

tanh(mi(X )) =
1

n
W −

1

n3/2

W 3

3
−O

�W

n2

�

+O
� W 3

n5/2

�

+O
�

S(W )
�

with an S(W ) such that E(S(W )) = O(1/n2). Using this we get the exchangeable pair identity (1.5)
with R(W ) = O

� 1
n2

�

. With Lemma 2.2, we can now apply Theorem 2.4, using |W −W ′| ≤ 1
n3/4 =:

A. We obtain 1.5AE(|ψ(W )|) ≤ const. 1
n3/4 and d4 A3

4λ
= d4

4
1

n3/4 . Using E|R(W )| ≤ const. 1
n2 we get

�

d1+
3
2
A
�E|R(W )|

λ
≤ const. 1p

n
. Moreover we obtain

E
�

(W −W ′)2|F
�

=
2

n3/2
−

2

n5/2

n
∑

i=1

X i tanh(mi(X )).
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Hence applying Theorem 2.4 we have to bound the expectation of T :=
�

�

1
n

∑n
i=1 X i tanh(mi(X ))

�

�.

Again using Taylor and mi(X ) = m(X )− X i

n
and Lemma 3.5, the leading term of T is W 2

n1/2 . Hence

E(T ) = O (n−1/2) and Theorem 3.8 is proved.

4 Examples

It is known that the following distributions % are GHS (see [10, Theorem 1.2]). The sym-
metric Bernoulli measure is GHS, as first noted in [8]. The family of measures %a(d x) =
aδx +

�

(1 − a)/2
��

δx−1 + δx+1
�

for 0 ≤ a ≤ 2/3 is GHS, whereas the GHS-inequality fails
for 2/3 < a < 1, see [19, p.153]. GHS contains all measures of the form %V (d x) :=
�

∫

R exp
�

−V (x)
�

d x
�−1 exp

�

−V (x)
�

d x , where V is even, continuously differentiable, and un-
bounded above at infinity, and V ′ is convex on [0,∞). GHS contains all absolutely continuous
measures % ∈ B with support on [−a, a] for some 0 < a <∞ provided g(x) = d%/d x is continu-
ously differentiable and strictly postitive on (−a, a) and g ′(x)/g(x) is concave on [0, a). Measures
like %(d x) = const. exp

�

−ax4 − bx2� d x or %(d x) = const. exp
�

−a cosh x − bx2� d x with a > 0
and b real are GHS. Both are of physical interest, see [10] and references therein).

Example 4.1 (A Curie–Weiss model with three states). We will now consider the next simplest
example of the classical Curie–Weiss model: a model with three states. We choose % to be % =
2
3
δ0 +

1
6
δ−
p

3 +
1
6
δp3. This model seems to be of physical relevance. It is studied in [22]. In

[2] it was used to analyze the tri-critical point of liquid helium. A little computation shows that
d3

ds3φ%(s) ≤ 0. for all s ≥ 0. Hence the GHS-inequality (3.37) is fulfilled (see also [10, Theorem
1.2]), which implies that there is one critical temperature βc such that there is one minimum of
G for β ≤ βc and two minima above βc . Since Var%(X1) = 21

6
· 3 = 1 we see that βc = 1. For

β ≤ βc the minimum of G is located in zero while for β > 1 the two minima are symmetric and

satisfy s =
p

3sinh(
p

3βs)
2+cosh(

p
3βs )

. Now Theorem 3.1 and 3.2 tell that for β < 1 the rescaled magnetization

Sn/
p

n satisfies a Central Limit Theorem and the limiting variance is (1−β)−1. Indeed, d2

ds2φ%(0) =
Var%(X1) = 1. Hence µ1 = β−β2 and σ2 = 1

1−β and the Berry-Esseen rate is Cp
n
. For β = βc = 1 the

rescaled magnetization Sn/n
5/6 converges in distribution to X which has the density f3,6,1. Indeed

µ2 is computed to be 6. The rate is C
n1/3 . If βn converges monotonically to 1 faster than n−2/3 then

Sn

n5/6 converges in distribution to bF3, whereas if βn converges monotonically to 1 slower than n−2/3

then
p

1−βn Snp
n

satisfies a Central Limit Theorem. Eventually, if |1 − βn| = γn−2/3, Sn

n5/6 converges
in distribution to a random variable which probability distribution has the mixed Lebesgue-density

exp
�

−c−1
W

�

x6

120
− γ x2

2

�

�

with cW =
1

120
E(W 6)− γE(W 2). The rate is C

n1/3 .

Example 4.2 (A continuous Curie–Weiss model). Last but not least we will treat an example of a
continuous Curie–Weiss model. We choose as underlying distribution the uniform distribution on
an interval in R. To keep the critical temperature one we define d%(x i)

d x i
= 1

2a
I[−a,a](x i) with a =

p
3.

Then from a general result in [12, Theorem 2.4] (see also [10, Theorem 1.2]) it follows that %(x i)
obeys the GHS-inequality (3.37). Therefore there exists a critical temperature βc , such that for
β < βc zero is the unique global minimum of G and is of type 1, while at βc this minimum is of
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type k ≥ 2. This βc is easily computed to be one. Indeed, µ1 = β − β2φ′′(0) = β − β2E%(X 2
1) =

β(1− β), since % is centered and has variance one. Thus µ1 vanishes at β = βc = 1. Eventually

for β > 1 there are again two minima which are solutions of
p

3β
tanh(

p
3β x)

= β x + 1
x
. Now again by

Theorems 3.1 and 3.2 for β < 1 the rescaled magnetization Sn/
p

n obeys a Central Limit Theorem
and the limiting variance is (1 − β)−1. Indeed, since E%(X 2

1) = 1, µ1 = β − β2 and σ2 = 1
1−β .

For β = βc = 1 the rescaled magnetization Sn/n
7/8 converges in distribution to X which has the

density f4,6/5,1. Indeed µ2 is computed to be −E%(X 4
1) + 3E%(X 2

1) = −
9
5
+ 3 = 6

5
. The rate is

C
n1/4 . If βn converges monotonically to 1 faster than n−3/4 then Sn

n7/8 converges in distribution to

bF4, whereas if βn converges monotonically to 1 slower than n−3/4 then
p

1−βn Snp
n

satisfies a Central

Limit Theorem. Eventually, if |1− βn| = γn−3/4, Sn

n7/8 converges in distribution to the mixed density

exp
�

−c−1
W

�

6
5

x8

8!
− γ x2

2

��

with cW =
5

6(8!)E(W
8)− γE(W 2). Here the Berry-Esseen rate is C

n1/4 .

5 Appendix

Proof of Lemma 2.2. Consider a probability density of the form

p(x) := pk(x) := bk exp
�

−ak x2k� (5.49)

with bk =
∫

R exp
�

−ak x2k� d x . Clearly p satisfies Assumption (D). First we prove that the solutions
fz of the Stein equation, which characterizes the distribution with respect to the density (5.49),
satisfies Assumption (B2). Let fz be the solution of f ′z (x) +ψ(x) fz(x) = 1{x≤z}(x)− P(z). Here
ψ(x) =−2k ak x2k−1. We have

fz(x) =

¨

(1− P(z)) P(x)exp(ak x2k)b−1
k for x ≤ z,

P(z) (1− P(x))exp(ak x2k)b−1
k for x ≥ z

(5.50)

with P(z) :=
∫ z

−∞ p(x) d x . Note that fz(x) = f−z(−x), so we need only to consider the case z ≥ 0.
For x > 0 we obtain

1− P(x)≤
bk

2k ak x2k−1
exp
�

−ak x2k�, (5.51)

whereas for x < 0 we have

P(x)≤
bk

2k ak|x |2k−1
exp
�

−ak x2k�. (5.52)

By partial integration we have
∫ ∞

x

(2k− 1)
2k ak

t−2k exp
�

−ak t2k�=−
1

2k ak t2k−1
exp
�

−ak t2k�
�

�

�

�

∞

x
−
∫ ∞

x

exp
�

−ak t2k� d t.

Hence for any x > 0

bk

�

x

2k ak x2k + 2k− 1

�

exp
�

−ak x2k�≤ 1− P(x). (5.53)
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With (5.51) we get for x > 0

d

d x

�

exp
�

ak x2k�
∫ ∞

x

exp
�

−ak t2k� d t
�

=−1+ 2k ak x2k−1 exp
�

ak x2k�
∫ ∞

x

exp
�

−ak t2k� d t < 0.

So exp
�

ak x2k�
∫∞

x
exp
�

−ak t2k� d t attains its maximum at x = 0 and therefore

exp
�

ak x2k� bk

∫ ∞

x

exp
�

−ak t2k� d t ≤
1

2
.

Summarizing we obtain for x > 0

1− P(x)≤min
�

1

2
,

bk

2k ak x2k−1

�

exp
�

−ak x2k�. (5.54)

With (5.52) we get for x < 0

d

d x

�

exp
�

ak x2k�
∫ x

−∞
exp
�

−ak t2k� d t
�

= 1+ 2k ak x2k−1 exp
�

ak x2k�
∫ x

−∞
exp
�

−ak t2k� d t > 0.

So exp
�

ak x2k�
∫ x

−∞ exp
�

−ak t2k� d t attains its maximum at x = 0 and therefore

exp
�

ak x2k� bk

∫ x

−∞
exp
�

−ak t2k� d t ≤
1

2
.

Summarizing we obtain for x < 0

P(x)≤min
�

1

2
,

bk

2k ak |x |2k−1

�

exp
�

−ak x2k�. (5.55)

Applying (5.54) and (5.55) gives 0 < fz(x) ≤
1

2 bk
for all x . Note that for x < 0 we only have to

consider the first case of (5.50), since z ≥ 0. The constant 1
2 bk

is not optimal. Following the proof of
Lemma 2.2 in [5] or alternatively of Lemma 2 in [20, Lecture II] would lead to optimal constants.
We omit this. It follows from (5.50) that

f ′z (x) =







(1− P(z))
�

1+ x2k−1 2k ak P(x)exp(ak x2k)b−1
k

�

for x ≤ z,

P(z)
�

(1− P(x))2k ak x2k−1 exp(ak x2k)b−1
k − 1

�

for x ≥ z.
(5.56)

With (5.51) we obtain for 0< x ≤ z that

f ′z (x)≤ (1− P(z))
�

z2k−1 2k ak P(z)exp(akz2k)b−1
k

�

+ 1≤ 2.

The same argument for x ≥ z leads to | f ′z (x)| ≤ 2. For x < 0 we use the first half of (5.50) and
apply (5.52) to obtain | f ′z (x)| ≤ 2. Actually this bound will be improved later. Next we calculate the
derivative of −ψ(x) fz(x):

(−ψ(x) fz(x))′ =







(1−P(z))
bk

�

P(x)eak x2k
�

2k(2k− 1)ak x2k−2+ (2k)2a2
k x4k−2

�

+ 2kak x2k−1 bk

�

, x ≤ z,

P(z)
bk

�

(1− P(x))eak x2k
�

2k(2k− 1)ak x2k−2+ (2k)2a2
k x4k−2

�

− 2kak x2k−1 bk

�

, x ≥ z.

(5.57)
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With (5.53) we obtain (−ψ(x) fz(x))′ ≥ 0, so −ψ(x) fz(x) is an increasing function of x (remark
that for x < 0 we only have to consider the first half of (5.50)). Moreover with (5.51), (5.52) and
(5.53) we obtain that

lim
x→−∞

2k ak x2k−1 fz(x) = P(z)− 1 and lim
x→∞

2k ak x2k−1 fz(x) = P(z). (5.58)

Hence we have |2k ak x2k−1 fz(x)| ≤ 1 and |2k ak
�

x2k−1 fz(x)− u2k−1 fz(u)
�

| ≤ 1 for any x and u.
From (5.51) it follows that f ′z (x) > 0 for all x < z and f ′z (x) < 0 for x > z. With Stein’s identity
f ′z (x) = −ψ(x) fz(x) + 1{x≤x} − P(z) and (5.58) we have 0 < f ′z (x) ≤ −ψ(z) fz(z) + 1 − P(z) <
1 for x < z and −1 < −ψ(z) fz(z)− P(z) ≤ f ′z (x) < 0 for x > z. Hence, for any x and y , we
obtain

| f ′z (x)| ≤ 1 and | f ′z (x)− f ′z (y)| ≤max
�

1,−ψ(z) fz(z) + 1− P(z)− (−ψ(z) fz(z)− P(z))
�

= 1.

Next we bound (−ψ(x) fz(x))′. We already know that (−ψ(x) fz(x))′ > 0. Again we apply (5.51)
and (5.52) to see that (−ψ(x) fz(x))′ ≤

2k−1
|x | for x ≥ z > 0 and all x ≤ 0. For 0 < x ≤ z this latter

bound holds, as can be seen by applying this bound (more precisely the bound for (−ψ(x) fz(x))′
bk

P(z)
for x ≥ z) with −x for x to the formula for (ψ(x) fz(x))′ in x ≤ z. For some constant c we
can bound (ψ(x) fz(x))′ by c for all |x | ≥ 2k−1

c
. Moreover, on [−2k−1

c
, 2k−1

c
] the continuous function

(−ψ(x) fz(x))′ is bounded by some constant d, hence we have proved |−(ψ(x) fz(x))′| ≤max(c, d).
The problem of finding the optimal constant, depending on k, is omitted. Summarizing, Assumption
(B2) is fulfilled for p with d2 = d3 = 1 and some constants d1 and d4.

Next we consider an absolutely continuous function h : R→ R. Let fh be the solution of the Stein
equation (2.6), that is

fh(x) =
1

p(x)

∫ x

−∞
(h(t)− Ph) p(t) d t =−

1

p(x)

∫ ∞

x

(h(t)− Ph) p(t) d t.

We adapt the proof of [5, Lemma 2.3]:Without loss of generality we assume that h(0) = 0 and put
e0 := supx |h(x)−Ph| and e1 := supx |h′(x)|. From the definition of fh it follows that | fh(x)| ≤ e0

1
2bk

.
An alternative bound is c1 e1 with some constant c1 depending on E|Z |, where Z denotes a random
variable distributed according to p. With (2.6) and (5.53), for x ≥ 0,

| f ′h(x)| ≤ |h(x)− Ph| −ψ(x)eak x2k

∫ ∞

x

|h(t)− Ph|e−ak t2k
d t ≤ 2e0.

An alternative bound is c2 e1 with some constant c2 depending on the (2k−2)’th moment of p. This
would mean to Stein’s identity (2.6) to obtain f ′h(x) =−eak x2k ∫∞

x
(h′(t)−ψ′(t) f (t))e−ak t2k

d t. The
details are omitted. To bound the second derivative f ′′h , we differentiate (2.6) and have

f ′′h (x) =
�

ψ2(x)−ψ′(x)
�

fh(x)−ψ(x)
�

h(x)− Ph
�

+ h′(x).

Similarly to [5, (8.8), (8.9)] we obtain h(x)− Ph =
∫ x

−∞ h′(t)P(t) d t −
∫∞

x
h′(t)(1− P(t)) d t. It

follows that

fh(x) =−
1

bk
eak x2k

(1− P(x))

∫ x

−∞
h′(t)P(t) d t −

1

bk
eak x2k

P(x)

∫ ∞

x

h′(t)(1− P(t)) d t.
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Now we apply the fact that the quantity in (5.57) is non-negative to obtain

| f ′′h (x)| ≤ |h′(x)|+
�

�

�

ψ2(x)−ψ′(x)
�

fh(x)−ψ(x)
�

h(x)− Ph
�

�

�

≤ |h′(x)|+
�

�

�

�

�

−ψ(x)−
1

bk

�

ψ2(x)−ψ′(x)
�

eak x2k
(1− P(x))

�
∫ x

−∞
h′(t)P(t) d t

�

�

�

�

+

�

�

�

�

�

ψ(x)−
1

bk

�

ψ2(x)−ψ′(x)
�

eak x2k
P(x)

�
∫ ∞

x

h′(t)(1− P(t)) d t

�

�

�

�

≤ |h′(x)|+ e1

�

ψ(x) +
1

bk

�

ψ2(x)−ψ′(x)
�

eak x2k
(1− P(x))

�
∫ x

−∞
P(t) d t

+e1

�

−ψ(x) +
1

bk

�

ψ2(x)−ψ′(x)
�

eak x2k
P(x)

�
∫ ∞

x

(1− P(t)) d t.

Moreover we know, that the quantity in (5.57) can be bounded by 2k−1
|x | , hence

| f ′′h (x)| ≤ e1+ e1
2bk (2k− 1)

|x |

�
∫ x

−∞
P(t) d t +

∫ ∞

x

(1− P(t)) d t
�

.

Now we bound

�

�

∫ x

−∞
P(t) d t +

∫ ∞

x

(1− P(t)) d t
�

�=
�

�x P(x)− x(1− P(x)) + 2

∫ ∞

x

t p(t) d t
�

�≤ 2|x |+ 2E|Z |,

where Z is distributed according to p. Summarizing we have | f ′′h (x)| ≤ c3 supx |h′(x)| for some con-
stant c3, using the fact that fh and therefore f ′h and f ′′h are continuous. Hence fh satisfies Assumption
(B1).

Sketch of the proof of Remark 2.3. Now let p(x) = bk exp
�

−akV (x)
�

and V satisfies the assumptions
listed in Remark 2.3. To proof that fz (with respect to p) satisfies Assumption (B2), we adapt (5.53)
as well as (5.54) and (5.55), using the assumptions on V . We obtain for x > 0

bk

�

V ′(x)
V ′′(x) + akV ′(x)2

�

exp
�

−ak V (x)
�

≤ 1− P(x).

and for x > 0

1− P(x)≤min
�

1

2
,

bk

ak V ′(x)

�

exp
�

−ak V (x)
�

and for x < 0

P(x)≤min
�

1

2
,

bk

ak |V ′(x)|

�

exp
�

−ak V (x)
�

.

Estimating (−ψ(x) fz(x))′ gives (−ψ(x) fz(x))′ ≤ const. V ′′(x)
|V ′(x)| . By our assumptions on V , the right

hand side can be bounded for x ≥ d with d ∈ R+ and since ψ(x) fz(x) is continuous, it is bounded
everywhere.
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