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Abstract 

The Stein-Chen method for Poisson approximation is adapted to the setting of the 
geometric distribution. This yields a convenient method for assessing the accuracy of the 
geometric approximation to the distribution of the number of failures preceding the 
first success in dependent trials. The results are applied to approximating waiting time 
distributions for patterns in coin tossing, and to approximating the distribution of the 
time when a stationary Markov chain first visits a rare set of states. The error bounds 
obtained are sharper than those obtainable using related Poisson approximations. 
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1. Introduction 

There have been many recent papers on the Stein-Chen method for bounding Poisson 
approximation errors (see [5] and references therein) and the application of the techniques 
to binomial, multinomial, compound Poisson and (recently and independently of the 
present work) geometric approximations: see [9], [14], [3], [4]. In this paper we further 
develop the Stein-Chen techniques to bound errors for a geometric approximation to 
the distribution of W, the number of failures before the first success in dependent trials. 
The results are applied to approximating the distribution of the number of biased coin 
flips needed until a given pattern first appears as a run, and the distribution of time 
until a stationary Markov chain first visits a rare set of states. This pattern distribution 
and its approximations have been studied in many places; see [5], [6], [7], [8], [10], [11], 
[16] and references therein. The application to Markov chain hitting times has also been 
studied in many places; see [5], [1], [2], [13]. 

The usual Poisson approximation approach to estimating P(W>t) is to define 
indicators Ij, j=1, 2,... each indicating the event of a success on trial j, and to 
use the Stein-Chen method to bound IP(Y=0)-e -~ I where Y= j+=1 Ij, and A=E[ ]. 
This approach is limited to bounding the error of tail probability estimates for W. To 
get bounds for estimating P(WE[i, j]) the triangle inequality in the form 
supi, j IP(XE [i, j])-P(YE [i, j])l < 2 supi IP(X> i)-P(Y> i)l, can be used, but these 
bounds may be too large to be useful for estimating the probabilities of small intervals. 
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Our approach, in contrast, directly yields error bounds for estimating P(WE; B) for 
any set B; in the applications discussed these bounds specialized to tail probabilities are 
roughly half those obtainable using the usual Poisson approach, and specialized to point 
probabilities they are better than the square of bounds obtainable using the Poisson 
approach with the triangle inequality. Note that although the approximations we obtain 
are nearly indentical to Poisson approximations, our methods can yield better bounds. 
For cases where A is small, see [15] for a method of improving the actual approximations. 

In Section 2 we present a theorem bounding the errors for geometric approximations. 
In Section 3 we apply it to Markov chain hitting times, and in Section 4 we apply it to 
pattern waiting times. In Section 5 we give a method for improving the approximations 
in cases where neighboring trials are strongly positively correlated so that successes occur 
in 'clumps'. 

2. Main result 

Let W be the number of failures before the first success in a sequence of dependent 
Bernoulli trials with p= 1-q=P(W= 0). The main result below gives bounds on the 
error of the geometric approximation to the distribution of W. Let 1 + V have the 
distribution of W, given W> 0, and let Gp have a geometric distribution ('starting at 
zero') with parameter p so that, for k > 0, P(Gp =k) =pqk. 

Theorem 1. With the above definitions, 
(a) IP(WE B)-P(Gp E B)l < qp-l(1 -qlBI)P(W V), and 
(b) d(W, Gp) < qp-P(W V), where d(X, Y)- supA IP(XEA)-P(YEA)I. 

To prove the theorem we first need the following lemma; our argument closely follows 
the argument for the Stein-Chen method given in [5] for Poisson approximation. 

For any set B and any p = 1-q, we construct the function f=fp,B defined by f(0)= 
0 and for k > 0, qf(k+ 1)-f(k)= l(keB)-P(Gp E B), and it can be easily verified that 
the solution to the above equations is given by f(k)=S eiB q'-Ze B,ik q * 

Lemma 1. For any j 0, k , k f(j)-f(k)l < (1 _qIB)/p. 

Proof. Note thatf(j)-f(k)=ieB,j>k q'-k- i B,i_j q'-j and since neither term on 
the right can be larger than X!B 0-1 q'=(1 -q BI)/p, the result follows. 

Proof of Theorem 1. Substituting k= W in the recurrence relation for f, taking 
expectations, and noting that f(O)=0, we obtain 

IP(WE B)-P(Gp E B)I = IqE[f(W+ 1)]-E[f(W)]I 

= IqE[f(W+ 1)]-E[f(W) W> O]P(W> 0) 

= IqE[f(W+ 1)-f(V+ 1)]I 

< qE f(W+ 1)-f(V+ 1)1. 

Since Lemma 1 gives If(W+ 1)-f(V+ 1)1 < (1 -q BI)/p < lip, the result follows. 
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3. Application to Markov chain hitting times 

In this section we consider an ergodic Markov chain started according to its stationary 
distribution n and use a geometric distribution with parameter p= 1 - q = EA n to 
approximate the distribution of the time W of the first visit to the set of states A. The 
result is as follows, where P?)' denotes n-step transition probabilities for the Markov 
chain. 

Theorem 2. Let W= min {i: Xi E A } be the time of thefirst visit to A for the stationary 
Markov chain {Xi, i > 0}, and let p = 1 -q =SiEA rci. Then 

\P(WEB)-P(Gp E B)<p-(1 -q IB) .i E Pi(jn)- . 
i.jA n_ I1 

Proof. In light of Theorem 1, we proceed by creating a coupling to bound P(W# V). 
First, let (Z, X0, Xi,...) be the desired Markov chain started according to its station- 
ary distribution, and let (Z', Yo, Yi, -) be a coupled copy started according to the 
stationary distribution restricted to A'. Letting W=min{i: Xi E A} and V= 
min {i: Y G A }, note that W has the same distribution as is described in the theorem, 
and 1+ V has the distribution of W given W> 0. Next note that P(W #V) 

EjEA EAno[P(Xn=j, Yn:j)+P(Yn=j, Xn-j)]. 
We then couple (Xn, Yn) as is done in [5], p. 166, using the maximal coupling of 

Griffeath [12] (see also [17]) so that P(Xn= Yn=j)=j A P(Yn=j) and therefore 

P(X,=j, Yn-yj)= j-P(X,= Yn=j) 

r~J- q + ! 
i= A E qp(+I) 

= E p. i ) +? p(n+ ) 

1 + 

= Z7i[Pl+-i7]) 

q iCA 

where the next to last equality follows from A similar calculation 

where the next to last equality follows from E, 7rcP]+1)=nj. A similar calculation 
gives P(Yn=j, Xnj /J) < (lIq) 2iEA i[j--P?j+)]+. We can then deduce P(W: V) < 
(lIq) Ei jEA 7i jn>! IP~ -7l I, and the result follows upon application of Theorem 1. 

Remark. The bound given by Theorem 2 can be compared with the related bound 
of Theorem 8.H presented in [5] (for a Poisson approximation to the distribution of the 
number of visits to A by time n) in the case where tail probabilities of W are of interest. 
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Example. This example is taken from [5], p. 168. Let Xi, X2,., Xm be a collection 
of m independent two-state Markov chains on {0, 1 } each with P(Xi (n + 1) = 0 Xi (n) = 0) = 

p + e(1 -p) and P(X (n + 1) =1 I Xi (n) = 1) = ep + (1 -p) for some 0 < ? < 1. Note that when 
= 0 the sequence {Xi (j)}j_> is just a sequence of i.i.d. Bernoulli random variables, but 

for E > 0 there is a greater tendency for runs to occur. Starting from stationarity, we are 
interested in the distribution W, the time when all of the Xi are simultaneously zero. 
Next, define a Markov chain with state space {0, 1 }m and n-step transition probability 

Pijn) so that coordinate i at time n stores the value of Xi at time n. Calculations from [5] 
show P(W=0)=pm and, letting state j be the state where all the Xi are zero, that 

"n>1 IPjn)-pm I <2ep1n/( 1-) when e_ p/((m-1)(l-p)) and m 2, so Theorem 2 gives 
d( W, Gp,,,) < 2ep"'(1 -e) under the above conditions on E and m. 

4. Application to sequence patterns 

A biased coin is flipped in succession. What is the distribution of the number of flips 
preceding the first appearance of a given pattern of heads and tails? Here we approximate 
this distribution using a geometric distribution. Brown and Ge [7], using reliability theory 
methods, obtain the result of Corollary (Ib) below for the restricted class of non- 
overlapping patterns. The results of [4, Theorem 8.F] and [10] apply to general patterns, 
but only directly bound the errors when estimating tail probabilities of the waiting time 
distribution. Though these can then be used with the triangle inequality to bound other 
probabilities, Theorem 3 can give much better bounds. 

Let Xo, X',..- be a sequence of i.i.d. Bernoulli trials and let some desired k-digit binary 
pattern be specified. Let I/ be the indicator of the event that the desired pattern appears 
in (Xi, Xi+l,-', Xi+k_l) and let W=min{i: Ii = 1} be the number of trials preceding the 
first appearance of the pattern. Also, for 1 <i <k-l, let ci =P(LJ = 1 o= 1) be the 
probability that, given an occurrence of the pattern, there is also an overlapping occur- 
rence i trials later. For example, with Bernoulli(.5) trials, the pattern 11011 gives c,= 
c2=0, c3 =1/8, c4= l/16. 

Theorem 3. For k-digit patterns with p = - q = P( W= 0), 
(a) IP(WE B)-P(Gp E B) < (1 -qIBI)k=-l I Ci -pj, and 

(b) d( W, Gp) <i_ I c,-p . 

Proof. Define a Markov chain with 2k states so that the state at time n encodes the 
outcomes of the k consecutive Bernoulli trials starting with trial n. Let A = {i} consist 
of the state corresponding to the desired pattern. The result then follows from Theorem 
2, since 

Pn) = c when 1 < n < k-1 

=p when k<n. 

We next give an immediate corollary for non-overlapping patterns, patterns which 
have ci =0 for all i. 
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Corollary 1. For a non-overlapping k-digit pattern, 
(a) \P(W B)-P(Gp E B)(k-1)(1 _qll)p, and 

(b) d(W,Gp) < (k- 1)p. 

Remark. The result of Corollary (lb) was obtained by Brown and Ge [7]. Note that 
for point probabilities, Corollary (la) gives IP(W= k) -pqk I <(k - l)p2. 

For patterns where many overlaps are possible, the bound from Theorem 3 can be 
improved using a geometric with larger mean. The following corollary illustrates this, 
as does Corollary 3 below. 

Corollary 2. Let W count the number of trials preceding the first appearance of a run 
of k consecutive I's in a sequence of i.i.d. Bernoulli(a) trials. Letting p=(1-a)ak, we have 

d(W, Gp) <(k+ )p. 

Proof. Consider instead the non-overlapping pattern consisting of a 0 followed by 
k l's. We then apply Corollary 1 and add ak because this new pattern's appearance time 
differs from W- 1 only if the first k trials are l's. Finally note that a result similar to 
Theorem 3 and Corollary 1 can be established using 1 + W instead of W. 

Remark. The bound in Corollary 2 is half the bound in [5], p. 164. For a simple 
derivation of the exact distribution of W defined as in Corollary 2, see [16]. 

5. Improving approximations when 'clumping' occurs 

For a Markov chain X, when visits to A generally occur in 'clumps', that is when 

P?)~ is much larger than ij for i, jE A and n small, the bound of Theorem 3 can be 
poor. In this case the hitting time generally has mean much larger than lip where p= 

iE A gi. In the case where the Markov chain is m-dependent (i.e. when Xi is independent 
of Xj for i i -j > m), much better bounds can be obtained as follows in the same spirit 
as Corollary 2 above using a geometric with a larger but less easily calculable mean. 

Theorem 4. Let W= min {i: Xi E A } be the time of the first visit to A for the stationary 
m-dependent Markov chain {Xi, i > 0}, letp == 1 - q= EEA , and let a = P(W=m). Then 
d(W, G,)<2mp+ma. 

Proof. Consider instead starting the chain at time -m and let Z= 

min{i > 0: Xi_,, A, Xi-m +1 I A, , Xi_ ? A, Xi E A}; note that it can be viewed as the 
hitting time on a set of states A for a related stationary 2m-dependent Markov chain 
where the state at time n now encodes the values (X,_m, X,n_ +,, -, Xn). 

We next apply Theorem 2 to this related new chain (letting PA7) and fj refer to this 
new chain) while noting P(Z=O)=P(W=m)=a. Since this chain is 2m-dependent we 
have P,j)=j for n>2m, and also, for i, jE A, we have PO?)=0 when n m. 

Note that every state in A is of the form (a0,..., a,,) where ao 0 A,'.., am_, i A, am= 
k E A and for a given state j = (ao, -., am) E A there is a corresponding state k = (am) E A. 

Since the original chain was m-dependent we have, for m <n < 2m and i, jE A, that 
PJ) <P(X, =k) = k > fj, where k is the state in A corresponding to jE A. 
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Since the original chain was m-dependent we have, for m <n < 2m and i, jE A, that 
PJ) <P(X, =k) = k > fj, where k is the state in A corresponding to jE A. 
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These together imply 

Z IPJ)-njlj<p when lIn<m 
jeA 

<a when m<n<2m 

=0 when n>2m. 

Theorem 2 then gives d(Z, Ga)<mp + ma and the result follows noting that Z differs 
from W only if a visit to A happens before time 0 in the original chain, an event of 
probability at most mp. 

As mentioned before, the bound from Theorem 3 can be poor for long patterns where 
many overlaps are possible (e.g. the pattern 101010101). To improve the bound in this 
case, Theorem 4 can be immediately applied (a situation with (k- 1)-dependence). 

Corollary 3. Let W count the number of i.i.d. Bernoulli trials preceding the first 
appearance of a given k-digit binary pattern with p=P(W=0) and a=P(W=k-1); 
d(W, G,)<2(k- 1)p+(k- 1)a. 

Remark. A result related to Corollary 3 for Poisson approximation appears as 
Theorem 2.4 in [11]. 

To compute the value of a=P(W=k-1) for k-digit patterns, the recursion in the 
following lemma can be used. 

Lemma 2. For k-digit patterns with ci defined as in Theorem 3, the following recursion 
holds for O<i<k- 1: P(W=i)=p-EJ Ci c,_ P(W=j ). 

Proof. Writing {Xi E A} for the event that the pattern occurs (not necessarily for the 
first time) starting with trial i, 

P(XjEA)=p=P(XiGA, W>i)+Z P(XiEA, W=j) 
j=0 

=P(W=i)+ ci_jP(W=j) 
j=0 

and the result follows upon re-arranging. 
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