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A b s t r a c t .  Based on independent random matices X: p x m and S: p x p 
distributed, respectively, as Npm(#, E ® I,~) and Wp(n, ~) with # unknown 
and n > p, the problem of obtaining confidence interval for IEI is considered. 
Stein's idea of improving the best affine equivariant point estimator of IE[ 
has been adapted to the interval estimation problem. It is shown that an 
interval estimator of the form ISl(b -1, a - I )  can be improved by min{ISI, clS 
+ XX'I}(b -1, a -1) for a certain constant c depending on (a, b). 
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1. Introduction 

Let  the r andom matrices X: p x m and S: p x p be independent ly  dis t r ibuted 
as Npm(#, E ® I m )  and Wp(n, E) (n > p), respectively. This is the canonical  form 
of the mult ivariate  linear model.  Assuming tha t  E is positive definite, we consider 
the problem of obtaining confidence interval for IEI based on (X, S). 

Observing tha t  the problem is invariant under  the affine group of transfor- 
mations,  one can check tha t  affine invariant interval es t imators  with confidence 
coefficient fl C (0, 1) are of the form 

(1.1) J = IS](b -1, a -1) 

with 0 < a < b < co satisfying 

fa 
b 

(1.2) fp, . ( x )  dx = 9, 

where fp, n is the density of ISI when E = I .  Fur ther  restrictions like 

(1.3) f p , . + h ( a )  = 

for some par t icular  choices of h, will provide certain types of op t imum invariant 
confidence intervals. For example,  the shortest  length invariant confidence interval 
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with confidence coefficient /3 is given by (1.1)-(1.3) with h = 4 (Sarkar (1989)); 
and, as it will be shown in this paper, the unbiased invariant confidence interval 
corresponds to h - 2. These optimum intervals provide multivariate extensions of 
the corresponding optimum intervals known in the literature for normal variance. 
The confidence interval (1.1) with a < b giving equal probabilities (i.e., /3/2), 
although does not have any other optimum property, is quite often used, at least 
in the univariate case. Also, instead of reducing the problem through invariance, if 
the likelihood ratio principle is used to construct an interval based on (X, S), one 
would get (1.1), with a < b satisfying (1.2) and another condition slightly different 
from (1.3). 

For the problem of point estimation of IEI, Stein (1964) first showed that, 
when p = 1, the best affine equivariant estimator, which is based on ISI, is in- 
admissible with respect to the class of estimators based on the minimal sufficient 
statistic (X, S). Shorrock and Zidek (1976) and Sinha (1976) have extended this 
result to the multivariate case. In view of these results, it seems likely that an 
interval estimator based on ISI would also be inadmissible in the class of interval 
estimators based on (X, S). Considering p = 1, Cohen (1972) first demonstrated 
this inadmissibility result for the shortest length confidence interval by adapting 
Brown's idea (1968). An extension of this result for general p was given by Sarkar 
(1989). The idea of incorporating X into the estimation procedure used in this 
improvement is, however, only restricted to the shortest length confidence interval. 
Moreover, the improvement is achieved only in terms of the coverage probability. 
A stronger result is obtained in this paper. We adapt Stein's idea of improving the 
best equivariant estimator of IEI to the interval estimation problem. The Stein- 
type improvement works for any interval of the form (1.1), where 0 < a < b < c~ 
are subject to a condition that is less restricted than (1.3). Also, the improvement 
is obtained in terms of both the coverage probability and the length of interval. 
Our result is a multivariate extension of the recent paper by Nagata (1989). 

In Section 3, we prove that (1.3) with h = 2 is the condition of unbiasedness 
of an invariant confidence interval (1.1). Stein-type improvement of an interval 
of the form (1.1) is presented in Section 4. Section 2 contains the distributional 
properties of sample generalized variance that are useful in Sections 3 and 4. 

2. Some necessary results 

Suppose that  f~ = E - l # #  I is of rank t (< s = min(p, m)). Let C~(~t) 
denote the zonal polynomial of fl corresponding to the partition a = ( a l , . . . ,  at) 
of the integer k > 0 in terms of the integers al _> ""  _> at _> 0. This is a 
symmetric homogeneous polynomial in the characteristic roots of ft and is known 
to be nonnegative because ~t is nonnegative definite. It is also known that  

(2.1) ( t rY)k=  ~ C~(f~), 

where LlaLI = Y'~i=I a i"  See Muirhead (1982) for the aforementioned and other 
properties of zonal polynomial. We use the following notations: S* = S + X X  I and 
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F = D i a g ( f l , . . . ,  fs), where 1 _> f l  _> "'" _> f~ _> 0 are the ordered characteristic 
roots of S*-~XX '. Also, let X 2 denote the chi-squared random variable with n 
degrees of freedom. We now have the following result which provides the first step 
in the derivation of Stein-type improvement. 

LEMMA 2.1. Conditionally given ~ = (~1,. . . ,  ~t), 

p 
2 (2.2) Is*l/Ixl ~ I-[ 

i=l 

independently of F, where 2 X n + m + 2 ~ i - i + l  are  independent, and ~ has the following 
probability distribution: 

(2.3) 7r(~, f~) = / exp ( - ~ t r f ~ )  C~ (~Ft) / I I~H'  i f  ~ i  ~ . . -  > ~t  ~ 0 

I , -  - - -  0 otherwise. 

PROOF. Without  any loss of generality we can assume that  E = Ip and 
replace p by v -- E-1/2p. Then, as Shorrock and Zidek ((1976), p. 635) proved, 
conditionally given ~, with the marginal distribution of n being given by (2.3), S* 
and F are independent. The conditional density, ¢~(S*), of S* is given by 

(2.4) ¢.(s*)  = 

where ¢0(S*) is the density of S* under n = 0 (i.e., fl = 0), which is that  of Wp(n+ 
m, Ip), and E0 denotes the expectation with respect to this central distribution. 
The conditional moments of]S* I obtained from (2.4) are given by 

2Plrp(n + m + 21) 
2 Ee l (A)  

(2.5) E~(IS*IZ) = F {n  + m~ EC~(B)'  

P \ - - 5 - - ]  

where A .- Wp(n + m + 21, I) and B ~ Wp(n + m, I). The following formula 
(Muirhead (1982), p. 251) 

(2.6) E ~ C ~ ( B ) = 2 k ( n + m ~  C~(I) 

2k l-l,_l r ( n  + m + 2ni - i + l ) 
= - 2 C~(I) 

Hi=I  F -~ 

simplifies (2.5) to 

(2.7) 

2vt~Pl  F ( n + m + 21+ 2~i - i + l 

P (n+m+2~i -i+l ) 
l-Ii=l F 2 
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which are the corresponding moments  of vl~ X2 Hence, the lemma 1 1 i = 1  n + m + 2 , ¢ i - - i + l "  
follows. 

The next lemma gives monotone likelihood ratio propert ies of the conditional 
distr ibution of IS*I obtained in Lemma 2.1. For this, let hp(x, n), with n -- 
( n l , . .  np), denote the density of P 2 2 • , 1-L=lxn~, where )/n~ are independent.  

LEMMA 2.2. The ratio hp(c-lb,  n ) / h p ( c - l a ,  ,n) is (i) strictly increasing in 
each ni > 0, for  any fixed p >_ 1, c > O, and 0 < a < b < c~; (ii) strictly increasing 
in c > O, for  any fixed p > 1, O < a < b < cc, and n > O. 

PROOF. In Lemma 2.2 of Sarkar (1989) it is proved that  hp(x, ,n) is TP2 
in (x, ni), for fixed ( n l , . . . ,  n i -1,  h i + l , . . . ,  np), for each i. A close s tudy of this 
proof would reveal tha t  the inequalities involved there are, in fact, strict; so that  
hp(x, n) is strictly TP2 in (x, n~), which is equivalent to the result s ta ted in part  
(i) of the present lemma. 

To prove part  (ii), we need to show that  hp(c - l x ,  n) is strictly TP2 in (c, x). 
This result is known to be true for p -- 1. To see that  it is also true for p > 1, 
we first note tha t  c - l h p ( c - l x ,  n), which is the density of c l i  p .2  l l i = l X ~ n  i at x, can be 
wri t ten as 

(2.8) L 
oo 

c - l h p ( c - l x ,  n ) =  t - l h l ( t - l x ,  n l ) c - l h p - l ( c - l t ,  n2 )d t ,  

where hp_l(X, ha), with na = (n2, np), is the density of l ip  X2 The result 
• ' ' ~  1 1 i = 2  h i "  

then follows from the basic composition theorem for TP2 functions (Karlin (1968), 
p. 17) and by using induction, which is the kind of arguments  used in proving 
Lemma 2.2 of Sarkar (1989). 

3. The unbiased invariant confidence interval 

In this section, we prove that  the unbiased invariant confidence interval with 
confidence coefficient ~ is given by (1.1) (1.3) with h = 2. 

LEMMA 3.1. An  invariant confidence interval of  the form (1.1) is unbiased 
i f f  0 < a < b < oc satisfy (1.3) with h = 2. 

PROOF. The probabil i ty tha t  (1.1) contains IEI when E' is t rue is given by 

(3.1) V,(o) - -  P¢(Oa < ISl < Ob) 
Ob 

---- ~ a  fp, n (x )dx ,  

where 0 = I~,1/1~'1. The condition of unbiasedness in terms of ¢(0)  is that  ~b(0) < 
¢(1)  for all 0, a necessary condition for which is ¢ ' (1)  = 0. Using 

(3.2) ¢ ' (0)  = b fp, n(Ob) - a fp, n(Oa), 
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and Remark 2.2 of Sarkar (1989), we see that this necessary condition is same as 
(1.3) with h = 2. 

If (1.3) with h = 2 is true, then we have using Lemma 2.2(ii) with c -- 0 -1 

(3.3) ~b'(O)<afp, n(Oa)[ bfp'n(b) 1] ---0, 
- Lafp, n(a) 

iff 0 _> 1, which implies the unbiasedness of (1.1). This proves the sufficiency part 
of the lemma. 

4. Stein-type improvement of (1.1) 

We illustrate in this section how an interval estimator of the form (1.1) can be 
improved by incorporating X into the estimation procedure. The technique used is 
a multivariate analog of Nagata's univariate result (1989) and is an adaptation to 
the interval estimation problem of the method used by Shorrock and Zidek (1976) 
in improving the best affine equivariant point estimator of I EI. 

THEOREM 4.1. Let J --[Sl(b -1, a -1) be a confidence interval for where 
0 < a < b < c~. Assume that there exists a constant go less than 1 satisfying 

( 4 . 1 )  fp, n+m+2 (go 1 b) = fp, n+m+2 (go 1 a). 

(4.2) J* : rain{IS[, golS + XX']}(b -~, a - l ) ,  

then 

(4.3) 

(4.4) 

(i) P(J* contains IEI) > P(J  contains IEI), 

(ii) E( length(J*))  < E( length(J) ) ,  

and 

uniformly in (#, E). 

PROOF. All probabilities in the following are obtained when E = Ip. The 
right-hand side of (4.3) is 

(4.5) P(a < ISI < b) = P(a < ]S*Ig(F ) < b), 

where g(F) -- 1-I~:1(1 - fi). Because of Lemma 2.1, (4.5) is equal to 

(4.6) ( p ) 2 E(F,~)P a < 1 < b , 
i=1 

where the probability is obtained with respect to the conditional distribution 
of P 2 YIi= l  - - i+ l  Xn+m+2t~ given F and t% which is then integrated with respect to 
the distribution of (F, ~). Using the notation fp, n+m, ~(x) for the density of 
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p 2 
n i = l  we  Xn+m+2tc i - i+l ,  observe that the derivative of the probability in (4.6) 
with respect to g is 

a -1 b 
(4.7) -~fp, n+m,a(g a ) -  ~-~fp,,~+m,,~(g-lb) 

g2a [ --fp, n+m,~(g-la) 1 -  bfP'n+m'~-(g-lb) ] 
afp. n+m, ~(g-la)  J " 

Hence, if g~ is such that 

(4.8) bfp, n+m, ~(g~-lb) = afp, n+m, a(g~la), 

we get, using Lemma 2.2(ii), that as g increases from 0 to 1, the probability in 
(4.6) is strictly increasing for g C (0, g~) and strictly decreasing for g E (g~, 1). If 
we consider (4.8) for a = 0, so that go satisfies 

(4.9) bfp, n+m ( g o  I b) ~- afp, ~+,~ (go 1 a), 

which is same as (4.1) (because of Remark 2.2 in Sarkar (1989)), we see from 
Lemma 2.2 that g. < go < 1. Hence, the probability in (4.6) is less than 

(4.10) P a < min(g0, g(F)) 2 Xn+m+2~:~--i+l < b , 
i=1 

for all (F, ~). Integrating (4.10) with respect to (F, g), we then obtain that the 
right-hand side of (4.3) is less than 

(4.11) P(a < min{lS], golS*l} < b), 

which is the coverage probability of the left-hand side of (4.3). This proves part 
(i) of the theorem. The other part is obvious. 

Remark. It is clear that if g0 satisfying (4.1) is not less than 1, then J* ~- J,  
which means that Stein-type improvement does not work in this case. Because of 
Lemma 2.2, if0 < a < b < oe are obtained from Condition (1.3), then go satisfying 
(4.1) is less than 1 iff m + 2 > h. Hence, the unbiased confidence interval (h = 2) 
can always be improved by Stein's idea. But, for the shortest length confidence 
interval (h = 4), we need m > 3. 

Since the exact form of fp, ~(x) for p > 2 is complicated, the exact computation 
of a < b from (1.2) and (1.3), and hence of go from (4.1), becomes difficult for these 
values of p. When n is large, we could, however, use the following approximation 

for fp, n: 
, , fp- l  f r ( , ' f x l / P ) x l / p - 1  ' 

where f~ -=- fl,~ and 

1 }lip 
7 = P  1 - ~ ( n + 1 ) - l ( p - 1 ) ( p - 2 )  

~ - = p ( n - p +  l), 
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which is, of course, exact for p = 1 and p -- 2 (Anderson (1984), p. 265). 
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