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This paper provides an introduction to the Stein method frame-
work in the context of steady-state diffusion approximations. The
framework consists of three components: the Poisson equation and
gradient bounds, generator coupling, and moment bounds. Working
in the setting of the Erlang-A and Erlang-C models, we prove that
both Wasserstein and Kolmogorov distances between the stationary
distribution of a normalized customer count process, and that of an
appropriately defined diffusion process decrease at a rate of 1/

√
R,

where R is the offered load. Futhermore, these error bounds are uni-
versal, valid in any load condition from lightly loaded to heavily
loaded.

1. Introduction. In [10], the authors developed a framework based
on Stein’s method [53, 54] to prove the rates of convergence for steady-
state diffusion approximations. Using their framework, they proved conver-
gence rates for the steady-state approximation of the M/Ph/n+M system,
the many server queue with customer abandonment and phase-type service
times, in the Halfin–Whitt regime [32]. The framework in [10] is modular
and has four components: the Poisson equation and gradient bounds, genera-
tor coupling, moment bounds, and state space collapse (SSC). The purpose
of this paper is to provide an accessible introduction to the Stein frame-
work, focusing on two simple and yet fundamental systems. They are the
M/M/n+M system, known as the Erlang-A system, and M/M/n system,
known as the Erlang-C system. The accessibility is due to the fact that both
systems can be represented by a one-dimensional continuous time Markov
chain (CTMC). In addition, by focusing on these two systems we are able
to present some sharp results that serve as benchmarks that future research
should aspire to meet.

Stein’s method is a powerful method used for studying approximations
of probability distributions, and is best known for its ability to establish
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convergence rates. It has been widely used in probability, statistics, and
their wide range of applications such as bioinformatics; see, for example,
the survey papers [52, 13], the recent book [15] and the references within.
Applications of Stein’s method always involve some unknown distribution
to be approximated, and an approximating distribution. For instance, the
first appearance of the method in [53] involved the sum of identically dis-
tributed dependent random variables as the unknown, and the normal as
approximating distribution. Other approximating distributions include the
Poisson [14], binomial [19], and multinomial [46] distributions, just to name
a few. For each approximating distribution, one needs to establish separately
gradient bounds, also known as Stein factors [60, 4], like those in Lemma 3
in Section 3. In this paper, the approximating distribution is the station-
ary distribution of a diffusion process, and the unknown is the stationary
distribution of the CTMC introduced in (1.1) below.

Both Erlang-A and Erlang-C systems have n homogeneous servers that
serve customers in a first-come-first-serve manner. Customers arrive accord-
ing to a Poisson process with rate λ, and customer service times are assumed
to be i.i.d. having exponential distribution with mean 1/μ. In the Erlang-
A system, each customer has a patience time and when his waiting time in
queue exceeds his patience time, he abandons the queue without service; the
patience times are assumed to be i.i.d. having exponential distribution with
mean 1/α. The Erlang-A system is a special case of the systems studied in
[10], where SSC played an important role. The systems in this paper can be
represented by a one-dimensional CTMC, meaning that there is no need to
invoke SSC. Therefore, this paper illustrates only the first three components
of the framework proposed in [10].

We will study the birth-death process

X = {X(t), t ≥ 0},(1.1)

whereX(t) is the number of customers in the system at time t. In the Erlang-
A system, α is assumed to be positive and therefore the mean patience time
is finite. This guarantees that the CTMC X is positive recurrent. In the
Erlang-C system, α = 0, and in order for the CTMC to be positive recurrent
we need to assume that the offered load to the system, defined as R = λ/μ,
satisfies

(1.2) R < n.

For both Erlang-A and Erlang-C systems, we use X(∞) to denote the ran-
dom variable having the stationary distribution of X.
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Consider the case when α = 0 and (1.2) is satisfied. Set

X̃(∞) = (X(∞)−R)/
√
R,

and let Y (∞) denote a continuous random variable on R having density

(1.3) κ exp
( 1
μ

∫ x

0
b(y)dy

)
,

where κ > 0 is a normalizing constant that makes the density integrate to
one,

(1.4) b(x) =
[
(x+ ζ)− − ζ−

]
μ, and ζ =

(
R− n

)
/
√
R.

Although our choice of notation does not make this explicit, we highlight
that the random variable Y (∞) depends on λ, μ, and n, meaning that we
are actually dealing with a family of random variables {Y (λ,µ,n)(∞)}(λ,µ,n).
This plays a role in Lemma 3 in Section 3 for example, where we need to
know exactly how the gradient bounds depend on λ, μ, and n. The following
theorem illustrates the type of result that can be obtained by Stein’s method.

Theorem 1. Consider the Erlang-C system (α = 0). For all n ≥ 1,
λ > 0, and μ > 0 satisfying 1 ≤ R < n,

(1.5) dW (X̃(∞), Y (∞)) ≡ sup
h(x)∈Lip(1)

∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣ ≤ 205√

R
,

where
Lip(1) = {h : R → R, |h(x)− h(y)| ≤ |x− y|}.

The framework developed in [10] was inspired largely by the work of
Gurvich in [28] who developed methodologies to prove statements similar to
Theorem 1 for a broad class of multidimensional CTMCs. Along the way,
he independently rediscovered many of the ideas central to Stein’s method
in the setting of steady-state diffusion approximations. See [10] for a more
detailed discussion of Gurvich’s results.

Several points are worth mentioning. First, we note that Theorem 1 is not
a limit theorem. Steady-state approximations are usually justified by some
kind of limit theorem. That is, one considers a sequence of queueing systems
and proves that the corresponding sequence of steady-state distributions
converges to some limiting distribution as traffic intensity approaches one,
or as the number of servers goes to infinity. In contrast, our theorem holds
for any finite parameter choices of λ, n, and μ satisfying (1.2) and R ≥ 1.
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Table 1

Comparing the error
∣∣EX(∞)−

(
R+

√
REY (∞)

)∣∣ for different system configurations.

n = 5 n = 500

R EX(∞) Error R EX(∞) Error

3 3.35 0.10 300 300.00 6× 10−14

4 6.22 0.20 400 400.00 2× 10−6

4.9 51.47 0.28 490 516.79 0.24
4.95 101.48 0.29 495 569.15 0.28
4.99 501.49 0.29 499 970.89 0.32

Second, the error bound in (1.5) is universal, as it does not assume any
relationship between λ, n, and μ, other than the stability condition (1.2)
and the condition that R ≥ 1. The latter condition is a mere convenience,
as Theorem 1 could be restated without it, but the error bound would then
contain some terms involving 1/R. One consequence of universality is that
the error bound holds when parameters λ, n, and μ fall in one of the following
asymptotic regimes:

n = ⌈R+ βR⌉ , n =
⌈
R+ β

√
R
⌉
, or n = ⌈R+ β⌉ ,

where β > 0 is fixed, while R → ∞. The first two parameter regimes
above describe the quality-driven (QD), and quality-and-efficiency-driven
(QED) regimes, respectively. The last regime is the nondegenerate-slowdown
(NDS) regime, which was studied in [62, 1]. Universal approximations were
previously studied in [59, 31]. Third, as part of the universality of Theorem 1,
we see that

∣∣EX(∞)−
(
R+

√
REY (∞)

)∣∣ ≤ 205.(1.6)

For a fixed n, let ρ = R/n ↑ 1. One expects that EX(∞) be on the order
of 1/(1− ρ). Conventional heavy-traffic limit theorems often guarantee that
the left hand side of (1.6) is at most o(1/

√
1− ρ), whereas our error is

bounded by a constant regardless of the load condition. This suggests that
the diffusion approximation for the Erlang-C system is accurate not only as
R → ∞, but also in the heavy-traffic setting when R → n. Table 1 contains
some numerical results where we calculate the error on the left side of (1.6).
The constant 205 in (1.6) is unlikely to be a sharp upper bound. In this
paper we did not focus too much on optimizing the upper bound, as Stein’s
method is not known for producing sharp constants.

From Theorem 1 we know that the first moment of X̃(∞) can be approx-
imated universally by the first moment of Y (∞). It is natural to ask what
can be said about the approximation of higher moments. We performed
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Table 2

Approximating the second and tenth moments of X̃(∞) with n = 500. The approximation
error grows as R approaches n and suggests that the diffusion approximation of higher

moments is not universal.

R E(X̃(∞))2
∣∣E(X̃(∞))2 − E(Y (∞))2

∣∣ E(X̃(∞))10
∣∣E(X̃(∞))10 − E(Y (∞))10

∣∣
300 1 4.55× 10−15 9.77× 102 31.58
400 1 5.95× 10−7 9.70× 102 24.44
490 6.96 0.11 7.51× 109 7.01× 108

495 31.56 0.27 9.10× 1012 4.34× 1011

499 9.47× 102 1.59 1.07× 1020 1.03× 1018

499.9 9.94× 104 16.50 1.13× 1030 1.09× 1027

some numerical experiments in which we approximate the second and tenth
moments of X̃(∞) in a system with n = 500. The results are displayed in
Table 2. One can see that the approximation errors grow as the offered load
R gets closer to n. We will see in Section 6 that this happens because the
(m− 1)th moment appears in the approximation error of the mth moment.
A similar phenomenon was first observed for the M/GI/1 + GI model in
Theorem 1 of [30].

Theorem 1 provides rates of convergence under the Wasserstein metric
[52]. The Wasserstein metric is one of the most commonly studied metrics
in the context of Stein’s method. This is because the the space Lip(1) is
relatively simple to work with, but is also rich enough so that convergence
under the Wasserstein metric implies the convergence in distribution [25].
Another metric commonly studied in problems involving Stein’s method is
the Kolmogorov metric, which measures the distance between cumulative
distribution functions of two random variables. The Kolmogorov distance
between X̃(∞) and Y (∞) is

sup
h(x)∈HK

∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣, where HK = {1(−∞,a](x) : a ∈ R}.

Theorems 3 and 4 of Section 2 involve the Kolmogorov metric. A general
trend in Stein’s method is that establishing convergence rates for the Kol-
mogorov metric often requires much more effort than establishing rates for
the Wasserstein metric, and our problem is no exception. The extra difficulty
always comes from the fact that the test functions belonging to the class HK

are discontinuous, whereas the ones in Lip(1) are Lipschitz-continuous. In
Section 5, we describe how to overcome this difficulty in our model setting.

The first paper to have established convergence rates for steady-state dif-
fusion approximations was [31], which studied the Erlang-A system using an
excursion based approach. Their approximation error bounds are universal.
Although the authors in [31] did not study the Erlang-C system, their ap-
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proach appears to be extendable to it as well. However, their method is not
readily generalizable to the multi-dimensional setting.

We wish to point out that the results proved in this paper are quite
sharp, and proving analogous results in a high dimensional setting is likely
much more difficult. For instance, the constants in the error bounds in each
theorem of this paper can be recovered explicitly, but this is not true in
the problem studied in [10]. Moreover, the result of [10] is restricted to the
Halfin–Whitt regime, and is not universal. All of this is because the model
considered there is high dimensional.

1.1. Related literature. Diffusion approximations are a popular tool in
queueing theory, and are usually “justified” by heavy traffic limit theorems.
For example, a typical limit theorem would say that an appropriately scaled
and centered version of the process X in (1.1) converges to some limiting
diffusion process as the system utilization ρ tends to one. Proving such limit
theorems has been an active area of research in the last 50 years; see, for
example, [7, 8, 37, 38, 33, 51] for single-class queueing networks, [49, 9, 63]
for multiclass queueing networks, [42, 64] for bandwidth sharing networks,
[32, 50, 17] for many-server queues. The convergence used in these limit the-
orems is the convergence in distribution on the path space D([0,∞),Rd), en-
dowed with Skorohod J1-topology [20, 61]. The J1-topology on D([0,∞),Rd)
essentially means convergence in D([0, T ],Rd) for each T > 0. In particu-
lar, it says nothing about the convergence at “∞”. Therefore, these limit
theorems do not justify steady-state convergence.

The jump from convergence on D([0, T ],Rd) to convergence of station-
ary distributions was first established in the seminal paper [22], where the
authors prove an interchange of limits for generalized Jackson networks of
single-server queues. The results in [22] were improved and extended by
various authors for networks of single-servers [12, 68, 43], for bandwidth
sharing networks [64], and for many-server systems [58, 21, 29]. These “in-
terchange of limits” theorems are qualitative and thus do not provide rates
of convergence as in Theorem 1.

The first uses of Stein’s method for stationary distributions of Markov
processes traces back to [5], where it is pointed out that Stein’s method
can be applied anytime the approximating distribution is the stationary
distribution of a Markov proccess. That paper considers the multivariate
Poisson, which is the stationary distribution of a certain multi-dimensional
birth-death process. One of the major contributions of that paper was to
show how viewing the Poisson distribution as the stationary distribution of a
Markov chain could be exploited to establish gradient bounds using coupling
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arguments; cf. the discussion around (3.20) of this paper. A similar idea
was subsequently used for the multivariate normal distribution through its
connection to the multi-dimensional Ornstein–Uhlenbeck process in [2, 27].

Of the papers that use the connection between Stein’s method and Markov
processes, [11] and the more recent [44] are the most relevant to this work.
The former studies one-dimensional birth-death processes, with the focus
being that many common distributions such as the Poisson, Binomial, Hy-
pergeometric, Negative Binomial, etc., can be viewed as stationary distribu-
tions of a birth-death process. Although the Erlang-A and Erlang-C models
are also birth-death processes, the focus in our paper is on how well these
models can be approximated by diffusions, e.g. qualitative features of the
approximation like the universality in Theorem 1. Diffusion approximations
go beyond approximations of birth-death processes, with the real interest
lying in cases when a higher-dimensional Markov chain collapses to a one-
dimensional diffusion, e.g. [58, 55, 18], or when the diffusion approximation
is multi-dimensional [33, 51, 49, 9, 63].

In [44], the authors apply Stein’s method to one-dimensional diffusions.
The motivation is again that many common distributions like the gamma,
uniform, beta, etc., happen to be stationary distributions of diffusions. Their
chief result is to establish gradient bounds for a very large class of diffusion
processes, requiring only the mild condition that the drift of the diffusion be
a decreasing function. However, their result cannot be applied here, because
it is impossible to say how their gradient bounds depend on the parameters
of the diffusion. Detailed knowledge of this dependence is crucial, because
we are dealing with a family of approximating distributions; cf. (1.3) and
the comments below (1.4).

Outside the diffusion approximation domain, Ying has recently success-
fully applied Stein’s framework to establish error bounds for steady-state
mean-field approximations [65, 66]. There is one additional recent line of
work [6, 39, 40, 41, 67] that deserves mention, where the theme is corrected
diffusion approximations using asymptotic series expansions. In particular,
[41] considers the Erlang-C system and [67] considers the Erlang-A system.
In these papers, the authors derive series expansions for various steady-
state quantities of interest like the probability of waiting P(X(∞) ≥ n).
These types of series expansions are very powerful because they allow one
to approximate steady-state quantities of interest within arbitrary precision.
However, while accurate, these expansions vary for different performance
metrics (e.g. waiting probability, expected queue length), and require non-
trivial effort to be derived. They also depend on the choice of parameter
regime, e.g. Halfin-Whitt. In contrast, the results provided by the Stein
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approach can be viewed as more robust because they capture multiple per-
formance metrics and multiple parameter regimes at the same time.

1.2. Notation. For two random variables U and V , define their Wasser-
stein distance to be

(1.7) dW (U, V ) = sup
h(x)∈Lip(1)

|E[h(U)]− E[h(V )]| ,

where
Lip(1) = {h : R → R, |h(x)− h(y)| ≤ |x− y|}.

It is known, see for example [52], convergence under the Wasserstein metric
implies convergence in distribution. When Lip(1) in (1.7) is replaced by

HK = {1(−∞,a](x) : a ∈ R},(1.8)

the corresponding distance is the Kolmogorov distance, denoted by dK(U, V ).
For a, b ∈ R, we use a+, a−, a∧ b, and a∨ b to denote max(a, 0), max(−a, 0),
min(a, b), and max(a, b), respectively.

The rest of the paper is structured as follows. In Section 2 we state our
main results. In Section 3 we present the Stein framework needed to prove
our main results, Theorems 1–4, by introducing three ingredients central to
our framework. Namely, the Poisson equation and gradient bounds, genera-
tor coupling, and moment bounds. In Section 4 we prove Theorem 1, which
deals with the Wasserstein metric. The Kolmogorov metric presents an ad-
ditional challenge, because the test functions are discontinuous. In Section 5
we address this new challenge. In Section 6, we discuss the approximation
of higher moments in the Erlang-C model. Proofs of technical lemmas are
left to the four appendices.

2. Main results. Recall the offered load R = λ/μ. For notational con-
venience we define δ > 0 as

δ =
1√
R

=

√
μ

λ
.

Let x(∞) be the unique solution to the flow balance equation

λ =
(
x(∞) ∧ n

)
μ+

(
x(∞)− n

)+
α.(2.1)

Here, x(∞) is interpreted as the equilibrium number of customers in the
corresponding fluid model, and is the point at which the arrival rate equals
the departure rate. The latter is the sum of the service completion rate and
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the customer abandonment rate with x(∞) customers in the system. One
can check that the flow balance equation has a unique solution x(∞) given
by

(2.2) x(∞) =

{
n+ λ−nµ

α if R ≥ n,

R if R < n.

By noting that the number of busy servers x(∞) ∧ n equals n minus the
number of idle servers (x(∞)− n)−, the equation in (2.1) becomes

(2.3) λ− nμ =
(
x(∞)− n

)+
α−

(
x(∞)− n

)−
μ.

We note that x(∞) is well-defined even when α = 0, because in that case
we always assume that R < n.

We consider the CTMC

X̃ = {X̃(t) ≡ δ(X(t)− x(∞)), t ≥ 0},(2.4)

and let the random variable X̃(∞) have its stationary distribution. Define

(2.5) ζ = δ
(
x(∞)− n

)
,

and

(2.6) b(x) =
[
(x+ ζ)− − ζ−

]
μ−

[
(x+ ζ)+ − ζ+

]
α for x ∈ R,

with convention that α is set to be zero in the Erlang-C system. For intuition
about the quantity ζ, we note that in the Erlang-C system satisfying (1.2),

n = R− ζ
√
R.

Thus, −ζ = |ζ| > 0 is precisely the “safety coefficient” in the square-root
safety-staffing principle [24, equation (15)]. We point out that the event
{X̃(t) = −ζ} corresponds to the event {X(t) = n}.

Throughout this paper, let Y (∞) denote a continuous random variable
on R having density

(2.7) ν(x) = κ exp
( 1
μ

∫ x

0
b(y)dy

)
,

where κ > 0 is a normalizing constant that makes the density integrate to
one. Note that these definitions are consistent with (1.3) and (1.4).
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Theorem 2. Consider the Erlang-A system (α > 0). There exists an
increasing function CW : R+ → R+ such that for all n ≥ 1, λ > 0, μ > 0,
and α > 0 satisfying R ≥ 1,

(2.8) dW (X̃(∞), Y (∞)) ≤ CW (α/μ)δ.

Remark 1. The proof of Theorems 1 and 2 uses the same ideas. There-
fore, for the sake of brevity, we only give an outline for the proof of Theorem 2
and its ingredients in Appendix C.1, without filling in all the details. It is for
this reason that we do not write out the explicit form of CW (α/μ), although
it can be obtained from the proof. The same is true for Theorem 4 below.

Given two random variables U and V , [52, Proposition 1.2] implies that
when V has a density that is bounded by C > 0,

(2.9) dK(U, V ) ≤
√
2CdW (U, V ).

At best, (2.9) and Theorems 1 and 2 imply a convergence rate of
√
δ for

dK(X̃(∞), Y (∞)). However, this bound is typically too crude, and the fol-
lowing two theorems show that convergence happens at rate δ. Theorem 3 is
proved in Section 5.3. The proof of Theorem 4 is outlined in Appendix C.2.

Theorem 3. Consider the Erlang-C system (α = 0). For all n ≥ 1,
λ > 0, and μ > 0 satisfying 1 ≤ R < n,

(2.10) dK(X̃(∞), Y (∞)) ≤ 188δ.

Theorem 4. Consider the Erlang-A system (α > 0). There exists an
increasing function CK : R+ → R+ such that for all n ≥ 1, λ > 0, μ > 0,
and α > 0 satisfying R ≥ 1,

(2.11) dK(X̃(∞), Y (∞)) ≤ CK(α/μ)δ.

Theorems 1 and 3 are new, but versions of Theorems 2 and 4 were first
proved in the pioneering paper [31] using an excursion based approach. How-
ever, our notion of universality in those theorems is stronger than the one
in [31], because most of their results require μ and α to be fixed. The only
exception is in Appendix C of that paper, where the authors consider the
NDS regime with μ = μ(λ) = β

√
λ and λ = nμ + β1μ for some β > 0 and

β1 ∈ R.
We emphasize that both constants CW and CK are increasing in α/μ.

That is, for an Erlang-A system with a higher abandonment rate with respect
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to its service rate, our error bound becomes larger. The reader may wonder
why these constants depend on α/μ, while the constant in the Erlang-C
theorems does not depend on anything. Despite our best efforts, we were
unable to get rid of the dependency on α/μ. The reason is that the Erlang-
C model depends on only three parameters (λ, μ, n), while the Erlang-A
model also depends on α. As a result, both the gradient bounds and moment
bounds have an extra factor α/μ in the Erlang-A model. For example,
compare Lemma 3 in Section 3.5 with Lemma 13 in Appendix B.2.

3. Outline of the Stein framework. In this section we introduce the
main tools needed to prove Theorems 1–4. At this point we do not restrict
ourselves to either the Erlang-A or Erlang-C systems, as the framework
outlined here is generic and holds for both systems.

The following is an informal outline of the rest of this section. We know
that X̃(∞) follows the stationary distribution of the CTMC X̃, and that this
CTMC has a generator GX̃ . To Y (∞), we will associate a diffusion process
with generator GY . We will start by fixing a test function h : R → R and
deriving the identity

∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣ =
∣∣EGX̃fh(X̃(∞))− EGY fh(X̃(∞))

∣∣,(3.1)

where fh(x) is a solution to the Poisson equation

GY fh(x) = Eh(Y (∞))− h(x), x ∈ R.

We then focus on bounding the right hand side of (3.1), which is easier
to handle than the left hand side. This is done by performing a Taylor
expansion of GX̃fh(x) in Section 3.3. To bound the error term from the

Taylor expansion, we require bounds on various moments of
∣∣X̃(∞)

∣∣, as well
as the derivatives of fh(x). We refer to the former as moment bounds, and
the latter as gradient bounds. These are presented in Sections 3.4 and 3.5,
respectively.

3.1. The Poisson equation of a diffusion process. The random variable
Y (∞) in Theorems 1–4 is well-defined and its density is given in (2.7). It
turns out that Y (∞) has the stationary distribution of a diffusion process
Y = {Y (t), t ≥ 0}, which we will define shortly. We do not prove this
claim in this paper since it is not used anywhere in this paper. Nevertheless,
it is helpful to think of Y (∞) in the context of diffusion processes. The
diffusion process Y is the one-dimensional piecewise Ornstein–Uhlenbeck
(OU) process. Its generator is given by

(3.2) GY f(x) = b(x)f ′(x) + μf ′′(x) for x ∈ R, f ∈ C2(R),
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where b(x) is defined in (2.6). Clearly, b(0) = 0, and b(x) is Lipschitz con-
tinuous. Indeed,

|b(x)− b(y)| ≤ (α ∨ μ) |x− y| for x, y ∈ R.

Since the diffusion process Y depends on parameters λ, n, μ, and α in an
arbitrary way, there is no appropriate way to talk about the limit of Y (∞) in
terms of these parameters. Therefore, we call Y a diffusion model, as opposed
to a diffusion limit. Having a diffusion model whose input parameters are
directly taken from the corresponding Markov chain model is critical to
achieve universal accuracy. In other words, this diffusion model is accurate
in any parameter regime, from underloaded, to critically loaded, and to
overloaded. Diffusion models, not limits, of queueing networks with a given
set of parameters have been advanced in [35, 34, 16, 59, 28, 31, 30].

The main tool we use is known as the Poisson equation. It allows us to
say that Y (∞) is a good estimate for X̃(∞) if the generator of Y behaves
similarly to the generator of X̃, where X̃ is defined in (2.4). Let H be a class
of functions h : R → R, to be specified shortly. For each function h(x) ∈ H,
consider the Poisson equation

GY fh(x) = b(x)f ′
h(x) + μf ′′

h (x) = Eh(Y (∞))− h(x), x ∈ R.(3.3)

One may verify by differentiation that for all functions h : R → R satisfying
E
∣∣h(Y (∞))

∣∣ < ∞, the Poisson equation has a family of solutions of the form

fh(x) = a1 +

∫ x

0

[
a2

1

ν(u)
+

1

ν(u)

∫ u

−∞

1

μ

(
Eh(Y (∞))− h(y)

)
ν(y)dy

]
du,

(3.4)

where a1, a2 ∈ R are arbitrary constants, and ν(x) is as in (2.7).
In this paper, we take H = Lip(1) when we deal with the Wasserstein

metric (Theorems 1 and 2), and we choose H = HK when we deal with the
Kolmogorov metric (Theorems 3 and 4). We claim that |Eh(Y (∞))| < ∞.
Indeed, when H = HK , this clearly holds. When H = Lip(1), without loss
of generality we take h(0) = 0 in (3.3), and use the Lipschitz property of
h(x) to see that

|Eh(Y (∞))| ≤ E |Y (∞)| < ∞,

where the finiteness of E |Y (∞)| will be proved in (B.16).
From (3.3), one has

∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣ =
∣∣EGY fh(X̃(∞))

∣∣.(3.5)
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In (3.5), X̃(∞) has the stationary distribution of the CTMC X̃, not nec-
essarily defined on the same probability space of Y (∞). Actually, X̃(∞) in
(3.5) can be replaced by any other random variable, although one does not
expect the error on the right side to be small if this random variable has no
relationship with the diffusion process Y .

3.2. Comparing generators. To prove Theorems 1–4, we need to bound
the right side of (3.5). The CTMC X̃ defined in (2.4) also has a generator.
We bound the right side of (3.5) by showing that the diffusion generator in
(3.2) is similar to the CTMC generator.

For any k ∈ Z+, we define x = xk = δ(k − x(∞)). Then for any function
f : R → R, the generator of X̃ is given by

GX̃f(x) = λ(f(x+ δ)− f(x)) + d(k)(f(x− δ)− f(x)),(3.6)

where

d(k) = μ(k ∧ n) + α(k − n)+,(3.7)

is the departure rate corresponding to the system having k customers. One
may check that

b(x) = δ(λ− d(k)).(3.8)

The relationship between GX̃ and the stationary distribution of X̃ is illus-
trated by the following lemma.

Lemma 1. Let f(x) : R → R be a function such that |f(x)| ≤ C(1 + x)2

for some C > 0 (i.e. f(x) is dominated by a quadratic function), and assume
that the CTMC X̃ is positive recurrent. Then

E
[
GX̃f(X̃(∞))

]
= 0.

Remark 2. We will see in Lemma 3 later this section, in Lemmas 4 and
5 of Section 5, and in Lemma 13 of Appendix B.2 that there is a family of
solutions to the Poisson equation (3.3) whose first derivatives grow at most
linearly in both the Wasserstein and Kolmgorov settings, meaning that these
solutions satisfy the conditions of Lemma 1.

The proof of Lemma 1 is provided in Appendix D.1, and relies on Propo-
sition 3 of [26]. Suppose for now that for any h(x) ∈ H, the solution to the
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Poisson equation fh(x) satisfies the conditions of Lemma 1. We can apply
Lemma 1 to (3.5) to see that

∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣ =
∣∣EGY fh(X̃(∞))

∣∣

=
∣∣EGX̃fh(X̃(∞))− EGY fh(X̃(∞))

∣∣

≤ E
∣∣GX̃fh(X̃(∞))−GY fh(X̃(∞))

∣∣.(3.9)

While the two random variables on the left side of (3.9) are usually defined
on different probability spaces, the two random variables on the right side of
(3.9) are both functions of X̃(∞). Thus, we have achieved a coupling through
Lemma 1. Setting up the Poisson equation is a generic first step one performs
any time one wishes to apply Stein’s method to a problem. The next step
is to bound the equivalent of our

∣∣EGY fh(X̃(∞))
∣∣. This is usually done by

using a coupling argument. However, this coupling is always problem specific,
and is one of the greatest sources of difficulty one encounters when applying
Stein’s method. In our case, this generator coupling is natural because we
deal with Markov processes X̃ and Y .

Since the generator completely characterizes the behavior of a Markov
process, it is natural to expect that convergence of generators implies con-
vergence of Markov processes. Indeed, the question of weak convergence was
studied in detail, for instance in [20], using the martingale problem of Stroock
and Varadhan [57]. However, (3.9) lets us go beyond weak convergence, both
because different choices of h(x) lead to different metrics of convergence, and
also because the question of convergence rates can be answered. One inter-
pretation of the Stein approach is to view fh(x) as a Lyapunov function that
gives us information about h(x). Instead of searching very hard for this Lya-
punov function, the Poisson equation (3.3) removes the guesswork. However,
this comes at the cost of fh(x) being defined implicitly as the solution to a
differential equation.

3.3. Taylor expansion. To bound the right side of (3.9), we study the
difference GX̃fh(x)−GY fh(x). For that we perform a Taylor expansion on
GX̃fh(x). To illustrate this, suppose that f ′′

h (x) exists for all x ∈ R, and is
absolutely continuous. Then for any k ∈ Z+, and x = xk = δ(k− x(∞)), we
recall that b(x) = δ(λ− d(k)) in (3.8) to see that

GX̃fh(x) = λ(fh(x+ δ)− fh(x)) + d(k)(fh(x− δ)− fh(x))

= f ′
h(x)δ(λ− d(k)) +

1

2
δ2f ′′

h (x)(λ+ d(k))

+
1

2
λδ2(f ′′

h (ξ)− f ′′
h (x)) +

1

2
d(k)δ2(f ′′

h (η)− f ′′
h (x))



STEIN’S METHOD FOR STEADY-STATE DIFFUSION APPROXIMATIONS 315

= f ′
h(x)b(x) +

1

2
δ2(2λ− 1

δ
b(x))f ′′

h (x)

+
1

2
μ(f ′′

h (ξ)− f ′′
h (x)) +

1

2
(λ− 1

δ
b(x))δ2(f ′′

h (η)− f ′′
h (x))

= GY fh(x)−
1

2
δf ′′

h (x)b(x) +
1

2
μ(f ′′

h (ξ)− f ′′
h (x))

+
1

2
(μ− δb(x))(f ′′

h (η)− f ′′
h (x)),

where ξ ∈ [x, x+ δ] and η ∈ [x− δ, x]. We invoke the absolute continuity of
f ′′
h (x) to get

∣∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣∣

≤ 1

2
δE
[∣∣f ′′

h (X̃(∞))b(X̃(∞))
∣∣
]
+

μ

2
E

[ ∫ X̃(∞)+δ

X̃(∞)

∣∣f ′′′
h (y)

∣∣ dy
]

+
μ

2
E

[ ∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]
+

1

2
δE

[∣∣b(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]
.

(3.10)

As one can see, to show that the right hand side of (3.10) vanishes as δ → 0,
we must be able to bound the derivatives of fh(x); we refer to these as gradi-
ent bounds. Furthermore, we will also need bounds on moments of

∣∣X̃(∞)
∣∣;

we refer to these as moment bounds. Both moment and gradient bounds will
vary between the Erlang-A or Erlang-C setting, and the gradient bounds will
be different for the Wasserstein, and Kolmogorov settings. Moment bounds
will be discussed shortly, and gradient bounds in the Wasserstein setting will
be presented in Section 3.5. We discuss the Kolmogorov setting separately
in Section 5. In that case we face an added difficulty because f ′′

h (x) has a
discontinuity, and we cannot use (3.10) directly.

3.4. Moment bounds. The following lemma presents the necessary mo-
ment bounds to bound (3.10) in the Erlang-C model, and is proved in Ap-
pendix A.1. These moment bounds are used in both the Wasserstein and
the Kolmogorov metric settings.

Lemma 2. Consider the Erlang-C model (α = 0). For all n ≥ 1, λ > 0,
and μ > 0 satisfying 0 < R < n,

E

[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]
≤ 4

3
+

2δ2

3
,(3.11)

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤
√

4

3
+

2δ2

3
,(3.12)
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E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ 2 |ζ|(3.13)

E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]
≤ 1

|ζ| +
δ2

4 |ζ| +
δ

2
,(3.14)

P(X̃(∞) ≤ −ζ) ≤ (2 + δ) |ζ| .(3.15)

We see that (3.14) immediately implies that when δ ≤ 1,

|ζ|P(X̃(∞) ≥ −ζ) ≤ |ζ| ∧ E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]

≤ |ζ| ∧
( 1

|ζ| +
δ2

4 |ζ| +
δ

2

)

≤ 7/4,(3.16)

where to get the last inequality we considered separately the cases where
|ζ| ≤ 1 and |ζ| ≥ 1. This bound will be used in the proofs of Theorems 1
and 3.

One may wonder why the bounds are separated using the indicators
1{X̃(∞) ≤ −ζ} and 1{X̃(∞) ≥ −ζ}. This is related to the drift b(x) ap-
pearing in (3.10), and the fact that b(x) takes different forms on the regions
x ≤ −ζ and x ≥ −ζ. Furthermore, it may be unclear at this point why
both (3.12) and (3.13) are needed, as the left hand side in both bounds is
identical. The reason is that (3.12) is an O(1) bound (we think of δ ≤ 1),
whereas (3.13) is an O(|ζ|) bound. The latter is only useful when |ζ| is small,
but this is nevertheless an essential bound to achieve universal results. As
we will see later, it negates 1/ |ζ| terms that appear in (3.10) from f ′′

h (x)
and f ′′′

h (x).
For the Erlang-A model, we also require moment bounds similar to those

stated in Lemma 2. Both the proof, and subsequent usage, of the Erlang-
A moment bounds are similar to the proof and subsequent usage of the
Erlang-C moment bounds. We therefore delay the precise statement of the
Erlang-A bounds until Lemma 11 in Appendix A.2, to avoid distracting the
reader with a bulky lemma.

3.5. Wasserstein gradient bounds. Recall the Poisson equation (3.3) and
the family of solutions to this equation is given by (3.4); in particular, this
family is parametrized by constants a1, a2 ∈ R. Fix h(x) ∈ H = Lip(1),
and let fh(x) be a solution to the Poisson equation. The following lemma
presents Wasserstein gradient bounds for the Erlang-C model. It is proved
in Appendix B.1.



STEIN’S METHOD FOR STEADY-STATE DIFFUSION APPROXIMATIONS 317

Lemma 3. Consider the Erlang-C model (α = 0). The solution to the
Poisson equation fh(x) is twice continuously differentiable, with an abso-
lutely continuous second derivative. Fix a solution in (3.4) with parameter
a2 = 0. Then for all n ≥ 1, λ > 0, and μ > 0 satisfying 0 < R < n,

∣∣f ′
h(x)

∣∣ ≤
{

1
µ(6.5 + 4.2/ |ζ|), x ≤ −ζ,
1
µ

1
|ζ|(x+ 1 + 2/ |ζ|), x ≥ −ζ.

(3.17)

∣∣f ′′
h (x)

∣∣ ≤
{

32
µ (1 + 1/ |ζ|), x ≤ −ζ,
1

µ|ζ| , x ≥ −ζ,
(3.18)

and for those x ∈ R where f ′′′
h (x) exists,

∣∣f ′′′
h (x)

∣∣ ≤
{

1
µ(23 + 13/ |ζ|), x ≤ −ζ,

2/μ, x ≥ −ζ.
(3.19)

Remark 3. This lemma validates the Taylor expansion used to obtain
(3.10) because f ′′

h (x) is absolutely continuous. Furthermore, fh(x) satisfies
the conditions of Lemma 1, because f ′

h(x) grows at most linearly.

Gradient bounds, also known as Stein factors, are central to any appli-
cation of Stein’s method. The problem of gradient bounds for diffusion ap-
proximations can be divided into two cases: the one-dimensional case, and
the multi-dimensional case. In the former, the Poisson equation in (3.3) is
an ordinary differential equation (ODE) corresponding to a one-dimensional
diffusion process. In the latter, the Poisson equation is a partial differential
equation (PDE) corresponding to a multi-dimensional diffusion process.

The one-dimensional case is simpler, because the explicit form of fh(x) is
given to us by (3.4). To bound f ′

h(x) and f ′′
h (x) we can analyze (3.4) directly,

as we do in the proof of Lemma 3. This direct analysis can be used as a go-
to method for one-dimensional diffusions, but fails in the multi-dimensional
case, because closed form solutions for PDE’s are not typically known. In
this case, it helps to exploit the fact that fh(x) satisfies

fh(x) =

∫ ∞

0

(
E
[
h(Y (t)) | Y (0) = x

]
− Eh(Y (∞))

)
dt,(3.20)

where Y = {Y (t), t ≥ 0} is a diffusion process with generator GY [48]. To
bound derivatives of fh(x) based on (3.20), one may use coupling arguments
to bound finite differences of the form 1

s (fh(x + s) − fh(x)). For examples
of coupling arguments, see [5, 3, 11, 4, 23]. A related paper to these types
of gradient bounds is [56], where the author used a variant of (3.20) for the
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fluid model of a flexible-server queueing system as a Lyapunov function. As
an alternative to coupling, one may combine (3.20) with a-priori Schauder
estimates from PDE theory, as was done in [28].

Just like we did with the moment bounds, we delay the Erlang-A gra-
dient bounds to Lemma 13 in Appendix B.2. We are now ready to prove
Theorem 1.

4. Proof of Theorem 1. In this section we prove Theorem 1. Fix
h(x) ∈ Lip(1), and recall that the family of solutions to the Poisson equation
is given by (3.4). For the remainder of Section 4, we fix one such solution
fh(x) with a2 = 0. Then by Lemma 3 , f ′′

h (x) is absolutely continuous,
implying that (3.10) holds; we recall it here as

∣∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣∣

≤ 1

2
δE
[∣∣f ′′

h (X̃(∞))b(X̃(∞))
∣∣
]
+

μ

2
E

[ ∫ X̃(∞)+δ

X̃(∞)

∣∣f ′′′
h (y)

∣∣ dy
]

+
μ

2
E

[ ∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]
+

1

2
δE

[∣∣b(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]
,(4.1)

where δ = 1/
√
R =

√
μ/λ.

The proof of Theorem 1 simply involves applying the moment bounds and
gradient bounds to show that the error bound in (4.1) is small.

Proof of Theorem 1. Throughout the proof we assume that R ≥ 1,
or equivalently, δ ≤ 1. We bound each of the terms on the right side of
(4.1) individually. We recall here that the support of X̃(∞) is a δ-spaced
grid, and in particular this grid contains the point −ζ. In the bounds that
follow, we will often consider separately the cases where X̃(∞) ≤ −ζ − δ,
and X̃(∞) ≥ −ζ. We recall that

b(x) = μ
[
(x+ ζ)− − ζ−

]
=

{
−μx, x ≤ −ζ,

μζ, x ≥ −ζ,
(4.2)

and apply the moment bounds (3.12), (3.13), and the gradient bound (3.18),
to see that

E

[∣∣f ′′
h (X̃(∞))b(X̃(∞))

∣∣
]
≤ 32(1 + 1/ |ζ|)E

[∣∣X̃(∞)
∣∣1(X̃(∞) ≤ −ζ − δ)

]

+ P(X̃(∞) ≥ −ζ)

≤ 32(1 + 1/ |ζ|)
(
2 |ζ| ∧

√
4

3
+

2δ2

3

)
+ 1
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≤ 32
(√4

3
+

2δ2

3
+ 2
)
+ 1

≤ 32
(√

2 + 2
)
+ 1 ≤ 111.

Next, we use (3.15) and the gradient bound in (3.19) to get

μ

2
E

[ ∫ X̃(∞)+δ

X̃(∞)

∣∣f ′′′
h (y)

∣∣ dy
]

≤ δ

2

(
(23 + 13/ |ζ|)P(X̃(∞) ≤ −ζ − δ) + 2P(X̃(∞) ≥ −ζ)

)

≤ δ

2

(
23 +

13

|ζ|(3 |ζ|)
)
≤ 31δ.

By a similar argument, we can show that

μ

2
E

[ ∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]
≤ 31δ,

with the only difference in the argument being that we consider the cases
when X̃(∞) ≤ −ζ and X̃(∞) ≥ −ζ + δ, instead of X̃(∞) ≤ −ζ − δ and
X̃(∞) ≥ −ζ. Lastly, we use the form of b(x), the moment bounds (3.12),
(3.13), and (3.16), and the gradient bound (3.19) to get

δ

2
E

[∣∣b(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′′′
h (y)

∣∣ dy
]

≤ δ2

2

(
(23 + 13/ |ζ|)E

[∣∣X̃(∞)
∣∣1(X̃(∞) ≤ −ζ)

]
+ 2 |ζ|P(X̃(∞) ≥ −ζ + δ)

)

≤ δ2

2

(
(23 + 13/ |ζ|)

(
2 |ζ| ∧

√
4

3
+

2δ2

3

)
+ 14/4

)

≤ δ2

2

(
23
√
2 + 26 + 14/4

)
≤ 32δ2.

Hence, from (3.10) we conclude that for all R ≥ 1, and h(x) ∈ Lip(1),

∣∣∣Eh(X̃(∞))− Eh(Y (∞))
∣∣∣ ≤ δ(111 + 31 + 31 + 32δ) ≤ 205δ,(4.3)

which proves Theorem 1.

5. The Kolmogorov metric. In this section we prove Theorem 3,
which is stated in the Kolmogorov setting. The biggest difference between
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the Wasserstein and Kolmogorov settings is that in the latter, the test func-
tions h(x) used in the Poisson equation (3.3) are discontinuous. For this
reason, the gradient bounds from Lemma 3 and Lemma 13 in Appendix B.2
do not hold anymore, and new gradient bounds need to be derived sepa-
rately for the Kolmogorov setting; we present these new gradient bounds in
Section 5.1. Furthermore, the solution to the Poisson equation no longer has
a continuous second derivative, meaning that the Taylor expansion we used
to derive the upper bound in (3.10) is invalid. We discuss an alternative to
(3.10) in Section 5.2. This alternative bound contains a new error term that
cannot be handled by the gradient bounds, nor the moment bounds. This
term appears because the solution to the Poisson equation has a discontinu-
ous second derivative, and to bound it we present Lemma 6. We then prove
Theorem 3 in Section 5.3.

5.1. Kolmogorov gradient bounds. Recall that in the Kolmogorov setting,
we take the class of test functions for the Poisson equation (3.3) to be HK

defined in (1.8). For the statement of the following two lemmas, we fix a ∈ R

and set h(x) = 1(−∞,a](x). We use fa(x) instead of fh(x) to denote a solution
to the Poisson equation. We recall that the family of solutions to the Poisson
equation is parametrized by constants a1, a2 ∈ R. The following lemmas
state the gradient bounds in the Kolmogorov setting.

Lemma 4. Consider the Erlang-C model (α = 0). Any solution to the
Poisson equation fa(x) is continuously differentiable, with an absolutely con-
tinuous derivative. Fix a solution in (3.4) with parameter a2 = 0. Then for
all n ≥ 1, λ > 0, and μ > 0 satisfying 0 < R < n,

∣∣f ′
a(x)

∣∣ ≤
{
5/μ, x ≤ −ζ,
1

µ|ζ| , x ≥ −ζ,
(5.1)

and for all x ∈ R,
∣∣f ′′

a (x)
∣∣ ≤ 3/μ,(5.2)

where f ′′
a (x) is understood to be the left derivative at the point x = a.

Lemma 5. Consider the Erlang-A model (α > 0). Any solution to the
Poisson equation fa(x) is continuously differentiable, with an absolutely con-
tinuous derivative. Fix a solution in (3.4) with parameter a2 = 0, and fix
n ≥ 1, λ > 0, μ > 0, and α > 0. If 0 < R ≤ n (an underloaded system), then

∣∣f ′
a(x)

∣∣ ≤

⎧
⎨
⎩

1
µ

√
2πe1/2, x ≤ −ζ,

1
µ

(√
π
2
µ
α ∧ 1

|ζ|

)
, x ≥ −ζ,

(5.3)
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and if n ≤ R (an overloaded system), then

∣∣f ′
a(x)

∣∣ ≤

⎧
⎨
⎩

1
µ

√
π
2 , x ≤ −ζ,

1
µ

√
π
2

(
1 +
√

µ
α

)
, x ≥ −ζ.

(5.4)

Moreover, for all λ > 0, n ≥ 1, μ > 0, and α > 0, and all x ∈ R,

∣∣f ′′
a (x)

∣∣ ≤ 3/μ,(5.5)

where f ′′
a (x) is understood to be the left derivative at the point x = a.

Lemmas 4 and 5 are proved in Appendix B.3. Unlike the Wasserstein
setting, these lemmas do not guarantee that f ′′

a (x) is absolutely continuous.
Indeed, for any a ∈ R, substituting h(x) = 1(−∞,a](x) into (3.3) gives us

μf ′′
a (x) = P(Y (∞) ≤ a)− 1(−∞,a](x)− b(x)f ′

a(x).

Since b(x)f ′
a(x) is a continuous function, the above equation implies that

f ′′
a (x) is discontinuous at the point x = a. Thus, we can no longer use the
error bound in (3.10), and require a different expansion of GX̃fa(x).

5.2. Alternative Taylor expansion. To get an error bound similar to (3.10),
we first define

ǫ1(x) =

∫ x+δ

x
(x+ δ − y)(f ′′

a (y)− f ′′
a (x−))dy,(5.6)

ǫ2(x) =

∫ x

x−δ
(y − (x− δ))(f ′′

a (y)− f ′′
a (x−))dy.(5.7)

Now observe that

fa(x+ δ)− fa(x) = f ′
a(x)δ +

∫ x+δ

x
(x+ δ − y)f ′′

a (y)dy

= f ′
a(x)δ +

1

2
δ2f ′′

a (x−)

+

∫ x+δ

x
(x+ δ − y)(f ′′

a (y)− f ′′
a (x−))dy

= f ′
a(x)δ +

1

2
δ2f ′′

a (x−) + ǫ1(x),

and

(fa(x− δ)− fa(x)) = − f ′
a(x)δ +

∫ x

x−δ
(y − (x− δ))f ′′

a (y)dy
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= − f ′
a(x)δ +

1

2
δ2f ′′

a (x−)

+

∫ x

x−δ
(y − (x− δ))(f ′′

a (y)− f ′′
a (x−))dy

= − f ′
a(x)δ +

1

2
δ2f ′′

a (x−) + ǫ2(x).

For k ∈ Z+ and x = xk = δ(k − x(∞)), we recall the forms of GY fa(x) and
GX̃fa(x) from (3.2) and (3.6) to see that

GX̃fa(x) = λδf ′
a(x) + λ

1

2
δ2f ′′

a (x−) + λǫ1(x)

− d(k)δf ′
a(x) + d(k)

1

2
δ2f ′′

a (x−) + d(k)ǫ2(x)

= b(x)f ′
a(x) + λ

1

2
δ2f ′′

a (x−) + λǫ1(x)

+ (λ− 1

δ
b(x))

1

2
δ2f ′′

a (x−) + (λ− 1

δ
b(x))ǫ2(x)

= GY f(x)− b(x)
1

2
δf ′′

a (x−) + λ(ǫ1(x) + ǫ2(x))−
1

δ
b(x)ǫ2(x),

where in the second equality we used the fact that b(x) = δ(λ− d(k)), and
in the last equality we use that δ2λ = μ. Combining this with (3.9), we have
an error bound similar to (3.10):

∣∣∣P(X̃(∞) ≤ a)− P(Y (∞) ≤ a)
∣∣∣

≤ 1

2
δE
[∣∣f ′′

a (X̃(∞)−)b(X̃(∞))
∣∣
]
+ λE

[∣∣ǫ1(X̃(∞))
∣∣
]

+ λE
[∣∣ǫ2(X̃(∞))

∣∣
]
+

1

δ
E

[∣∣b(X̃(∞))ǫ2(X̃(∞))
∣∣
]
,(5.8)

where ǫ1(x) and ǫ2(x) are as in (5.6) and (5.7). To bound the error terms
in (5.8) that are associated with ǫ1(x) and ǫ2(x), we need to analyze the
difference f ′′

a (y) − f ′′
a (x−) for |x− y| ≤ δ. Since fa(x) is a solution to the

Poisson equation (3.3), we see that for any x, y ∈ R with y �= a,

f ′′
a (y)− f ′′

a (x−) =
1

μ

[
1(−∞,a](x)− 1(−∞,a](y) + b(x)f ′

a(x)− b(y)f ′
a(y)
]
.

Therefore, for any y ∈ [x, x+ δ] with y �= a,

∣∣f ′′
a (y)− f ′′

a (x−)
∣∣

≤ 1

μ

[
1(a−δ,a](x) + |b(x)|

∣∣f ′
a(x)− f ′

a(y)
∣∣+ |b(x)− b(y))|

∣∣f ′
a(y)
∣∣ ]
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≤ 1

μ

[
1(a−δ,a](x) + δ |b(x)| ‖f ′′‖+ |b(x)− b(y))|

∣∣f ′
a(y)
∣∣ ],(5.9)

and likewise, for any y ∈ [x− δ, x] with y �= a,

∣∣f ′′
a (y)− f ′′

a (x−)
∣∣

≤ 1

μ

[
1(a,a+δ](x) + |b(x)|

∣∣f ′
a(x)− f ′

a(y)
∣∣+ |b(x)− b(y))|

∣∣f ′
a(y)
∣∣ ]

≤ 1

μ

[
1(a,a+δ](x) + δ |b(x)| ‖f ′′‖+ |b(x)− b(y))|

∣∣f ′
a(y)
∣∣ ].(5.10)

The inequalities above contain the indicators 1(a−δ,a](x) and 1(a,a+δ](x).
When we consider the upper bound in (5.8), these indicators will manifest
themselves as probabilities P(a−δ < X̃(∞) ≤ a) and P(a < X̃(∞) ≤ a+δ).
To this end we present the following lemma, which will be used in the proof
of Theorem 3.

Lemma 6. Consider the Erlang-C model (α = 0). Let W be an arbitrary
random variable with cumulative distribution function FW : R → [0, 1]. Let
ω(FW ) be the modulus of continuity of FW , defined as

ω(FW ) = sup
x,y∈R
x �=y

|FW (x)− FW (y)|
|x− y| .

Recall that dK(X̃(∞),W ) is the Kolmogorov distance between X(∞) and
W . Then for any a ∈ R, n ≥ 1, and 0 < R < n,

P(a− δ < X̃(∞) ≤ a+ δ) ≤ ω(FW )2δ + dK(X̃(∞),W ) + 9δ2 + 8δ4.

This lemma is proved in Appendix D.2. We will apply Lemma 6 with
W = Y (∞) in the proof of Theorem 3 that follows. The following lemma
guarantees that the modulus of continuity of the cumulative distribution
function of Y (∞) is bounded by a constant independent of λ, n, and μ. Its
proof is provided in Appendix D.3.

Lemma 7. Consider the Erlang-C model (α = 0), and let ν(x) be the
density of Y (∞). Then for for all n ≥ 1, λ > 0, and μ > 0 satisfying
0 < R < n,

|ν(x)| ≤
√

2

π
, x ∈ R.
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Lemmas 6 and 7 are stated for the Erlang-C model, but one can easily
repeat the arguments in the proofs of those lemmas to prove analogues for
the Erlang-A model. Therefore, we state the following lemmas without proof.

Lemma 8. Consider the Erlang-A model (α > 0). Let W be an arbitrary
random variable with cumulative distribution function FW : R → [0, 1]. Let
ω(FW ) be the modulus of continuity of FW . Then for any a ∈ R, α > 0,
n ≥ 1, and R > 0,

P(a− δ < X̃(∞) ≤ a+ δ)

≤ ω(FW )2δ + dK(X̃(∞),W ) + 9
(α
μ
∨ 1
)
δ2 + 8

(α
μ
∨ 1
)2

δ4.

Lemma 9. Consider the Erlang-A model (α > 0), and let ν(x) be the
density of Y (∞). Fix n ≥ 1, λ > 0, μ > 0, and α > 0. If 0 < R ≤ n, then

|ν(x)| ≤
√

2

π
, x ∈ R,

and if n ≤ R, then

|ν(x)| ≤
√

2

π

√
α

μ
, x ∈ R.

5.3. Proof of Theorem 3.

Proof of Theorem 3. Throughout the proof we assume that R ≥ 1,
or equivalently, δ ≤ 1. For h(x) = 1(−∞,a](x), we let fa(x) be a solution the
Poisson equation (3.3) with parameter a2 = 0. In this proof we will show
that for all a ∈ R,

∣∣∣P(X̃(∞) ≤ a)− P(Y (∞) ≤ a)
∣∣∣ ≤ 1

2
P(a− δ < X̃(∞) ≤ a+ δ) + 75δ,

(5.11)

The upper bound in (5.11) is similar to (4.3), however (5.11) has the extra
term

1

2
P(a− δ < X̃(∞) ≤ a+ δ).(5.12)

The reason this term appears in the Kolmogorov setting but not in the
Wasserstein setting is because f ′′

a (x) is discontinuous in the Kolmogorov
case, as opposed to the Wasserstein case where f ′′

h (x) is continuous. Applying
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Lemmas 6 and 7 to the right hand side of (5.11), and taking the supremum
over all a ∈ R on both sides, we see that

dK(X̃(∞), Y (∞)) ≤ 1

2
dK(X̃(∞), Y (∞)) + 2

√
2

π
δ + 9δ2 + 8δ4 + 75δ,

or

dK(X̃(∞), Y (∞)) ≤ 188δ.

We want to add that Lemma 6 makes heavy use of the birth-death structure
of the Erlang-C model, and that it is not obvious how to handle (5.12) more
generally.

To prove Theorem 3 it remains to verify (5.11), which we now do. The
argument we will use is similar to the argument used to prove (4.3) in The-
orem 1. We will bound each of the terms in (5.8), which we recall here as

∣∣∣P(X̃(∞) ≤ a)− P(Y (∞) ≤ a)
∣∣∣

≤ 1

2
δE
[∣∣f ′′

a (X̃(∞)−)b(X̃(∞))
∣∣
]
+ λE

[∣∣ǫ1(X̃(∞))
∣∣
]

+ λE
[∣∣ǫ2(X̃(∞))

∣∣
]
+

1

δ
E

[∣∣b(X̃(∞))ǫ2(X̃(∞))
∣∣
]
.

We also recall the form of b(x) from (4.2). We use the moment bounds (3.12)
and (3.16), and the gradient bound (5.2) to see that

E

[∣∣f ′′
a (X̃(∞)−)b(X̃(∞))

∣∣
]

≤ 3

μ
E

[∣∣b(X̃(∞))
∣∣
]

= 3E
[∣∣X̃(∞)1(X̃(∞) ≤ −ζ − δ)

∣∣
]
+ 3 |ζ|P(X̃(∞) ≥ −ζ)

≤ 3

√
4

3
+

2δ2

3
+ 3
(
|ζ| ∧ E

[∣∣X̃(∞)
∣∣1(X̃(∞) ≥ −ζ)

])

≤ 3
√
2 +

21

4
≤ 10.(5.13)

Next, we use (5.9), (5.13), and the gradient bound (5.1) to get

λE
[∣∣ǫ1(X̃(∞))

∣∣
]

= λE

[ ∫ X̃(∞)+δ

X̃(∞)
(X̃(∞) + δ − y)

∣∣f ′′
a (y)− f ′′

a (X̃(∞)−)
∣∣dy
]
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≤ λ

μ
E

[
1(a−δ,a](X̃(∞))

∫ X̃(∞)+δ

X̃(∞)
(X̃(∞) + δ − y)dy

]

+
λ

μ
δ3E
[∣∣b(X̃(∞))

∣∣
]
‖f ′′

a ‖+
λ

μ
δE

[ ∫ X̃(∞)+δ

X̃(∞)

∣∣b(X̃(∞))− b(y))
∣∣∣∣f ′

a(y)
∣∣dy
]

≤ 1

2
P(a− δ < X̃(∞) ≤ a) + 10δ + 5δ

≡ 1

2
P(a− δ < X̃(∞) ≤ a) + 15δ,

where in the last inequality we used the fact that for y ∈ [X̃(∞), X̃(∞)+δ],

b(X̃(∞))− b(y) = μδ1(X̃(∞) ≤ −ζ − δ).

By a similar argument, one can check that

λE
[∣∣ǫ2(X̃(∞))

∣∣
]
≤ 1

2
P(a < X̃(∞) ≤ a+ δ) + 15δ,

with the only difference in the argument being that we consider the cases
when X̃(∞) ≤ −ζ and X̃(∞) ≥ −ζ + δ, instead of X̃(∞) ≤ −ζ − δ and
X̃(∞) ≥ −ζ. Lastly, we use the first inequality in (5.10) to see that

1

δ
E

[∣∣b(X̃(∞))ǫ2(X̃(∞))
∣∣
]

≤ 1

μ
E

[∣∣b(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

[
1(a,a+δ](X̃(∞))

+
∣∣b(X̃(∞))

∣∣
(∣∣f ′

a(X̃(∞))
∣∣+
∣∣f ′

a(y)
∣∣
)

+
∣∣b(X̃(∞))− b(y))

∣∣∣∣f ′
a(y)
∣∣
]
dy

]

≤ δ
1

μ
E

[∣∣b(X̃(∞))
∣∣
]
+ δ

1

μ
E

[∣∣b2(X̃(∞))f ′
a(X̃(∞))

∣∣
]

+
1

μ
E

[∣∣b2(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′
a(y)
∣∣ dy
]
+ 5δ2E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]

≤ 10

3
δ + δ

1

μ
E

[∣∣b2(X̃(∞))f ′
a(X̃(∞))

∣∣
]

+
1

μ
E

[∣∣b2(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′
a(y)
∣∣ dy
]
+ 5

√
2δ2,

where in the last inequality we used (5.13) and the moment bound (3.12).
Now by (3.11) and (3.16),

δ
1

μ
E

[∣∣b2(X̃(∞))f ′
a(X̃(∞))

∣∣
]
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≤ 5δE
[
X̃2(∞)1(X̃(∞) ≤ −ζ)

]
+ δ |ζ|P(X̃(∞) ≥ −ζ + δ)

≤ 10δ + δ
7

4
≤ 12δ,

and similarly,

1

μ
E

[∣∣b2(X̃(∞))
∣∣
∫ X̃(∞)

X̃(∞)−δ

∣∣f ′
a(y)
∣∣ dy
]
≤ 12δ.

Therefore,

1

δ
E

[∣∣b(X̃(∞))ǫ2(X̃(∞))
∣∣
]
≤ 10

3
δ + 24δ + 5

√
2δ2 ≤ 35δ.

This verifies (5.11) and concludes the proof of Theorem 3.

6. Extension: Erlang-C higher moments. In this section we con-
sider the approximation of higher moments for the Erlang-C model. We
begin with the following result.

Theorem 5. Consider the Erlang-C system (α = 0), and fix an integer
m > 0. There exists a constant C = C(m), such that for all n ≥ 1, λ > 0,
and μ > 0 satisfying 1 ≤ R < n,

(6.1)
∣∣E(X̃(∞))m − E(Y (∞))m

∣∣ ≤ (1 + 1/ |ζ|m−1)C(m)δ,

where ζ is defined in (1.4).

The proof of this theorem follows the standard Stein framework in Sec-
tion 3, but we do not provide it in this paper. The most interesting as-
pect of (6.1) is the appearance of 1/ |ζ|m−1 in the bound on the right hand
side, which of course only matters when |ζ| is small. To check whether the
bound is sharp, we performed some numerical experiments illustrated in Ta-
ble 3. The results suggest that the approximation error does indeed grow
like 1/ |ζ|m−1.

A better way to understand the growth parameter 1/ |ζ|m−1 is through its
relationship with E(X̃(∞))m−1. We claim that E(X̃(∞))m−1 ≈ 1/ |ζ|m−1 for
small values of |ζ|. The following lemma, which is proved in Appendix D.4,
is needed.

Lemma 10. For any integer m ≥ 1, and all n ≥ 1, λ > 0, and μ > 0
satisfying R < n,

lim
ζ↑0

|ζ|m E(Y (∞))m = m!.(6.2)
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Multiplying both sides of (6.1) by |ζ|m and applying Lemma 10, we see
that for all n ≥ 1, λ > 0, and μ > 0 satisfying 1 ≤ R < n,

lim
ζ↑0

|ζ|m E(X̃(∞))m = m!.

In other words, we can rewrite (6.1) as

∣∣E(X̃(∞))m − E(Y (∞))m
∣∣

≤
(
1 +

1

|ζ|m−1
∣∣E(X̃(∞))m−1

∣∣
∣∣E(X̃(∞))m−1

∣∣
)
C(m)δ

≤
(
1 +
∣∣E(X̃(∞))m−1

∣∣
)
C̃(m)δ,

where C̃(m) is a redefined version of C(m). That the approximation error
in Table 3 increases is then attributed to the fact that EX̃(∞) increases as
ζ ↑ 0. As we mentioned before, the appearance of the (m − 1)th moment
in the approximation error of the mth moment was also observed recently
in [30] for the virtual waiting time in the M/GI/1 +GI model, potentially
suggesting a general trend.

Table 3

The error term above equals
∣∣E(X̃(∞))2 − E(Y (∞))2

∣∣ and grows as R → n. The error

term still grows when multiplied by |ζ|0.5, and the error term shrinks to zero when
multiplied by |ζ|1.5. However, when multiplied by |ζ|, the error term appears to converge
to some limiting value, suggesting that the error does indeed grow at a rate of 1/ |ζ|. We

observed consistent behavior for higher moments of X̃(∞) as well.

R |ζ| E(X̃(∞))2 Error |ζ| ×Error |ζ|0.5 ×Error |ζ|1.5 ×Error

499 4.48× 10−2 9.47× 102 1.59 7.10× 10−2 0.34 1.50× 10−2

499.9 4.50× 10−3 9.94× 104 16.50 7.38× 10−2 1.10 4.94× 10−3

499.95 2.20× 10−3 3.99× 105 33.08 7.40× 10−2 1.56 3.50× 10−3

499.99 4.47× 10−4 9.99× 106 165.67 7.41× 10−2 3.50 1.57× 10−3
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APPENDICES

Appendix A handles the moment bounds, while Appendix B handles the
gradient bounds. Appendix C contains outlines for the proofs of Theorems 2
and 4, and in Appendix D we prove several miscellaneous lemmas.

APPENDIX A: MOMENT BOUNDS

In Section A.1, we first prove Lemma 2, establishing the moment bounds
for Erlang-C model. In Section A.2, we state and prove Lemma 11, estab-
lishing the moment bounds for Erlang-A model.

A.1. Erlang-C Moment Bounds.

Proof of Lemma 2. We first prove (3.11), (3.12), and (3.14). Recalling
the generator GX̃ defined in (3.6), we apply it to the function V (x) = x2 to
see that for k ∈ Z+ and x = xk = δ(k − x(∞)),

GX̃V (x) = λ(2xδ + δ2) + μ(k ∧ n)(−2xδ + δ2)

= 2xδ(λ− nμ+ μ(k − n)−) + μ+ δ2μ(k ∧ n)

= 2xμ(ζ + (x+ ζ)−) + μ+ δ2μ(n− λ

μ
+

λ

μ
− (k − n)−)

= 2xμ(ζ + (x+ ζ)−) + μ− δμζ + μ− δμ(x+ ζ)−

= 1(x ≤ −ζ)μ
(
− 2x2 + δx

)
+ 1(x > −ζ)μ

(
2xζ − δζ

)
+ 2μ

≤ 1(x ≤ −ζ)μ
(
− 3

2
x2 +

δ2

2

)
+ 1(x > −ζ)μ

(
2xζ − δζ

)
+ 2μ.(A.1)

Instead of splitting the last two lines into the cases x ≤ −ζ and x > −ζ,
we could have also considered x < −ζ and x ≥ −ζ instead, and would have
obtained

GX̃V (x) = 1(x < −ζ)μ
(
− 2x2 + δx

)
+ 1(x ≥ −ζ)μ

(
2xζ − δζ

)
+ 2μ

≤ 1(x < −ζ)μ
(
− 3

2
x2 +

δ2

2

)
+ 1(x ≥ −ζ)μ

(
2xζ − δζ

)
+ 2μ.(A.2)

We take expected values on both sides of (A.1) with respect to X̃(∞), and
apply Lemma 1 to see that

0 ≤− 3

2
μE
[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]

+ μ |ζ|E
[(

− 2X̃(∞) + δ
)
1(X̃(∞) > −ζ)

]
+ 2μ+

μδ2

2
.(A.3)
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This implies that when |ζ| > δ/2,

0 ≤− 3

2
μE
[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]
+ 2μ+

μδ2

2
,

and when |ζ| ≤ δ/2,

0 ≤− 3

2
μE
[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]
+ 2μ+ μδ2.

Therefore,

E
[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]
≤ 4

3
+

2δ2

3
,

which proves (3.11). Jensen’s inequality immediately gives us

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤
√
E
[
(X̃(∞))21(X̃(∞) ≤ −ζ)

]
,

which proves (3.12). Furthermore, (A.3) also gives us

E

[∣∣X̃(∞)1(X̃(∞) > −ζ)
∣∣
]
≤ 1

|ζ| +
δ2

4 |ζ| +
δ

2
,

which is not quite (3.14) because the inequality above has 1(X̃(∞) > −ζ)
as opposed to 1(X̃(∞) ≥ −ζ) as in (3.14). However, we can use (A.2) to get
the stronger bound

E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]
≤ 1

|ζ| +
δ2

4 |ζ| +
δ

2
,

which proves (3.14).
We now prove (3.13), or

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ 2 |ζ| .(A.4)

We use the triangle inequality to see that

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ |ζ|+ E

[∣∣X̃(∞) + ζ
∣∣1(X̃(∞) ≤ −ζ)

]
.

The second term on the right hand side is just the expected number of
idle servers, scaled by δ. We now show that this expected value equals |ζ|.
Applying the generator GX̃ to the test function f(x) = x, one sees that for
all k ∈ Z+ and x = xk = δ(k − x(∞)),

GX̃f(x) = δλ− δμ(k ∧ n) = μ
[
ζ + (x+ ζ)−

]
.
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Taking expected values with respect to X̃(∞) on both sides, and applying
Lemma 1, we arrive at

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
= |ζ| ,(A.5)

which proves (3.13).
We move on to prove (3.15), or

P(X̃(∞) ≤ −ζ) ≤ (2 + δ) |ζ| .(A.6)

Let I be the unscaled expected number of idle servers. Then by (A.5),

I = E(X(∞)− n)− =
1

δ
E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
=

1

δ
|ζ| .

Now let {νk}∞k=0 be the stationary distribution of X (the unscaled CTMC).
We want to prove an upper bound on the probability

P(X̃(∞) ≤ −ζ) =
n∑

k=0

νk ≤
⌊n−

√
R⌋∑

k=0

νk +
n∑

k=⌈n−
√
R⌉

νk.

Observe that

I =
n∑

k=0

(n− k)νk ≥
√
R

⌊n−
√
R⌋∑

k=0

νk.

Now let k∗ be the first index that maximizes {νk}∞k=0, i.e.

k∗ = inf{k ≥ 0 : νk ≥ νj , for all j �= k}.

Then

P(X̃(∞) ≤ −ζ) =

⌊n−
√
R⌋∑

k=0

νk +

n∑

k=⌈n−
√
R⌉

νk ≤ I√
R

+ (
√
R+ 1)νk∗

= |ζ|+ (
√
R+ 1)νk∗ .(A.7)

Applying GX̃ to the test function f(x) = (k∧k∗), we see that for all k ∈ Z+

and x = xk = δ(k − x(∞)),

GX̃f(x) = δλ1(k < k∗)− δμ(k ∧ n)1(k ≤ k∗).
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Taking expected values with respect to X(∞) on both sides and applying
Lemma 1, we see that

P(X(∞) ≤ k∗) =
μ

nμ− λ
E
[
(X(∞)− n)−1(X(∞) ≤ k∗)

]
− νk∗

λ

nμ− λ
≥ 0.

Using the inequality above, together with the fact that k∗ ≤ n, we see that

νk∗ ≤ μ

λ
E
[
(X(∞)− n)−1(X(∞) ≤ k∗)

]

≤ μ

λ
E
[
(X(∞)− n)−1(X(∞) ≤ n)

]
=

I

R
=

|ζ|√
R
.

The fact that k∗ ≤ n is a consequence of λ < nμ, and can be verified through
the flow balance equations of the CTMC X. We combine the bound above
with (A.7) to arrive at (3.15), which concludes the proof of this lemma.

A.2. Erlang-A moment bounds. The following lemma states the
necessary moment bounds for the Erlang-A model. The underloaded and
overloaded cases have to be handled separately. Since the drift b(x) is dif-
ferent between the Erlang-A and Erlang-C models, the quantities bounded
in the following lemma will resemble those in Lemma 2, but will not be
identical.

Lemma 11. Consider the Erlang-A model (α > 0). Fix n ≥ 1, λ > 0,
μ > 0, and α > 0. If 0 < R ≤ n (an underloaded system), then

E

[(
X̃(∞)

)2
1(X̃(∞) ≤ −ζ)

]
≤ 1

3

(α
μ
δ2 + δ2 + 4

)
,(A.8)

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤
√

1

3

(α
μ
δ2 + δ2 + 4

)
,(A.9)

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ 2 |ζ|+ α

μ

√
1

3

(μ
α
δ2 +

μ

α
4 + δ2

)
,(A.10)

E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]

≤
(
1 +

δ2

4
+

δ

2

√
1

3

(α
μ
δ2 + δ2 + 4

))( μ

μ ∧ α
∧ 1

|ζ|
)
,(A.11)

E

[
(X̃(∞) + ζ)21(X̃(∞) ≥ −ζ)

]
≤ 1

3

(μ
α
δ2 +

μ

α
4 + δ2

)
,(A.12)

E

[
(X̃(∞) + ζ)1(X̃(∞) ≥ −ζ)

]
≤
√

1

3

(μ
α
δ2 +

μ

α
4 + δ2

)
,(A.13)

E

[
(X̃(∞) + ζ)1(X̃(∞) ≥ −ζ)

]
≤ 1

|ζ|
(δ2
4

α

μ
+

δ2

4
+ 1
)
,(A.14)
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P(X̃(∞) ≤ −ζ) ≤ (2 + δ)

(
|ζ|+ α

μ

√
1

3

(μ
α
δ2 +

μ

α
4 + δ2

))
.(A.15)

and if n ≤ R (an overloaded system), then

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤
√

1

α ∧ μ

(
α
δ2

4
+ μ
)
,(A.16)

E

[∣∣X̃(∞)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ 1

|ζ|
(δ2
4

+
μ

α

)
,(A.17)

E

[
(X̃(∞))21(X̃(∞) ≥ −ζ)

]
≤ 1

3

(
δ2 + 4

μ

α

)
,(A.18)

E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]
≤
√

1

3

(
δ2 + 4

μ

α

)
,(A.19)

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ 1

|ζ|
(δ2
4

+ 1
)
,(A.20)

E

[
(X̃(∞) + ζ)21(X̃(∞) ≤ −ζ)

]
≤ δ2

4

α

μ
+ 1,(A.21)

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
≤
√

δ2

4

α

μ
+ 1,(A.22)

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ α

μ

√
1

3

(
δ2 + 4

μ

α

)
,(A.23)

P(X̃(∞) ≤ −ζ) ≤ (3 + δ)
16√
2

(δ2
4

+ 1
)((1

ζ
∨ α

μ

)
∧
√

α

μ

)
.(A.24)

A.2.1. Proof outline for Lemma 11: The underloaded system. The proof
of the underloaded case of Lemma 11 is very similar to that of Lemma 2.
Therefore, we only outline some key intermediate steps needed to obtain
the results. We remind the reader that when R ≤ n, then ζ ≤ 0. We first
show how to establish (A.8), which is proved in a similar fashion to (3.11)
of Lemma 2 – by applying the generator GX̃ to the Lyapunov function
V (x) = x2. The following are some useful intermediate steps for any reader
wishing to produce a complete proof. The first step to prove (A.8) is to get
an analogue of (A.1). Namely, when x ≤ −ζ,

GX̃V (x) = − 2μx2 + μδx+ 2μ ≤ −3

2
μx2 + μδ2/2 + 2μ,

and when x ≥ −ζ,

GX̃V (x) = − 2α(x+ ζ)2 + αδ(x+ ζ)− 2μ |ζ| (x+ ζ)
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− 2 |ζ|α(x+ ζ) + μ |ζ| (δ − 2 |ζ|) + 2μ

≤ − 3

2
α(x+ ζ)2 − 2μ |ζ| (x+ ζ) + δ2α/2 + δ2μ/8 + 2μ.(A.25)

From here, we use Lemma 1 to get a statement similar to (A.3), from which
we can infer (A.8) and by applying Jensen’s inequality to (A.8), we get (A.9).
Observe that this procedure yields (A.12), (A.13), and (A.14) as well. We
now describe how to prove (A.11), which requires only a slight modification
of (A.25). Namely, for x ≥ −ζ,

GX̃V (x) = 2x
(
− α(x+ ζ) + μζ

)
− δ
(
− α(x+ ζ) + μζ

)
+ 2μ.

From this, we can deduce that since x ≥ −ζ,

GX̃V (x) ≤ −2(μ ∧ α)x2 − δ
(
− α(x+ ζ) + μζ

)
+ 2μ,

and also

GX̃V (x) ≤ −2μ |ζ|x− δ
(
− α(x+ ζ) + μζ

)
+ 2μ.

Then Lemma 1 can be applied as before to see that both

2μ |ζ|E
[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)

∣∣
]
and 2(μ ∧ α)E

[(
X̃(∞)

)2
1(X̃(∞) ≥ −ζ)

](A.26)

are bounded by

2μ+ μδ2/2− δE
[(

− α(X̃(∞) + ζ) + μζ
)
1(X̃(∞) ≥ −ζ)

]
.

Applying the generator GX̃ to the test function f(x) = x and taking ex-

pected values with respect to X̃(∞), we get Eb(X̃(∞)) = 0, or

E

[(
− α(X̃(∞) + ζ) + μζ

)
1(X̃(∞) ≥ −ζ)

]
= μE

[
X̃(∞)1(X̃(∞) < −ζ)

]
.

(A.27)

When combined with (A.9), this implies that

2μ+ μδ2/2− δE
[(

− α(X̃(∞) + ζ) + μζ
)
1(X̃(∞) ≥ −ζ)

]

≤ 2μ+ μδ2/2 + μδ

√
1

3

(α
μ
δ2 + δ2 + 4

)
,
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which proves (A.11), because the quantity above is an upper bound for
(A.26). To prove (A.10), we manipulate (A.27) to get

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
= |ζ|+ α

μ
E

[∣∣(X̃(∞) + ζ)1(X̃(∞) > −ζ)
∣∣
]
,

to which we can apply the triangle inequality and (A.13) to conclude (A.10).
Lastly, the proof of (A.15) is nearly identical to the proof of (3.15) in
Lemma 2. The key step is to obtain an analogue of (A.7).

A.2.2. Proof outline for Lemma 11: The overloaded system. The proof
of the overloaded case of Lemma 11 is also similar to that of Lemma 2.
Therefore, we only outline some key intermediate steps needed to obtain
the results; the bounds in this lemma are not proved in the order in which
they are stated. We remind the reader that when R ≥ n, then ζ ≥ 0. We start
by proving (A.18). Although the left hand side of (A.18) is slightly different
from (3.11) of Lemma 2, it is proved using the same approach – by applying
the generator GX̃ to the Lyapunov function V (x) = x2. The following are
some useful intermediate steps for any reader wishing to produce a complete
proof. The first step to prove (A.18) is to get analogue of (A.1). Namely,
when x ≤ −ζ,

GX̃V (x) = − 2μ(x+ ζ)2 + μδ(x+ ζ)

+ 2(μ+ α) |ζ| (x+ ζ)− 2αζ2 − αδζ + 2μ

≤ − 2μ(x+ ζ)2 + 2(μ+ α) |ζ| (x+ ζ) + 2μ,(A.28)

and when x ≥ −ζ,

GX̃V (x) = − 2αx2 + αδx+ 2μ ≤ −3

2
αx2 + αδ2/2 + 2μ.

From here, we use Lemma 1 to get a statement similar to (A.3), which
implies (A.18). Applying Jensen’s inequality to (A.18) yields (A.19). The
procedure used to get (A.18) also yields (A.20), (A.21), and (A.22).

We now describe how to prove (A.16) and (A.17), which requires only a
slight modification of (A.28). Namely, we use the fact that for x ≤ −ζ,

GX̃V (x) = 2x
(
− μ(x+ ζ) + αζ

)
− δ
(
− μ(x+ ζ) + αζ

)
+ 2μ.

From this, one can deduce that since x ≤ −ζ,

GX̃V (x) ≤ −2(μ ∧ α)x2 + 2μ,
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and also

GX̃V (x) ≤ −2α |ζ| |x|+ 2μ.

Then Lemma 1 and Jensen’s inequality can be applied as before to get both
(A.16) and (A.17).

We now prove (A.23). Observe that

E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]

= E

[∣∣(X̃(∞) + ζ − ζ)1(X̃(∞) ≥ −ζ)
∣∣
]

≥ E

[∣∣(X̃(∞) + ζ)1(X̃(∞) > −ζ)
∣∣− ζ1(X̃(∞) > −ζ)

]

≥ E

[∣∣(X̃(∞) + ζ)1(X̃(∞) > −ζ)
∣∣
]
− ζ

=
μ

α
E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
,

where the last equality comes from applying the generator GX̃ to the func-

tion f(x) = x and taking expected values with respect to X̃(∞) to see that
Eb(X̃(∞)) = 0, or

E

[(
− μ(X̃(∞) + ζ) + αζ

)
1(X̃(∞) ≤ −ζ)

]
= αE

[
X̃(∞)1(X̃(∞) > −ζ)

]
.

(A.29)

Therefore,

E

[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)
∣∣
]
≤ α

μ
E

[∣∣X̃(∞)1(X̃(∞) ≥ −ζ)
∣∣
]
,

and we can invoke (A.19) to conclude (A.23).
We now prove (A.24), which requires additional arguments that we have

not used in the proof of Lemma 2. We assume for now that

λ ≤ nμ+
1

2

√
nμ.(A.30)

Fix γ ∈ (0, 1/2), and define

J1 =

⌊n−γ
√
R⌋∑

k=0

νk, J2 =

n∑

k=⌈n−γ
√
R⌉

νk,(A.31)

where {νk}∞k=0 is the stationary distribution of X. We note that by (A.30),

n/
√
R ≥

√
R− 1

2

√
n/R ≥

√
R− 1/2 ≥ 1/2,
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which implies that n− γ
√
R > 0. Then

P(X̃(∞) ≤ −ζ) = P(X(∞) ≤ n) ≤ J1 + J2.

To bound J1 we observe that

E

[∣∣∣X̃(∞) + ζ
∣∣∣ 1{X̃(∞)≤−ζ}

]
=

1√
R

n∑

k=0

(n− k)νk ≥ γ

⌊n−γ
√
R⌋∑

k=0

νk = γJ1.

Combining (A.20)–(A.23), we conclude that

J1 ≤
1

γ

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ
∨ 1 ∧ α

μ

√
μ

α
∨ 1
)

≤ 1

γ

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
.(A.32)

Now to bound J2, we apply GX̃ to the test function f(x) = k ∧ n, where

x = δ(k−x(∞)), and take the expectation with respect to X̃(∞) to see that

0 = −λνn + (λ− nμ)P(X(∞) ≤ n) + μE
[
(X(∞)− n)− 1{X(∞)≤n}

]
.

Noticing that

E
[
(X(∞)− n)− 1{X(∞)≤n}

]
=

1

δ
E

[∣∣∣X̃(∞) + ζ
∣∣∣ 1{X̃(∞)≤−ζ}

]
,

we arrive at

νn ≤ δ
2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
+

λ− nμ

λ
P(X(∞) ≤ n).(A.33)

The flow balance equations

λνk−1 = kμνk, k = 1, 2, · · · , n

imply that ν0 < ν1 < · · · < νn−2 < νn−1 ≤ νn, and therefore

J2 ≤ (γ
√
R+ 1)νn

≤ (γ
√
R+ 1)

[
δ

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
+

λ− nμ

λ
P(X(∞) ≤ n)

]

= (γ + δ)
2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)

+ (γ
√
R+ 1)

λ− nμ

λ
J1 + (γ

√
R+ 1)

λ− nμ

λ
J2(A.34)
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We use (A.30), the fact that γ ∈ (0, 1/2), and that R ≥ n ≥ 1 to see that

(γ
√
R+ 1)

λ− nμ

λ
≤ (γ

√
R+ 1)

√
n

2R
≤ 1

2
(γ + 1/

√
R) =

1

2
(γ + 1) < 3/4.

Then by rearranging terms in (A.34) and applying (A.32) we conclude that

1

4
J2 ≤ (γ + δ)

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
+

3

4

1

γ

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)

=
(
γ + δ +

3

4

1

γ

) 2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
.

Hence, we have just shown that under assumption (A.30),

P(X̃(∞) ≤ −ζ) ≤ J1 + J2 ≤
1

γ

2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)

+ 4
(
γ + δ +

3

4

1

γ

) 2√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)

≤ (3 + δ)
8√
3

(δ2
4

+ 1
)(1

ζ
∧
√

α

μ

)
,

where to get the last inequality we fixed γ ∈ (0, 1/2) that solves γ+1/γ = 3.
We now wish to establish the same result without assumption (A.30), i.e.

when λ > nμ+ 1
2

√
nμ. For this, we rely on the following comparison result.

Fix n, μ and α and let X(λ)(∞) be the steady-state customer count in an
Erlang-A system with arrival rate λ, service rate μ, number of servers n,
and abandonment rate α. Then for any 0 < λ1 < λ2,

P(X(λ2)(∞) ≤ n) ≤ P(X(λ1)(∞) ≤ n).(A.35)

This says that with all other parameters being held fixed, an Erlang-A sys-
tem with a higher arrival rate is less likely to have idle servers. For a simple
proof involving a coupling argument, see page 163 of [45].

Therefore, for λ > nμ+ 1
2

√
nμ,

P(X(λ)(∞) ≤ n) ≤ P(X(nµ+ 1
2

√
nµ)(∞) ≤ n)

≤ (3 + δ)
8√
3

(δ2
4

+ 1
)( 1

ζ(nµ+
1
2

√
nµ)

∧
√

α

μ

)

where ζ(nµ+
1
2

√
nµ) is the ζ corresponding to X(nµ+ 1

2

√
nµ)(∞), and satisfies

1

ζ(nµ+
1
2

√
nµ)

=
2α

μ

√
n+

√
n/2

n
≤ 2α

μ

√
3

2
.

This concludes the proof of (A.24).
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APPENDIX B: GRADIENT BOUNDS

In Section B.1, we first prove Lemma 3, establishing the Wasserstein
gradient bounds for Erlang-C model. In Section B.2, we state and prove
Lemma 13, establishing theWasserstein gradient bounds for Erlang-A model.
In Section B.3 we prove Lemmas 4 and 5, establishing the Kolmogorov gra-
dient bounds for both Erlang-C and Erlang-A models.

The arguments below follow the proof of [15, Lemma 13.1]. We recall the
Poisson equation (3.3), or

GY fh(x) = b(x)f ′
h(x) + μf ′′

h (x) = Eh(Y (∞))− h(x), x ∈ R, h(x) ∈ H.

Furthermore, recall that ν(x) is the density of Y (∞), and satisfies

ν(x) = κ exp
( 1
μ

∫ x

0
b(y)dy

)
,

where κ is a normalizing constant. Now recall that the family of solutions
to the Poisson equation is given by (3.4), and is parametrized by constants
a1, a2 ∈ R. We fix a solution fh(x) with a2 = 0, and see that for this solution

f ′
h(x) =

1

ν(x)

∫ x

−∞

1

μ

(
Eh(Y (∞))− h(y)

)
ν(y)dy, x ∈ R.(B.1)

Observe that since ν(x) is the density of Y (∞),

∫ ∞

−∞

1

μ

(
Eh(Y (∞))− h(y)

)
ν(y)dy = 0,

which implies that

f ′
h(x) = − 1

ν(x)

∫ ∞

x

1

μ

(
Eh(Y (∞))− h(y)

)
ν(y)dy.(B.2)

We will see that to establish gradient bounds, we will have to make use of
both expressions for f ′

h(x) in (B.1) and (B.2), depending on the value of
x. It is here that the relationship between the diffusion process Y and the
random variable Y (∞) surfaces. If Eh(Y (∞)) were to be replaced by any
other constant, then (B.2) would not hold. The reason Eh(Y (∞)) is the
“correct” constant is because Y (∞) has the stationary distribution of the
diffusion process Y .

We now proceed to prove the gradient bounds. We do this first in case
when H = Lip(1) (the Wasserstein setting), and then when H = HK (the
Kolmogorov setting).
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B.1. Wasserstein gradient bounds. Fix h(x) ∈ Lip(1); without loss
of generality we assume that h(0) = 0. We now derive some equations that
will be useful to prove Lemma 3. From the form of f ′

h(x) in (B.1) and (B.2),
we have

f ′
h(x) ≤

1

μν(x)

∫ x

−∞
|y| ν(y)dy + E

∣∣Y (∞)
∣∣

μν(x)

∫ x

−∞
ν(y)dy,

f ′
h(x) ≤

1

μν(x)

∫ ∞

x
|y| ν(y)dy + E

∣∣Y (∞)
∣∣

μν(x)

∫ ∞

x
ν(y)dy.

Now by differentiating the Poisson equation (3.3), we see that for those
x ∈ R where h′(x) and b′(x) are defined,

f ′′′
h (x) =

1

μ

[
− h′(x)− b′(x)f ′

h(x)− b(x)f ′′
h (x)

]
.

By observing that b(x) = μν ′(x)/ν(x), we can rearrange the terms above
and multiply both sides by ν(x) to get

ν(x)

μ
(−h′(x)− f ′

h(x)b
′(x)) = ν(x)f ′′′

h (x) + ν ′(x)f ′′
h (x) =

(
f ′′
h (x)ν(x)

)′
.

(B.3)

Suppose we know that

lim
x→±∞

ν(x)f ′′
h (x) = 0.(B.4)

Since limx→−∞ ν(x)f ′′
h (x) = 0, we integrate (B.3) to get

f ′′
h (x) =

1

ν(x)

∫ x

−∞

1

μ
(−h′(y)− f ′

h(y)b
′(y))ν(y)dy,

and since limx→∞ ν(x)f ′′
h (x) = 0, it is also true that

f ′′
h (x) = − 1

ν(x)

∫ ∞

x

1

μ
(−h′(y)− f ′

h(y)b
′(y))ν(y)dy.

To summarize, we have just shown that provided (B.4) holds,

∣∣f ′
h(x)

∣∣ ≤ 1

μν(x)

∫ x

−∞
|y| ν(y)dy + E

∣∣Y (∞)
∣∣

μν(x)

∫ x

−∞
ν(y)dy,(B.5)

∣∣f ′
h(x)

∣∣ ≤ 1

μν(x)

∫ ∞

x
|y| ν(y)dy + E

∣∣Y (∞)
∣∣

μν(x)

∫ ∞

x
ν(y)dy,(B.6)



STEIN’S METHOD FOR STEADY-STATE DIFFUSION APPROXIMATIONS 341

f ′′
h (x) =

1

ν(x)

∫ x

−∞

1

μ
(−h′(y)− f ′

h(y)b
′(y))ν(y)dy(B.7)

= − 1

ν(x)

∫ ∞

x

1

μ
(−h′(y)− f ′

h(y)b
′(y))ν(y)dy,(B.8)

f ′′′
h (x) =

1

μ

[
− h′(x)− f ′′

h (x)b(x)− f ′
h(x)b

′(x)
]
,(B.9)

where f ′′′
h (x) is defined for all x ∈ R such that h′(x) and b′(x) exist. The

multiple bounds for f ′
h(x) are convenient, because we can choose which one

to use based on the value of x. For example, suppose ζ ≤ 0. Then when x ≤ 0,
we will use (B.5), when x ≥ −ζ we will use (B.6), and when x ∈ [0,−ζ] we
will use both (B.5) and (B.6) and choose the better bound. The same applies
to f ′′

h (x).

B.1.1. Proof of Lemma 3. The following lemma presents several bounds
that will be used to prove Lemma 3. We prove it at the end of this section.

Lemma 12. Consider the Erlang-C model (α = 0), and let ν(x) be the
density of Y (∞). Then

1

ν(x)

∫ x

−∞
ν(y)dy ≤

{√
π
2 , x ≤ 0,√
2πe

1
2
ζ2 , x ∈ [0,−ζ],

(B.10)

1

ν(x)

∫ ∞

x
ν(y)dy ≤

{√
π
2 + 1

|ζ| , x ∈ [0,−ζ],
1
|ζ| , x ≥ −ζ,

(B.11)

1

ν(x)

∫ x

−∞
|y| ν(y)dy ≤

{
1, x ≤ 0,

2e
1
2
ζ2 − 1, x ∈ [0,−ζ],

(B.12)

1

ν(x)

∫ ∞

x
|y| ν(y)dy ≤

{
2 + 1

ζ2
, x ∈ [0,−ζ],

x
|ζ| +

1
ζ2
, x ≥ −ζ,

(B.13)

|b(x)|
μν(x)

∫ x

−∞
ν(y)dy ≤ 1, x ≤ 0,(B.14)

|b(x)|
μν(x)

∫ ∞

x
ν(y)dy ≤ 2, x ≥ 0,(B.15)

E |Y (∞)| ≤ 1

|ζ| + 1.(B.16)

Proof of Lemma 3. We begin by bounding f ′
h(x) by applying Lemma 12

to (B.5) and (B.6). For x ≤ −ζ, we apply (B.10), (B.12), and (B.16) to (B.5),
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and for x ≥ 0, we apply (B.11), (B.13), and (B.16) to (B.6) to see that

μ
∣∣f ′

h(x)
∣∣ ≤ 1 +

√
π

2

(
1 +

1

|ζ|
)
≤ 2.3 + 1.3/ |ζ| , x ≤ 0,

μ
∣∣f ′

h(x)
∣∣ ≤ min

{
2e

1
2
ζ2 − 1 +

√
2πe

1
2
ζ2
(
1 +

1

|ζ|
)
,

2 +
1

ζ2
+
(√π

2
+

1

|ζ|
)(

1 +
1

|ζ|
)}

, x ∈ [0,−ζ],

μ
∣∣f ′

h(x)
∣∣ ≤ x

|ζ| +
1

ζ2
+

1

|ζ|
(
1 +

1

|ζ|
)
≤ 1

|ζ|(x+ 1 + 2/ |ζ|), x ≥ −ζ.

(B.17)

For x ∈ [0,−ζ], observe that when |ζ| ≤ 1, then

2e
1
2
ζ2 − 1 +

√
2πe

1
2
ζ2
(
1 +

1

|ζ|
)
≤ 3.3− 1 + 4.2

(
1 +

1

|ζ|
)
= 6.5 + 4.2/ |ζ| ,

and when |ζ| ≥ 1, then

2 +
1

ζ2
+
(√π

2
+

1

|ζ|
)(

1 +
1

|ζ|
)
≤ 3 + (1.3 + 1)

(
1 +

1

|ζ|
)
= 5.3 + 2.3/ |ζ| .

Therefore,

∣∣f ′
h(x)

∣∣ ≤
{

1
µ(6.5 + 4.2/ |ζ|), x ≤ −ζ,
1
µ

1
|ζ|(x+ 1 + 2/ |ζ|), x ≥ −ζ.

(B.18)

Before proceeding to bound |f ′′
h (x)| and |f ′′′

h (x)|, we first verify (B.4), or

lim
x→±∞

ν(x)f ′′
h (x) = 0.

To do so, we rearrange the Poisson equation (3.3) to get

ν(x)f ′′
h (x) = −ν(x)

b(x)

μ
f ′
h(x) +

ν(x)

μ

[
Eh(Y (∞))− h(x)

]
.

It is now obvious that

lim
x→±∞

ν(x)f ′′
h (x) → 0 = 0,

because h(x) ∈ Lip(1), the drift b(x) is piecewise linear, and f ′
h(x) is bounded

as in (B.18), but on the other hand ν(x) decays exponentially fast as x → ∞,
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and decays even faster as x → −∞. To bound |f ′′
h (x)|, we use (B.7) and

(B.8), together with the facts that ‖h′‖ ≤ 1 and

b′(x) = −μ1(x < −ζ), x ∈ R,

to see that

∣∣f ′′
h (x)

∣∣ ≤ 1

ν(x)

∫ x

−∞

1

μ

(
1 + μ

∣∣f ′
h(y)

∣∣ 1(y < −ζ)
)
ν(y)dy(B.19)

∣∣f ′′
h (x)

∣∣ ≤ 1

ν(x)

∫ ∞

x

1

μ

(
1 + μ

∣∣f ′
h(y)

∣∣ 1(y < −ζ)
)
ν(y)dy.(B.20)

We know |f ′
h(x)| is bounded as in (B.18). For x ≤ −ζ, we apply (B.10) to

(B.19) and for x ≥ 0 we apply (B.11) to (B.20) to conclude that

μ
∣∣f ′′

h (x)
∣∣ ≤

⎧
⎪⎪⎨
⎪⎪⎩

√
π
2

(
1 + 6.5 + 4.2/ |ζ|

)
, x ≤ 0,

min
{√

2πe
1
2
ζ2 ,
√

π
2 + 1

|ζ|
}(

1 + 6.5 + 4.2/ |ζ|
)
, x ∈ [0,−ζ],

1
|ζ| , x ≥ −ζ.

(B.21)

By considering separately the cases when |ζ| ≤ 1 and |ζ| ≥ 1, we see that

min
{√

2πe
1
2
ζ2 ,

√
π

2
+

1

|ζ|
}
≤ 4.2,(B.22)

and therefore,

∣∣f ′′
h (x)

∣∣ ≤
{

32
µ (1 + 1/ |ζ|), x ≤ −ζ,
1

µ|ζ| , x ≥ −ζ.
(B.23)

Lastly, we bound |f ′′′
h (x)|, which exists for all x ∈ R where h′(x) and b′(x)

exist. The fact that h(x) ∈ Lip(1) together with (B.9) tells us that

∣∣f ′′′
h (x)

∣∣ ≤ 1

μ

(
1 +
∣∣f ′′

h (x)b(x)
∣∣+
∣∣f ′

h(x)b
′(x)
∣∣ ).

For x ≥ −ζ, we use the forms of b(x) and b′(x) together with the bounds on
|f ′

h(x)| and |f ′′
h (x)| in (B.18) and (B.23) to see that

∣∣f ′′′
h (x)

∣∣ ≤ 1

μ

(
1 + μ |ζ| 1

μ |ζ|
)
.

Although tempting, it is not sufficient to use the bound on |f ′′
h (x)| in (B.21)

and the form of b(x) to bound |f ′′
h (x)b(x)| for all x ≤ −ζ. Instead, we
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multiply both sides of (B.19) and (B.20) by |b(x)| to see that

‖f ′′
h (x)b(x)‖ ≤

(
1 + sup

y≤x
μ
∣∣f ′

h(y)
∣∣ ) |b(x)|

μν(x)

∫ x

−∞
ν(y)dy, x ≤ 0,

‖f ′′
h (x)b(x)‖ ≤

(
1 + sup

y∈[x,−ζ]
μ
∣∣f ′

h(y)
∣∣ ) |b(x)|

μν(x)

∫ ∞

x
ν(y)dy, x ∈ [0,−ζ].

(B.24)

By invoking (B.14) and (B.15) together with the bound on |f ′
h(x)| from

(B.18), we conclude that

∣∣f ′′′
h (x)

∣∣ ≤ 1

μ

(
1 + 2(1 + 6.5 + 4.2/ |ζ|) + 6.5 + 4.2/ |ζ|

)
, x ≤ −ζ.

Therefore, for those x ∈ R where h′(x) and b′(x) exist,

∣∣f ′′′
h (x)

∣∣ ≤
{

1
µ(23 + 13/ |ζ|), x ≤ −ζ,
2
µ , x ≥ −ζ.

This concludes the proof of Lemma 3.

Proof of Lemma 12 . Recall that in the Erlang-C model, we set α = 0,
which makes

ζ = δ(x(∞)− n) = δ(
λ

μ
− n) < 0, b(x) =

{
−μx, x ≤ −ζ,

μζ, x ≥ −ζ.

The density of Y (∞) has the form

ν(x) =

{
a−e−

1
2
x2

, x ≤ −ζ,

a+e
−|ζ|x, x ≥ −ζ,

(B.25)

where a− and a+ are normalizing constants that make ν(x) continuous at
the point x = −ζ.

In the proof of this lemma we often rely on the fact that for any c > 0
and x ≥ 0,

(B.26) e
1
2
cx2

∫ ∞

x
e−

1
2
cy2dy ≤

∫ ∞

0
e−

1
2
cy2dy =

√
π

2c
.

One can verify that the left hand side of (B.26) peaks at x = 0 by using the
bound

(B.27)

∫ ∞

x
e−

1
2
cy2dy ≤

∫ ∞

x

cy

cx
e−

1
2
cy2dy =

e−cx2/2

cx
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to see that the derivative of the left side of (B.26) is negative for x > 0.
We now prove (B.10). When x ≤ 0, we use (B.26) and the symmetry of the

function e−
1
2
y2 to see that

1

ν(x)

∫ x

−∞
ν(y) = e

1
2
x2

∫ x

−∞
e−

1
2
y2dy ≤

√
π

2
,

and when x ∈ [0,−ζ], we use (B.26) again to get

1

ν(x)

∫ x

−∞
ν(y) = e

1
2
x2

∫ 0

−∞
e−

1
2
y2dy + e

1
2
x2

∫ x

0
e−

1
2
y2dy

≤ 2e
1
2
ζ2
∫ 0

−∞
e−

1
2
y2dy = 2

√
π

2
e

1
2
ζ2 .

We now prove (B.11). Observe that when x ≥ −ζ,

1

ν(x)

∫ ∞

x
ν(y)dy = e|ζ|x

∫ ∞

x
e−|ζ|ydy =

1

|ζ| ,

and when x ∈ [0,−ζ], we use the fact that a− = a+e
− 1

2
ζ2 together with

(B.26) to see that

1

ν(x)

∫ ∞

x
ν(y)dy =

a+
a−

e
1
2
x2

∫ ∞

−ζ
e−|ζ|ydy + e

1
2
x2

∫ −ζ

x
e−

1
2
y2dy

≤ e
1
2
ζ2e

1
2
x2
( 1

|ζ|e
−ζ2
)
+

√
π

2

≤ 1

|ζ| +
√

π

2
.

Moving on to show (B.12), when x ≤ 0 we have

1

ν(x)

∫ x

−∞
|y| ν(y)dy = e

1
2
x2

∫ x

−∞
−ye−

1
2
y2dy = 1,

and when x ∈ [0,−ζ],

1

ν(x)

∫ x

−∞
|y| ν(y)dy = e

1
2
x2

∫ 0

−∞
−ye−

1
2
y2dy + e

1
2
x2

∫ x

0
ye−

1
2
y2dy

= e
1
2
x2

+ e
1
2
x2

(1− e−
1
2
x2

).

We now prove (B.13). When x ∈ [0,−ζ], we again use that a− = a+e
− 1

2
ζ2

to obtain

1

ν(x)

∫ ∞

x
|y| ν(y)dy = e

1
2
x2

∫ −ζ

x
ye−

1
2
y2dy +

a+
a−

e
1
2
x2

∫ ∞

−ζ
ye−|ζ|ydy
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= e
1
2
x2

(e−
1
2
x2 − e−

1
2
ζ2) + e

1
2
ζ2e

1
2
x2
(
1 +

1

ζ2

)
e−ζ2

≤ 2 +
1

ζ2
.

When x ≥ −ζ,

1

ν(x)

∫ ∞

x
|y| ν(y)dy = e|ζ|x

∫ ∞

x
ye−|ζ|ydy =

x

|ζ| +
1

ζ2
.

We move on to prove (B.14) and (B.15). When x ≤ 0, we use (B.27) to see
that

|b(x)|
μν(x)

∫ x

−∞
ν(y)dy = −xe

x2

2

∫ x

−∞
e−

1
2
y2dy ≤ −xe

x2

2

(
− 1

x
e−

1
2
x2
)
= 1.

When x ∈ [0,−ζ], we also use the fact that a+ = a−e
1
2
ζ2 to get

|b(x)|
μν(x)

∫ ∞

x
ν(y)dy = xe

x2

2

∫ −ζ

x
e−

1
2
y2dy +

a+
a−

xe
x2

2

∫ ∞

−ζ
e−|ζ|ydy

≤ xe
x2

2

(1
x
e−

1
2
x2
)
+ e

1
2
ζ2xe

1
2
x2
( 1

|ζ|e
−ζ2
)

= 1 +
x

|ζ|e
1
2
(x2−ζ2) ≤ 2.

When x ≥ −ζ,

|b(x)|
μν(x)

∫ ∞

x
ν(y)dy = |ζ| e|ζ|x

∫ ∞

x
e−|ζ|ydy = 1.

Lastly we prove (B.16). Letting V (x) = x2, and recalling the form of GY

from (3.2), we consider

GY V (x) = 2xμ(ζ + (x+ ζ)−) + 2μ

= − 2μx21(x < −ζ)− 2xμ |ζ| 1(x ≥ −ζ) + 2μ.(B.28)

By the standard Foster-Lyapunov condition (see [47, Theorem 4.3] for ex-
ample), this implies that

2E
[
(Y (∞))21(Y (∞) < −ζ)

]
+ 2 |ζ|E

[
Y (∞)1(Y (∞) ≥ −ζ)

]
≤ 2,

and in particular,

E
[
Y (∞)1(Y (∞) ≥ −ζ)

]
≤ 1

|ζ| ,

E

[∣∣Y (∞)1(Y (∞) < −ζ)
∣∣
]
≤
√
E
[
(Y (∞))21(Y (∞) < −ζ)

]
≤ 1,

where we applied Jensen’s inequality in the second set of inequalities. This
concludes the proof of Lemma 12.
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B.2. Erlang-A Wasserstein gradient bounds. Below we state the
Erlang-A gradient bounds, the proof of which is similar to that of Lemma 3.
We only outline the necessary steps needed for a proof, and emphasize all
the differences with the proof of Lemma 3. Furthermore, we do not seek
an explicit value for the constant C below, although it can certainly be
recovered.

Lemma 13. Consider the Erlang-A model (α > 0). The solution to the
Poisson equation fh(x) is twice continuously differentiable, with an abso-
lutely continuous second derivative. Fix a solution in (3.4) with parameter
a2 = 0. Then there exists a constant C > 0 independent of λ, n, μ, and α
such that for all n ≥ 1, λ > 0, μ > 0, and α > 0 satisfying 0 < R ≤ n (an
underloaded system),

∣∣f ′
h(x)

∣∣ ≤

⎧
⎨
⎩
C
(√

µ
α ∧ 1

|ζ| + 1
)

1
µ , x ≤ −ζ,

C
(
µ
α +

√
µ
α ∧ 1

|ζ| + 1
)

1
µ , x ≥ −ζ,

(B.29)

∣∣f ′′
h (x)

∣∣ ≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C
(√

µ
α ∧ 1

|ζ| + 1
)

1
µ , x ≤ 0,

C
[(

α
µ +

√
α
µ + 1

)(√
µ
α ∧ 1

|ζ|

)
+ 1
]

1
µ , x ∈ [0,−ζ],

C
(
α
µ +

√
α
µ + 1

)(√
µ
α ∧ 1

|ζ|

)
1
µ , x ≥ −ζ,

(B.30)

and for those x ∈ R where f ′′′
h (x) exists,

∣∣f ′′′
h (x)

∣∣ ≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C
(√

µ
α ∧ 1

|ζ| + 1
)

1
µ , x ≤ 0,

C
(√

µ
α ∧ 1

|ζ| +
α
µ +

√
α
µ + 1

)
1
µ , x ∈ [0,−ζ],

C
(
α
µ +

√
α
µ + 1

)
1
µ , x ≥ −ζ,

(B.31)

and for all n ≥ 1, λ > 0, μ > 0, and α > 0 satisfying n ≤ R (an overloaded
system),

∣∣f ′
h(x)

∣∣ ≤

⎧
⎨
⎩
C
(

1
µ + 1√

α
1√
µ + ζ

µ ∧ 1
α

)
, x ≤ −ζ,

C
(

1
µ + 1√

α
1√
µ + 1

α

)
, x ≥ −ζ,

(B.32)

∣∣f ′′
h (x)

∣∣ ≤

⎧
⎨
⎩
C
(

1
µ + 1√

α
1√
µ + ζ

µ ∧ 1
α

)
, x ≤ −ζ,

C
(
α
µ +

√
α
µ + 1

)
1
µ |x|+ C

(
1
µ + 1√

α
1√
µ

)
, x ≥ −ζ,

(B.33)
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and for those x ∈ R where f ′′′
h (x) exists,

∣∣f ′′′
h (x)

∣∣ ≤ C

μ

(
1 +

√
μ

α
+ ζ ∧ μ

α

)
, x ≤ −ζ,

(B.34)

∣∣f ′′′
h (x)

∣∣ ≤ C

μ

(α
μ
+

√
α

μ
+ 1
)(

1 +
α

μ
x2
)
+

C

μ

(α
μ
+

√
α

μ

)
|x| , x ≥ −ζ,

(B.35)

∣∣f ′′′
h (x)

∣∣ ≤ C

μ

(α
μ
+

√
α

μ
+ 1
)
+

C

μ

(α
μ
+

√
α

μ
+ 1
)2

|x| , x ≥ −ζ.

(B.36)

B.2.1. Proof outline for Lemma 13: The underloaded system. To prove
Lemma 13, we need the following version of Lemma 12.

Lemma 14. Consider the Erlang-A model (α > 0) with 0 < R ≤ n, and
let ν(x) be the density of Y (∞). Then

1

ν(x)

∫ x

−∞
ν(y)dy ≤

{√
π
2 , x ≤ 0,

√
2πe

ζ2

2 , x ∈ [0,−ζ],
(B.37)

1

ν(x)

∫ ∞

x
ν(y)dy ≤

⎧
⎨
⎩

√
π
2 +
√

π
2
µ
α ∧ 1

|ζ| , x ∈ [0,−ζ],
√

π
2
µ
α ∧ 1

|ζ| , x ≥ −ζ,
(B.38)

1

ν(x)

∫ x

−∞
|y| ν(y)dy ≤

{
1, x ≤ 0,

2e
ζ2

2 − 1, x ∈ [0,−ζ],
(B.39)

1

ν(x)

∫ ∞

x
|y| ν(y)dy ≤

{
2 + 1

ζ2
, x ∈ [0,−ζ],

1 + µ
α , x ≥ −ζ,

(B.40)

|b(x)|
μν(x)

∫ x

−∞
ν(y)dy ≤ 1, x ≤ 0,(B.41)

|b(x)|
μν(x)

∫ ∞

x
ν(y)dy ≤ 2, x ≥ 0,(B.42)

E |Y (∞)| ≤ 1 +

√
μ

α
∧ 1

|ζ| .(B.43)

To prove this lemma, we first observe that

b(x) =

{
−μx, x ≤ −ζ,

−α(x+ ζ) + μζ, x ≥ −ζ,
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and

ν(x) =

{
a−e−

1
2
x2

, x ≤ −ζ,

a+e
− α

2µ(x+ζ− µ
α
ζ)

2

, x ≥ −ζ,
(B.44)

where a− and a+ are normalizing constants that make ν(x) continuous and
integrate to one. By comparing the density in (B.44) to (B.25) for the region
x ≤ −ζ, we immediately see that (B.37), (B.39) and (B.41) are restatements
of (B.10), (B.12), and (B.14) from Lemma 12, and hence have already been
established. The proof of (B.43) involves applying GY to the Lyapunov
function V (x) = x2 to see that

GY V (x) = − 2μx21(x < −ζ) + 2
(
− αx2 + xζ(μ− α)

)
1(x ≥ −ζ) + 2μ

≤ − 2μx21(x < −ζ)− 2(α ∧ μ)x21(x ≥ −ζ) + 2μ,

and

GY V (x) = − 2μx21(x < −ζ) + 2
(
− αx(x+ ζ)− μ |ζ|x

)
1(x ≥ −ζ) + 2μ

≤ − 2μx21(x < −ζ)− 2μ |ζ|x1(x ≥ −ζ) + 2μ.

One can compare these inequalities to (B.28) in the proof of Lemma 12 to
see that (B.43) follows by the Foster-Lyapunov condition.

We now go over the proofs of (B.38), (B.40) and (B.42). We first prove
(B.38) when x ∈ [0,−ζ]. Observe that

1

ν(x)

∫ ∞

x
ν(y)dy = e

1
2
x2

∫ |ζ|

x
e−

1
2
y2dy +

a+
a−

e
1
2
x2

∫ ∞

|ζ|
e
− α

2µ(y+ζ−µ
α
ζ)

2

dy

≤ e
1
2
x2

∫ ∞

x
e−

1
2
y2dy + e

1
2
(x2−ζ2)e

α
2µ(

µ
α
ζ)

2
∫ ∞

µ
α
|ζ|

e
− α

2µ
y2
dy

≤
√

π

2
+

√
π

2

μ

α
∧ 1

|ζ|(B.45)

where in the first inequality we used a change of variables and the fact that

a+/a− = e−ζ2/2e
α
2µ

( µ
α
ζ)2

, and in the last inequality we used both (B.26)

and (B.27), and the fact that e
1
2
(x2−ζ2) ≤ 1. The rest of (B.38) is proved

identically. We now prove (B.40). When x ∈ [0,−ζ],

1

ν(x)

∫ ∞

x
|y| ν(y)dy

= e
1
2
x2

∫ −ζ

x
ye−

1
2
y2dy +

a+
a−

e
1
2
x2

∫ ∞

−ζ
ye

− α
2µ

(y+ζ− µ
α
ζ)2

dy
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= (1− e
1
2
(x2−ζ2)) + e

α
2µ

( µ
α
ζ)2

e
1
2
(x2−ζ2)

∫ ∞

−ζ
ye

− α
2µ

(y+ζ− µ
α
ζ)2

dy

≤ 1 + e
α
2µ

( µ
α
ζ)2
∫ ∞

−ζ
ye−

α
2µ

(
(y+ζ)2−2 µ

α
(y+ζ)ζ+( µ

α
ζ)2
)
dy

≤ 1 +

∫ ∞

−ζ
ye(y+ζ)ζdy = 1 + 1 +

1

ζ2
,

and when x ≥ −ζ,

1

ν(x)

∫ ∞

x
|y| ν(y)dy = e

α
2µ

(x+ζ− µ
α
ζ)2
∫ ∞

x
ye

− α
2µ

(y+ζ− µ
α
ζ)2

dy

= e
α
2µ

(x+ζ− µ

α
ζ)2
∫ ∞

x+ζ− µ

α
ζ
ye

− α
2µ

y2
dy

+ (1− μ/α) |ζ| e
α
2µ

(x+ζ− µ
α
ζ)2
∫ ∞

x+ζ− µ
α
ζ
e−

α
2µ

y2dy

≤ μ

α
+ |ζ| 1

α
µ (x+ ζ − µ

αζ)
≤ μ

α
+ 1,

where in the last inequality we used (B.27). Lastly, the argument for (B.42)
is very similar to the chain of inequalities in (B.45), and we leave the details
to the reader.

We now describe how to prove Lemma 13. To prove (B.29), we apply
Lemma 14 to (B.5) and (B.6) just like in (B.17) of Lemma 3. Using these
bounds on f ′

h(x), we argue (B.4) just like in the proof of Lemma 3. We now
describe how to prove (B.30). When x ≤ 0, we apply (B.29) and (B.37)
to (B.7), and when x ≥ −ζ we apply (B.29) and (B.38) to (B.8). The last
region, when x ∈ [0,−ζ], has to be handled differently depending on the size
of |ζ|. When |ζ| ≤ 1, we just apply (B.29) and (B.37) to (B.7). However,
when |ζ| ≥ 1, we manipulate (B.8) to see that

f ′′
h (x) = − 1

ν(x)

∫ −ζ

x

1

μ
(−h′(y) + μf ′

h(y))ν(y)dy(B.46)

− ν(−ζ)

ν(x)

1

ν(−ζ)

∫ ∞

−ζ

1

μ
(−h′(y) + αf ′

h(y))ν(y)dy.(B.47)

We then apply (B.29), (B.38), and the fact that ν(−ζ)/ν(x) ≤ 1 to conclude
(B.30). The proof of (B.31) relies on (B.9), which tells us that

∣∣f ′′′
h (x)

∣∣ ≤ 1

μ

[
1 +
∣∣f ′′

h (x)b(x)
∣∣+
∣∣f ′

h(x)b
′(x)
∣∣ ].
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Bounding |f ′
h(x)b

′(x)| only relies on (B.29). The term |f ′′
h (x)b(x)| is bounded

similarly to the way it is done in Lemma 3; see for instance (B.24). Namely,
for x ≤ 0 we multiply both sides of (B.7) by b(x) and apply (B.29) with
(B.41), and when x ≥ −ζ we multiply both sides of (B.8) by b(x) and apply
(B.29) with (B.42). Lastly, when x ∈ [0,−ζ], we manipulate (B.8) to get

b(x)f ′′
h (x) = − b(x)

ν(x)

∫ −ζ

x

1

μ
(−h′(y) + μf ′

h(y))ν(y)dy

− b(x)ν(−ζ)

ν(x)b(−ζ)

b(−ζ)

ν(−ζ)

∫ ∞

−ζ

1

μ
(−h′(y) + αf ′

h(y))ν(y)dy.

We then apply (B.29), (B.42), and the fact that
∣∣ b(x)ν(−ζ)
ν(x)b(−ζ)

∣∣ ≤ 1 to get the

required bounds on |b(x)f ′′
h (x)| and conclude (B.31). This concludes the

proof outline for Lemma 13.

B.2.2. Proof outline for Lemma 13: The overloaded system. For the over-
loaded case in Lemma 13, we again need the following version of Lemma 12.

Lemma 15. Consider the Erlang-A model (α > 0) with R ≥ n, and let
ν(x) be the density of Y (∞). Then

1

ν(x)

∫ x

−∞
ν(y)dy ≤

⎧
⎨
⎩

√
π
2 ∧ µ

αζ , x ≤ −ζ,
√

π
2 +
√

π
2
µ
α ∧ ζ, x ∈ [−ζ, 0],

(B.48)

1

ν(x)

∫ ∞

x
ν(y)dy ≤

⎧
⎨
⎩

√
2π µ

αe
α
2µ

ζ2
, x ∈ [−ζ, 0],

√
π
2
µ
α , x ≥ 0,

(B.49)

1

ν(x)

∫ x

−∞
|y| ν(y)dy ≤

{
1 +
√

π
2 ζ ∧

µ
α , x ≤ −ζ,

µ
α + 1, x ∈ [−ζ, 0],

(B.50)

1

ν(x)

∫ ∞

x
|y| ν(y)dy ≤

{
2µ
αe

α
2µ

ζ2
, x ∈ [−ζ, 0],

µ
α , x ≥ 0,

(B.51)

|b(x)|
μν(x)

∫ x

−∞
ν(y)dy ≤ 2, x ≤ 0,(B.52)

|b(x)|
μν(x)

∫ ∞

x
ν(y)dy ≤ 1, x ≥ 0,(B.53)

E |Y (∞)| ≤
√

μ

α
+ 1.(B.54)
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To prove this lemma, we first observe that

b(x) =

{
−μ(x+ ζ) + αζ, x ≤ −ζ,

−αx, x ≥ −ζ,

and

ν(x) =

⎧
⎨
⎩
a−e

− 1
2

(
x+ζ−α

µ
ζ
)2
, x ≤ −ζ,

a+e
− α

2µ
x2

, x ≥ −ζ,
(B.55)

where a− and a+ are normalizing constants that make ν(x) continuous and
integrate to one. Observe that in the region x ≥ −ζ, the density in (B.55)
looks very similar to the density in (B.25) in the region x ≤ −ζ. Hence, one
can check that the arguments needed to prove Lemma 15’s (B.49), (B.51),
and (B.53) are nearly identical to the arguments used to prove Lemma 12’s
(B.10), (B.12), and (B.14), respectively.

The proof of (B.54) involves applying GY to the Lyapunov function
V (x) = x2 to see that

GY V (x) = − 2αx21(x > −ζ) + 2
(
− μx2 + xζ(α− μ)

)
1(x ≤ −ζ) + 2μ

≤ − 2αx21(x > −ζ)− 2(α ∧ μ)x21(x ≤ −ζ) + 2μ.

One can compare this inequality to (B.28) in the proof of Lemma 12 to see
that (B.54) follows by the Foster-Lyapunov condition.

We now describe how to prove (B.48), (B.50), and (B.52). To prove (B.48)
we use a series of arguments similar to those in (B.45), where we proved
(B.38) of Lemma 14. We now prove (B.50). When x ≤ −ζ,

1

ν(x)

∫ x

−∞
|y| ν(y)dy = e

1
2
(x+ζ−α

µ
ζ)2
∫ x

−∞
−ye−

1
2
(y+ζ−α

µ
ζ)2dy

= e
1
2
(x+ζ−α

µ
ζ)2
∫ x+ζ−α

µ
ζ

−∞
−ye−

1
2
y2dy

+ (1− α/μ)ζe
1
2
(x+ζ−α

µ
ζ)2
∫ x+ζ−α

µ
ζ

−∞
e−

1
2
y2dy

≤ 1 + ζ
(√π

2
∧ 1

α
µζ − x− ζ

)
≤ 1 +

√
π

2
ζ ∧ μ

α
,(B.56)

where in the last inequality we used both (B.26) and (B.27). For x ∈ [−ζ, 0],

1

ν(x)

∫ x

−∞
|y| ν(y)dy
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=
a−
a+

e
α
2µ

x2
∫ −ζ

−∞
−ye

− 1
2
(y+ζ−α

µ
ζ)2

dy + e
α
2µ

x2
∫ x

−ζ
−ye

α
2µ

y2
dy.

Repeating arguments from (B.56) and using a−/a+ = e−
α
2µ

ζ2e
1
2
(α
µ
ζ)2 , we can

show that the first term above satisfies

a−
a+

e
α
2µ

x2
∫ −ζ

−∞
−ye−

1
2
(y+ζ−α

µ
ζ)2dy ≤ e

α
2µ

(x2−ζ2)
(
1 +

μ

α

)
,

and by computing the second term explicitly, we conclude that

1

ν(x)

∫ x

−∞
|y| ν(y)dy ≤ e

α
2µ

(x2−ζ2)
(
1 +

μ

α

)
+

μ

α

(
1− e

α
2µ

(x2−ζ2))

≤ 1 +
μ

α
,

which proves (B.50). Lastly, it is not hard to see that (B.52) follows from a
straightforward application of (B.27).

Having argued Lemma 15, we now use it to prove the bounds in (B.32)–
(B.36). To prove (B.32), we apply Lemma 15 to (B.5) and (B.6) just like
in (B.17) of Lemma 3. Using these bounds on f ′

h(x), we argue (B.4) just
like in the proof of Lemma 3. We now describe how to prove (B.33). When
x ≤ −ζ, we apply (B.32) and (B.48) to (B.7). When x ≥ −ζ, instead of
using the expressions for f ′′

h (x) in (B.7) and (B.8) like we would usually do,
we instead apply (B.32) to the bound

∣∣f ′′
h (x)

∣∣ ≤ 1

μ

∣∣f ′
h(x)

∣∣ |b(x)|+ 1

μ

(
|x|+ E |Y (∞)|

)
, x ∈ R,

which follows by rewriting the Poisson equation (3.3) and using the Lipschitz
property of h(x). We now prove (B.34)–(B.36). We recall (B.9) to see that

∣∣f ′′′
h (x)

∣∣ ≤ 1

μ

[
1 +
∣∣f ′′

h (x)b(x)
∣∣+
∣∣f ′

h(x)b
′(x)
∣∣ ].

Bounding |f ′
h(x)b

′(x)| is simple, and only relies on (B.32). The other term,
|f ′′

h (x)b(x)|, is bounded as follows. To prove (B.34), i.e. when x ≤ −ζ, we
multiply both sides of (B.7) by b(x), and apply (B.32) and (B.52) to the
result. When x ≥ −ζ then

∣∣f ′′
h (x)b(x)

∣∣ = α |x|
∣∣f ′′

h (x)
∣∣ ,

and the difference between (B.35) and (B.36) lies in the way that the quan-
tity above is bounded. To get (B.35), we simply apply the bounds on f ′′

h (x)
from (B.33) to the right hand side above.
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To prove (B.36), we will first argue that

∣∣f ′′′
h (x)

∣∣ ≤

⎧
⎨
⎩

C
µ

(
α
µ +

√
α
µ + 1

)
+ C

µ

(
α
µ +

√
α
µ + 1

)2
|x| , x ∈ [−ζ, 0],

C
µ

(
α
µ +

√
α
µ + 1

)
, x ≥ 0,

(B.57)

where C is some positive constant independent of everything else; this will
imply (B.36). The only difference between the proof of (B.57) and the bound
on f ′′′

h (x) in (B.35) is in how |f ′′
h (x)b(x)| is bounded; we now describe the

different way to bound |f ′′
h (x)b(x)|. When x ≥ 0, we multiply both sides of

(B.8) by b(x) and use the bounds in (B.32) and (B.53) to bound |f ′′
h (x)b(x)|.

When x ∈ [−ζ, 0], we want to prove that

∣∣f ′′
h (x)

∣∣ ≤ C

μ

(α
μ
+

√
α

μ
+ 1
)(

1 +

√
μ

α

)
+

C

μ

(
ζ ∧ μ2

α2ζ

)
,(B.58)

which, after considering separately the cases when ζ ≤ μ/α and ζ ≥ μ/α,
implies that

∣∣f ′′
h (x)

∣∣ ≤ C

μ

(α
μ
+

√
α

μ
+ 1
)(

1 +

√
μ

α

)
+

C

α
.

We can then use this fact to bound |f ′′
h (x)b(x)| = α |x| |f ′′

h (x)|. To prove
(B.58) for ζ ≤

√
μ/α, we bound (B.8) using (B.32) and (B.49). To prove

(B.58) for ζ ≥
√
μ/α, we bound (B.7) using (B.32) and (B.48). We point

out that to bound (B.7) we need to perform a manipulation similar to the
one in (B.47). This concludes the proof outline for the overloaded case.

B.3. Kolmogorov gradient bounds: Proof of Lemmas 4 and 5.

For the remainder of this section, we take H = HK in (3.3). With this
choice of test functions, any solution to the Poisson equation will have a
discontinuity in its second derivative, which makes the gradient bounds for
it differ from the Wasserstein setting. Fix a ∈ R and consider the Poisson
equation

GY fa(x) = b(x)f ′
a(x) + μf ′′

a (x) = FY (a)− 1(−∞,a](x),

where FY (x) is the distribution function of Y (∞). If fa(x) is a solution the
Poisson equation with a2 = 0, then just as in (B.1) and (B.2),

f ′
a(x) =

1

μν(x)

∫ x

−∞

(
FY (a)− 1(−∞,a](y)

)
ν(y)dy,
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f ′
a(x) = − 1

μν(x)

∫ ∞

x

(
FY (a)− 1(−∞,a](y)

)
ν(y)dy,

which immediately implies that

∣∣f ′
a(x)

∣∣ ≤ 1

μν(x)
min

{∫ x

−∞
ν(y)dy,

∫ ∞

x
ν(y)dy

}
.

Furthermore,

f ′′
a (x) =

1

μ

[
FY (a)− 1(−∞,a](x)− b(x)f ′

a(x)
]
.

We now prove the Kolmogorov gradient bounds for the Erlang-C model.

Proof of Lemma 4. First of all, by (B.10) and (B.11),

μ
∣∣f ′

a(x)
∣∣ ≤

⎧
⎪⎪⎨
⎪⎪⎩

√
π
2 , x ≤ 0,

min
{√

2πe
1
2
ζ2 ,
√

π
2 + 1

|ζ|
}
, x ∈ [0,−ζ],

1
|ζ| , x ≥ −ζ,

(B.59)

and (B.22) implies that

min
{√

2πe
1
2
ζ2 ,

√
π

2
+

1

|ζ|
}
≤ 5,

which proves the bounds for f ′
a(x). Second, (B.14) and (B.15) imply that

for all x ∈ R,

∣∣f ′′
a (x)

∣∣ ≤ 1

μ

[
1 +

|b(x)|
μν(x)

min
{∫ x

−∞
ν(y)dy,

∫ ∞

x
ν(y)dy

}]
≤ 3/μ,(B.60)

where f ′′
a (x) is understood to be the left derivative at the point x = a.

Proof of Lemma 5. The proof of this lemma is almost identical to the
proof of Lemma 4. By using the analogues of (B.14) and (B.15) from Lem-
mas 14 and 15, its not hard to check that (B.60) holds for the Erlang-A
model as well. To prove the bounds on f ′

a(x), we obtain inequalities similar
to (B.59) by using analogues of (B.10) and (B.11) from Lemmas 14 and
15. These inequalities will imply (5.3) and (5.4) once we consider in them
separately the cases when |ζ| ≤ 1 and |ζ| ≥ 1.

APPENDIX C: PROOF OUTLINES OF ERLANG-A THEOREMS

Sections C.1 and C.2 contain an outline for the proofs of Theorems 2 and
4, respectively.
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C.1. Outline for Theorem 2. Proving Theorem 2 consists of bound-
ing the four error terms in (3.10). Since the procedure is very similar to the
proof of Theorem 1, we will only outline which gradient and moment bounds
need to be used to bound each error term.

We start with the underloaded case, when R ≤ n. To bound the first
term in (3.10), we use moment bounds (A.9), (A.10), and (A.13), together
with the gradient bounds in (B.30). For the second and third terms, we use
moment bound (A.15) and the gradient bounds in (B.31). For the fourth
term, we use moment bounds (A.9)–(A.13), and the gradient bounds in
(B.31).

We now prove the overloaded case, when R ≥ n. To bound the first term
in (3.10), we use moment bounds (A.16)–(A.23), together with the gradient
bounds in (B.33). For the second and third terms, we use moment bounds
(A.18),(A.19), and (A.24), together with the gradient bounds in (B.34) and
(B.35). For the fourth term, we use moment bounds (A.16)–(A.23), and
gradient bounds in (B.34) and (B.36).

C.2. Outline for Theorem 4. The proof of this theorem is nearly
identical to the proof of Theorem 3. Therefore, we only outline the key steps
and differences. The goal is to obtain a version of (5.11), from which the
theorem follows by applying Lemmas 8 and 9. To get a version of (5.11), we
bound each of the terms in (5.8), just like we did in the proof of Theorem 3.
The proof varies between the underloaded and overloaded cases.

We begin with the underloaded case (1 ≤ R ≤ n). To bound the first term
in (5.8), we use moment bounds (A.9), (A.11), and (A.13), together with
gradient bound (5.5). For the second and third terms in (5.8) we use the
gradient bound in (5.3). For the fourth error term, we use gradient bound
(5.3), and moment bounds (A.8), (A.11), and

E

[(
b(X̃(∞))

)2
1(X̃(∞) ≥ −ζ)

]

= α2
E

[(
X̃(∞) + ζ

)2
1(X̃(∞) ≥ −ζ)

]
+ μ2ζ2P(X̃(∞) ≥ −ζ)

+ 2αμ |ζ|E
[
(X̃(∞) + ζ)1(X̃(∞) ≥ −ζ)

]

≤ α2 1

3

(μ
α
δ2 +

μ

α
4 + δ2

)
+ μ2ζ2P(X̃(∞) ≥ −ζ)

+ 2αμ
(δ2
4

α

μ
+

δ2

4
+ 1
)
,

where the last inequality follows from moment bounds (A.12) and (A.14).
In the overloaded case (n ≤ R), to bound the first term in (5.8) we use

moment bounds (A.16), (A.19), and (A.22) with gradient bound (5.5). To
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bound the second and third terms in (5.8) we use gradient bound (5.4). To
bound the fourth term in (5.8), we use gradient bound (5.5), with moment
bounds (A.18) and

E

[(
b(X̃(∞))

)2
1(X̃(∞) ≤ −ζ)

]

= μ2
E

[(
X̃(∞) + ζ

)2
1(X̃(∞) ≤ −ζ)

]
+ α2ζ2P(X̃(∞) ≤ −ζ)

+ 2αμζE
[∣∣(X̃(∞) + ζ)1(X̃(∞) ≤ −ζ)

∣∣
]

≤ μ2
(δ2
4

α

μ
+ 1
)
+ α2

(δ2
4

+
μ

α

)
+ 2αμ

(δ2
4

+ 1
)
,

where the last inequality follows from moment bounds (A.17), (A.20), and
(A.21).

APPENDIX D: MISCELLANEOUS LEMMAS

This appendix proves Lemmas 1, 6, 7, and 10.

D.1. Proof of Lemma 1.

Proof of Lemma 1. Let f(x) : R → R satisfy |f(x)| ≤ C(1 + x)2. A
sufficient condition to ensure that

E
[
GX̃f(X̃(∞))

]
= 0

is given by [36, Proposition 1.1] (alternatively, see [26, Proposition 3]).
Namely, we require that

E

[∣∣GX̃(X̃(∞), X̃(∞))f(X̃(∞))
∣∣
]
< ∞,(D.1)

where GX̃(x, x) is the diagonal entry of the generator matrix GX̃ corre-
sponding to state x.

We begin with the Erlang-C model, where the transition rates of the
CTMC are bounded by λ + nμ. Since |f(x)| ≤ C(1 + x)2, it suffices to
show that E(X̃(∞))2 < ∞, or that E(X(∞))2 < ∞, where X(∞) has the
stationary distribution of the CTMC X. Consider the function V (k) = k3,
where k ∈ Z+. Let GX be the generator of X, which is a simple birth death
process with constant birth rate λ and departure rate μ(k ∧ n) in state
k ∈ Z+. Then for k ≥ n,

GXV (k) = λ((k + 1)3 − k3) + nμ((k − 1)3 − k3)
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= λ(3k2 + 3k + 1) + nμ(−3k2 + 3k − 1)

= − 3k2(nμ− λ) + 3k(λ+ nμ) + (λ− nμ).(D.2)

It is not hard to see that there exists some k0 ∈ Z+, and a constant c > 0
(that depends on λ, n, and μ), such that for all k ≥ k0,

−3k2(nμ− λ) + 3k(λ+ nμ) ≤ −ck2.(D.3)

We combine (D.2)–(D.3) to conclude that there exists some constant d > 0
(that depends on λ, n, and μ) satisfying

GXV (x) ≤ −cx2 + d1(k < (k0 ∨ n)),

and invoking [47, Theorem 4.3], we see that E(X(∞))2 < ∞.
The case of the Erlang-A model is not very different. When α > 0, the

transition rates of the CTMC depend linearly on its state. Hence, to satisfy
(D.1) we need to show that E(X(∞))3 < ∞. This is readily proven by
repeating the procedure above with the Lyapunov function V (k) = k4, and
we omit the details.

D.2. Proof of Lemma 6.

Proof of Lemma 6. We let FW (w) and FX̃(x) be the distribution func-

tions of W and X̃(∞), respectively. For any a ∈ R, let ã = δ(a−x(∞)). We
want to show that

P(ã− δ < X̃(∞) ≤ ã+ δ) = FX̃(ã+ δ)− FX̃(ã− δ)

≤ 2δω(FW ) + dK(X̃(∞),W ) + 9δ2 + 8δ4.(D.4)

Define

k∗ = inf{k ≥ 0 : νk ≥ νj , for all j �= k}.

Then for any ã ∈ R,

FX̃(ã+ δ)− FX̃(ã− δ) ≤ 2νk∗ ,

because X̃(∞) takes at most two values in the interval (ã−δ, ã+δ]. Observe
that by the flow balance equations, we know that for any k ∈ Z+,

νk =
d(k + 1)

λ
νk+1.
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Since k∗ is the maximizer of {νk}, we know that

d(k∗) ≤ λ ≤ d(k∗ + 1) ≤ λ+ μ,

where in the last inequality we have used the fact that the increase in depar-
ture rate between state k∗ and k∗+1 is at most μ. Likewise, d(k∗+i) ≤ λ+iμ
for i = 2, 3. Hence,

νk∗ =
d(k∗ + 1)

λ
νk∗+1 ≤

(
1 +

μ

λ

)
νk∗+1 ≤ νk∗+1 + δ2,

νk∗ =
d(k∗ + 1)

λ

d(k∗ + 2)

λ
νk∗+2

≤ (1 + δ2)(1 + 2δ2)νk∗+2 ≤ νk∗+2 + 3δ2 + 2δ4,

νk∗+1 =
d(k∗ + 2)

λ

d(k∗ + 3)

λ
νk∗+3

≤ (1 + 2δ2)(1 + 3δ2)νk∗+3 ≤ νk∗+3 + 5δ2 + 6δ4,

which implies that for any ã ∈ R,

FX̃(ã+ δ)− FX̃(ã− δ) ≤ 2νk∗ ≤ νk∗ + νk∗+1 + δ2

= FX̃(k̃∗ + δ)− FX̃(k̃∗ − δ) + δ2.

There are now 4 cases to consider, with the first three being simple to
handle. Recall that ω(FW ) is the modulus of continuity of FW (w).

1. If FW (k̃∗ − δ) ≤ FX̃(k̃∗ − δ) and FW (k̃∗ + δ) ≥ FX̃(k̃∗ + δ), then

FX̃(k̃∗ + δ)− FX̃(k̃∗ − δ) ≤ FW (k̃∗ + δ)− FW (k̃∗ − δ) ≤ 2δω(FW ).

(D.5)

2. If FW (k̃∗ − δ) ≤ FX̃(k̃∗ − δ) but FW (k̃∗ + δ) < FX̃(k̃∗ + δ), then

FX̃(k̃∗ + δ)− FX̃(k̃∗ − δ)

≤ FX̃(k̃∗ + δ)− FW (k̃∗ + δ) + FW (k̃∗ + δ)− FW (k̃∗ − δ)

≤ 2δω(FW ) + dK(X̃(∞),W ).(D.6)

3. Similarly, if FW (k̃∗ − δ) > FX̃(k̃∗ − δ) and FW (k̃∗ + δ) ≥ FX̃(k̃∗ + δ),
then

FX̃(k̃∗ + δ)− FX̃(k̃∗ − δ)

≤ FW (k̃∗ + δ)− FW (k̃∗ − δ) + FW (k̃∗ − δ)− FX̃(k̃∗ − δ)

≤ 2δω(FW ) + dK(X̃(∞),W ).(D.7)



360 A. BRAVERMAN, J. G. DAI, AND J. FENG

4. Suppose FW (k̃∗− δ) > FX̃(k̃∗− δ) and FW (k̃∗+ δ) < FX̃(k̃∗+ δ), then
we need to use a different approach. We know that

FX̃(k̃∗ + δ)− FX̃(k̃∗ − δ) = νk∗ + νk∗+1

≤ νk∗+2 + νk∗+3 + 8δ2 + 8δ4

= FX̃(k̃∗ + 3δ)− FX̃(k̃∗ + δ) + 8δ2 + 8δ4.

Since FW (k̃∗ + δ) ≤ FX̃(k̃∗ + δ), we are either in case 1 or 2 for

FX̃(k̃∗ + 3δ)− FX̃(k̃∗ + δ), and hence we have

FX̃(k̃∗ + 3δ)− FX̃(k̃∗ + δ) ≤ 2δω(FW ) + dK(X̃(∞),W ).

This proves (D.4), concluding the proof of this lemma.

D.3. Proof of Lemma 7 .

Proof of Lemma 7. In the Erlang-C model,

ν(x) =

{
a−e−

1
2
x2

, x ≤ −ζ,

a+e
−|ζ|x, x ≥ −ζ.

(D.8)

To bound this density, we need to bound a− and a+. We know that ν(x)
must integrate to one, which implies that

a−

∫ −ζ

−∞
e−

1
2
y2dy + a+

∫ ∞

−ζ
e−|ζ|ydy = 1

Furthermore, since ν(x) is continuous at x = −ζ,

a−e
− 1

2
ζ2 = a+e

−ζ2 .

Combining these two facts, we see that

a− =
1

∫ −ζ
−∞ e−

1
2
y2dy + e

1
2
ζ2
∫∞
−ζ e

−|ζ|ydy
≤ 1
∫ 0
−∞ e−

1
2
y2dy

=

√
2

π
,(D.9)

and

a+ =
1

e−
1
2
ζ2
∫ −ζ
−∞ e−

1
2
y2dy +

∫∞
−ζ e

−|ζ|ydy
≤ 1

e−
1
2
ζ2
∫ 0
−∞ e−

1
2
y2dy

= e
1
2
ζ2
√

2

π
.

(D.10)
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Therefore, for x ≤ −ζ,

|ν(x)| ≤ a− ≤
√

2

π
,

and for x ≥ −ζ, we recall that ζ < 0 to see that

|ν(x)| ≤ a+e
−|ζ|x ≤

√
2

π
e

1
2
ζ2e−|ζ|x ≤

√
2

π
.

D.4. Proof of Lemma 10.

Proof of Lemma 10. The density of Y (∞) is given in (D.8), and so

E(Y (∞))m = a−

∫ −ζ

−∞
yme−

1
2
y2dy + a+

∫ ∞

−ζ
yme−|ζ|ydy,

where a− and a+ are as in (D.9) and (D.10). In particular,

a− =
1

∫ −ζ
−∞ e−

1
2
y2dy + e

1
2
ζ2
∫∞
−ζ e

−|ζ|ydy
=

1
∫ −ζ
−∞ e−

1
2
y2dy + 1

|ζ|e
− 1

2
ζ2
,

which implies that

lim
ζ↑0

|ζ|m a−

∫ −ζ

−∞
yme−

1
2
y2dy = 0.

Furthermore,

a+ =
1

e−
1
2
ζ2
∫ −ζ
−∞ e−

1
2
y2dy +

∫∞
−ζ e

−|ζ|ydy
=

1

e−
1
2
ζ2
∫ −ζ
−∞ e−

1
2
y2dy + 1

|ζ|e
−ζ2

,

and using integration by parts,

∫ ∞

−ζ
yme−|ζ|ydy = e−ζ2

m∑

j=0

m!

(m− j)!

1

|ζ|j+1
|ζ|m−j

= e−ζ2
m−1∑

j=0

m!

(m− j)!

1

|ζ|j+1
|ζ|m−j + e−ζ2 m!

|ζ|m+1 .

Hence,

lim
ζ↑0

|ζ|m a+

∫ ∞

−ζ
yme−|ζ|ydy = m!.
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