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Abstract. Fifty years ago Jarnik and Kdssler showed that a Steiner minimal tree
for the vertices of a regular n-gon contains Steiner points for 3= n =5 and contains
no Steiner point for n =6 and n=13. We complete the story by showing that the
case for 7= n=12 is the same as n=13. We also show that the set of n equally
spaced points yields the longest Steiner minimal tree among all sets of n cocircular
points on a given circle.

1. Intreduction

A Steiner minimal tree (SMT) for a set of points P in the plane is a shortest
network interconnecting P. The construction of an SMT for a general set P is
known [7] to be an NP-complete problem. Recently, SMTs have been constructed
for special point sets P such as ladders [1], splitting trees [9], zigzag lines [5],
cocircular points [6], and bar waves [4]. However, a special class of sets for
which the study of SMTs was started a half century back has remained an unsolved
problem. Let A, denote the set of vertices of a regular n-gon. The SMT problem
for A, was first studied by Jarnik and K&ssler [10] in 1934. They obtained SMTs
for n =<6 and also proved a beautiful theorem which says that for n=13 an SMT
can be obtained by deleting an edge from the perimeter of the regular n-gon.
Since an SMT can also be obtained in this manner for n =6, an obvious conjecture
is that an SMT can be so obtained for all n=6. Kotzig [11] discussed some
properties of the angles of an SMT for n=<8. In this article we will prove this
conjecture in its entirety as our Theorem 1.

Theorem 1. The perimeter of a regular n-gon minus any side is an SMT for A,
for n=6.
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We also prove

Theorem 2. For any n cocircular points on a given circle, the set of n equally spaced
points yields a longest SMT.

2. The Case n=>11

In this section we show that some recent results on the Steiner ratio (to be defined
shortly) can be used to dispose of the conjecture for all n=11.

A minimal spanning tree (MST) for a set of points P is a shortest tree
interconnecting P such that the vertex-set of the tree is P. The Steiner ratio p is
defined as

in length of an SMT for P
P length of an MST for P’

Gilbert and Pollak [8] cojectured that p =~/§/ 2 while Du and Hwang [3] proved
that p = 0.8. Recently, Chung and Graham [2] announced a proof that p = 0.8241.
The Steiner ratio was surprisingly used in [6] to prove a result about SMTs for
cocircular points, via the following lemma:

Lemma 0. Suppose that an n-gon circumscribed in a unit circle has at most one
side longer than m with

m=min{[aB +Va’+(1 - B%)/4]/(a’+3), 7},
where
a=v3+1-1/(2p),
B=1-(1-p)mw/p
(p is a lower bound for p) and

y=2(v/3+1)/[(vV3+1)*+1]=0.708... .

Then its MST (which is the perimeter of the n-gon minus the logest side) is also its
SMT.

Set 5 =0.824. We obtain m > 0.6034. On the other hand, the length of a side

of the regular n-gon
l,= \/z(l—cosgz) =2 sinz
n n

is monotone decreasing in n for n = 3. Furthermore,

I, =1,<0.5635<0.6034<m for n=<11.
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By Lemma 0 we obtain

Theorem 1. The MST of a regular n-gon is also its SMT for n=11.

3. Some Facts About SMTs

Consider any tree T interconnecting a set of points P={p,,...,p,}. We will
refer to the p;’s as the regular points and any other points in T as Steiner points.
T is called a Steiner tree if all subtending angles are at least 120° and each Steiner
point has three incident edges (this implies that the subtending angles are exactly
120° for a Steiner point). It is well known [8] that a Steiner tree for n points has
at most n — 2 Steiner points and is called a full Steiner tree if it has n —2 points.
It is also well known [8] that an SMT must be a Steiner tree and can always be
decomposed into subtrees which are full Steiner trees. Finally, it is well known
[8] that an SMT always lies within the convex hull of P.

A topology of a Steiner tree T is a specification of all edges in T. A Steiner
tree for a given topology either exists uniquely or does not exist. When a full
Steiner tree with a given topology exists, Melzak [12] gave a recursive construction
for it which also yields a line segment, which we call the axis, whose length
equals that of the Steiner tree.

Let C denote a unit circle with center o. Let R, denote a regular n-gon inscribed
in C with vertex set A, ={a,, ..., a,}. Throughout the paper we denote the line
segment between two points x and y by [x, y] and its length by (xy).

Lemma 1. Let T be an SMT for R,. Then we may assume that no Steiner point
5 of T can have an incident edge as long as 1,.

Proof. Suppose to the contrary that [ is such an edge. Delete | and decompose
T into two subtrees. Then there must exist a j such that g; and g;., are not in
the same subtree. Connect a;, g;., and we obtain an interconnecting tree not
longerthan T. (0

Lemma 2. Let C be a unit circle with center o. Let p, q be two points such that
(po)=1=(qo) and X ogp <60° (see Fig. 1). Then (pq) = (po).

Proof. In Aopg, 5.qpo = X 0qp =< 60° since ( po) =(qo). Hence X poq = 60°= X ogp.
It follows ( pqg) = (po). O

AN

p

Fig. 1. (pq)>(po).
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The following Lemma is not directly related to SMTs but often facilitates an
argument that a certain topology does not exist.

Lemma3. LetCA,...A,.D bea polygon lying within another polygon CB, . .. B,D.
Then

S %A~ 3 4B,=(m—n)180".
i=1

i=1

Proof. Using the fact that an n-gon has total inner degrees (n—2)180° and the
fact that X A,CD =% B,CD and x.CDA,,< X CDB,. 0

A path as,...5,4; in an SMT T is called a Steiner path if s,,...,s,, are all
Steiner points and x5, =120 for i=1,..., m in the (m+2)-gon a;5;...5,4;

Lemmad. Suppose that Tis an SMTfor R,. Let P =a;$,5,. . . 5,,a; be a Steiner path.

(i) m=3. There are no regular points between a; and a;.
(ii) m = 4. There is at most one regular point between a, and a; but none if n <9,
No such P can exist for n <6.
(iii) m=35. No such P can exist for n=11.
(iv) m=6. No such P can exist.

Proof. 1t is easily verified that (a,a;) <2l, for all m. Thus at most one regular
point can exist between &; and a;.

m =1 or 2. Suppose to the contrary that a; and g; are not adjacent. Then n=4.
Let a; be the regular point between a; and ;. For m = 1 consider the quadrilateral
a;s;a;a,. We have

Xa;+4a;=360°— %5, — X a;=360°—120°—-90°=150°.
For m =2 consider the pentagon a;s,5,a;a,. We have
Xa;+Xa;=540°~ X5, — 4.5, — % a, < 540°—120°— 120°— 90° = 210".

Hence either x.a; or xa; is less than 120°. Suppose that %.a; <120°. Then ay is
connected to a; in T. Let T’ be obtained by substituting [a;, a;] for [ax, a;] in T.
Then T” and T have the same length. Yet T’ cannot be optimal since X axa;s, <120°,
a contradiction to the optimality of T.

m=3. We have n=m+2=5. If n=5, then there is not other Steiner point and
each of s, 5,, and s; must connect a distinct regular point outside of the pentagon
a;5,5,8;a;. Thus there is no more regular point to fill between a; and a;. Therefore
we may assume that n=6.
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Suppose to the contrary that g, exists between g; and ;. Consider the hexagon
a;5,5,53a;a;. Note that all angles except x.a; and Xa; are at least 120°. Hence
either the hexagon is regular, or at least one of Xa; and A a; <120°. The former
case is impossible since we do not allow (s,5,) = (a@,a;) = I,. The latter case is also
impossible by analogous argument as used in the case m=1 or 2.

m=4 n=m+2=6 If n=6, the hexagon a:s,5,5;5,4; has internal degree less
than 720°, an absurdity. For n=7 suppose that g, exists between g; and g;. For
n =9, the heptagon a;5,5,5;5,a;a, has internal degrees less than 900°, an absurdity.

m=35. Consider the heptagon a,s,5,5;5,5:4;,
&a,-+2§,aj=900°—5'120°=300°> K,ai_laiai+1+4aj_lajaj+, for nSll,

an absurdity.

m=6. Consider the (m+2)-gon as,...sna;,
fa;+Xa;=m-180°—-m-120°=m-60°=360° for m=6, an absurdity. [

Lemma 8. Let T be an SMT for A,, n= 10, with a Steiner point s. Then T must
be full.

Proof. Let T'c T be a full Steiner tree containing s. Then T’ partitions the unit
circle into convex regions each bounded by a Steiner path and an arc. By Lemma
4 such an arc can contain at most one additional regular point. In fact, the only
case in which an additional regular point may exist is when n = 10 and the Steiner
path bounding the region has m =4. We now show that even for this case no
additional regular point can exist on the arc, i.e., T is a full SMT.

Suppose to the contrary that a regular point a, exists on the arc a,a; (see
Fig. 2). In the heptagon a;5,5,835,a;a;

Xa;+xa;=900°-4x120°—144° = 276".
Therefore
A810 ;0 + K818, =2 X 144°~276°=12°
and
min{(8,a;41), (84a;-,) = I, sin 48°/sin 120°> 0.8581,

Fig. 2. A Steiner path with m =4 and a regular point.
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(it is easily verified that (s,a,.,) will be greater if s, connects a,., through another
Steiner point). Now it is a simple matter to show that (s,s,) > 2[, which implies
that one of (s5,5,), (5,83), and (s;5,) > [, a contradiction to Lemma 1. ]

Define D to be the diameter (of the unit circle ¢)1[a,, a,].

Lemma 6. Suppose that a topology is symmetric with respect to an edge e. Then
the Steiner tree it yields is symmetric with respect to D with e overlapping D for odd
n and e L D for even n. Suppose that a topology is symmetric with respect to a point
p. Then the Steiner tree it yields is symmetric with respect to the center o with p
being o.

Proof. Clear from Melzak’s construction for SMT. (I

4. Proof of Theorem 1 for 82n=10

Suppose that T is an SMT for A, with a Steiner point. By Lemma 5 we may
assume that T is full. Let d be a point of T closest to the center 0 and let d lie
on the edge e. Let g be an endpoint of e. Partition T into two trees T, and T,
at ¢ and without loss of generality assume that T; contains e and the k regular
points {a,, a,, .., a;}. By Melzak’s construction of the full Steiner tree, there
exists a line segment [ p, g] which is the axis of T, and overlaps e. Our goal is
to show that for certain n T, cannot exist by proving (pg)> ki,, so T, can be
replaced by the path a,a,...a; and some suitable [a;, a;.,] to obtain a shorter
connecting tree. However, since (po) is much easier to compute than (pgq), we
will prove po> ki, instead and use Lemma 2 to justify the replacement. One
condition of Lemma 2 is that X pgo =< 60. The following lemma will take care of
that condition.

Lemma 7. Xdgo>60°.

Proof. Let e’ be a second edge of T at g such that o lies in the 120° angle
enclosed by e and ¢’ (possibly their extensions). Let (od’) be the distance from
o to e'. Since (od)=(od'), Xdgo=<4d’'qo. But xdqgo+%d'qo=120°. Hence
X.dgo =< 60°. O

Lemma8 k#1 forn>6.
Proof. From Lemmas 7% a,q0 < 60°. From Lemma 2

(ayq)=(ay0)=1>1, for n>6. O
Lemma9. k#2 for 8=n=10.

Proof. Suppose to the contrary that k =2. Let pa,a, be a regular triangle with
p outside of the unit circle. Then by Melzak’s construction [ p, q] is the axis of
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T,. We now prove that (po)>2l,, or ((po)/1,)*> 4:

(po)*=(a,0)*+(a, p)*~2(a,0)(a, p) cos X.0a,p
=1+ 2 -2, cos (90°— 180°/ n +60°)
=1+ 12 +31, cos (180°/n) — 1, sin (180°/n)
=1+ B+V3IV1-E/4-12/2
=1+ L/2+V31J1- /a.

Clearly, (po)*/ 1% is monotone decreasing in I%. For 8=<n=<10 B is largest for
n=8 and I3 =2(1-cos 45°) =2—+2. Now

(po))2 1 1 1
Y shull Ay R, +-+ —==4. > 4.
( L YA V3 4>4297 4 O

Lemma 10. k#3 for 8<n=<10.

Proof. Suppose to the contrary that k=3. Let a;a,p, and p,a,p, be regular
triangles such that p; and o are on different sides of [a,, a,], and p, and o are
on different sides of [ p,a,] (see Fig. 3). We now prove that (p,0)>3l, or
(p,0)/1,)*>9. Note that

(P20)* = (p,10)*+(py p2)*—2(p10)(p1 ;) €Os %.0p, P>

Now
(p1P2) = (p1a1) = [(@102)* + (p1a2)* — 2(a,a,)( p1@2) cos 401021’1}1/2
=2L[(1~cos £a,a,p,)/2]"*
=21, sin(%.a,a,p,/2)
=21, sin(60°+180°/ n).
Hence

(p:p2)/ 1, =2 sin(60°+ 180°/ n) = 2 sin(60°+ 18°) > 1.956
and (p, p,)*/ 12> 3.827 for n<10. Furthermore,
Xoppy=XopaytXapra,+Xa,pip;
=30°+30°—-180°/ n+60°=120°—180°/n

Fig. 3. (p,0)>3l, for k=3.
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and
—2 cos X.0p, p, =2 cos(60°+180°/n),

which is clearly monotone increasing in n for n=6. Therefore, for §8=n=<10
—2 cos X.0p, p, =2 cos 82.5°=0.261.

Therefore, for 8 <n <10 we have

2
<£I%‘-’) >4.297+3.827+(0.261)v/(4.397)(3.827) = 9.182> 9. O

Lemma 11. k#4 for 8=<n=10.

Proof. Suppose to the contrary that k=4. There are three nonisomorphic
topologies for T, which we will call topologies 4, 5, and 6 and their Melzak’s
constructions are shown in Figs. 4-6, respectively. We show that the axis of T,
is too long for all three topologies.

Topology 4 (Fig. 4)
As shown in the proof of Lemma 10,

. 180°
(ap,) =21, sm(60°+ " ) s

180°
Xasa,p, =90°——(60°+ )

n
180°
=30°—-
n
Py
Qa4 v
az
P2
(o]
a2
-1} L
P3

Fig. 4. Melzak’s construction for topology 4.
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Therefore,

73

540°

Xa,a,p,=90°+ -

bl

(alpz)z = (0102)2+ (a2p2)2 —2(a,a;)(a;p,) cos X.a,a,p,

180° 180° °
= lf,[l +4 sin2(60°+ ) +4 sin(60°+ 8 ) sin 340 ]
n n n
Furthermore,
sin X.a, p,a; =———sin X.a,a, p,=——— COSs 240°
2 (aip2) 1hare (a1 p>) n
Hence
180°
Aoalp3 = (900-' n ) +60°+ 4a2a1p2
180° 500°
=150°— " +(180°—(90°+ " ) —lﬁ-azl’zal)
720°
= 2400_ n _4a2pzal .
It follows
(P39)\° _(1\?  (aip)® 1 (ayps)  (720° .
(—'Zl_ = E +—%—+2'Z';—HZCOS n +2§.a2p2a1—60 .
We compute ((p;0)/1,)> for n=8,9, 10.
n (a,p,)Y/ (a,py)/ 1, sin X.a, p,a, /1, (ps0)*/ 2
8 >8.595 >2.937 <0.137 >1.306 >16.3
9 >8.290 >2.879 <0.175 >1.461 >17.7
10 >7.990 >2.826 <0.210 >1.618 >189

Topology 5 (Fig. 5)

Note that A p, p,a;=Ap,a,a,. Hence (p,a;) =(asa,). Also note that (p,p,) =
(P1a4) = (plal). Hence Ap1a3p2 = Aa1a3p1 . It folloWS

X p1a3p,=X.a,a3p; =60°+180°/n

and

Xa,a;p,=120°+360° n.
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Fig. 8. Melzak’s construction for topology 5.

Furthermore,

(p2as) = (azas) = (a,a5) = 21"[1 —cos(180°(n —2)/,,)] 1/2

2
=21 sin(180"~-180 ) =2l, cos 180 .
n n

Therefore,

(psar) =(a; p,) =[(a,a5)*+ (as p,)* —2(a,a5)(a5 p;) cos X.a,a;p,]"*
] - ° 4 © 1/2
— 41, cos 15;0 [1 cos(120°+360 /n)]

h 2

180° 180°
=41, cos 8 sin(60°+ 8 )
n n

60° . ] : :
" +sin 60° using 2sin Acos B

-

=21, sin(60°+3

=sin(A+ B)+sin(A~ B)

(;0 ) +sin 60° | > 3.6631, for n=8.

=21, sin(60°+ 3

Finally

0° o o
Zoa,p; =6O°+(90°—§“6;"‘> —90°—-(60°+ li() ) = 180"-—2‘;—9— .

(p:0)’ _(ai0) (psa1)’  (psa))® ,(@10) (p2a1)
E 5 L [ L L
540°
8
= (1.306)%+ (3.063)*+2(1.306)(3.663)(0.382)

= 18.778 > 16.

COS X.0a,P3

1 , 1
o——— . + — K
> 7 (3663)"+27(3.663) cos
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Topology 6 (Fig. 6)
(p13)* = (p1p2)* = (p10)*+(p20)* —2(p10)(p,0) cos 4 p,0p,

= 2(plo)2(1 —cos 72nO ),
(p30)* = (p,10)*+(p1p3)* = (P10) (P, p3) cos X.0p; ps
=(p,o)2[1+2(1 —cos 720 )

n

720°
20° > \
=(plo)2[3—cos7 +2 2(1 —cos 122 ) C(,5(30<,+360 )]
n n ”
720° 720° .
((p30)/ln)2=((plo)/ln)2[3"‘2 cos — +2\/2_<::0s—n) cos(30o+36no )]

We compute ( p;0/1,)* for n=8,9, 10.

n First term Second term Product
8 > 4,297 >3.732 >16.039
9 > 6.536 >3.056 > 19.963
10 >8.073 >2.525 >20.384

We now prove Theorem 1 for 8= n=10. Suppose that T is an SMT for A,
with a Steiner point. Since g can be either endpoint of e, we may assume that
the number of regular points in T; does not exceed that of T, i.e., k=<n/2. For
n=8 and 9 Lemmas 8-11 say that T; is not optimal. For n =10 the only case
that needs to be considered is when T, and T, cover five regular points each.

Consider the two Steiner paths P, and P, containing e. We may assume without
loss of generality that a, and a,, are the endpoints for P;, while as and ag are
the endpoints of P,. Let m, and m, denote the number of Steiner points on P,
and P,. By Lemma 5 m,, m,=<4. Since

(alas) =v2i1—COS 144°i> 1.9> 3110

Fig. 6. Melzak’s construction for topology 6.
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{a) {b)

Fig. 7. Two topologies for m; =m,=4.

and each edge in T is shorter than /;,, there must be at least four edges connecting
a, and as. Therefore m; = m,=4.

There exist two nonisomorphic topologies for m, = m, = 4 as shown in Fig. 7.
If T has topology 7(a), then by Lemma 6 T must be asymmetric with respect to
the center which is on e. Therefore we can turn the left half of the tree upside
down and obtain a tree of the same length but having 7(b) as its topology (Fig.
8). Namely, it suffices to prove that T cannot have 7(b) as its topology.

In As,04as, X5,04a5= 75 180°=136°

(asas5)sin 36°  (0.618)(0.588)

sin 120° 0.866 042.

(asay) =

Extend [as, 54] and [a;, 5,] to meet at b. Then bs,s;s, is a parallelogram. Hence
($4b) = (535,) and (5,0) = (538,). In Abasa,, X basa, = K asa,b=30 and Xa,bas=
120. Furthermore,

(alb) = (asb) = (05S4) + (3351) =0.4204+0.618 = 1.038.
Therefore

(a,as) =+v3a,b=(1.732)(1.038) = 1.798.

35

Fig. 8. A tree for topology 7(b).



Steiner Minimal Trees for Regular Polygons 77

04 03
S3

S2
G5 $4 Sq a2

06 01

Fig. 9. A unique topology for n=6.

But from Aa,aso

(a,a5) =v2(1 —cos 144°)> 1.9, a contradiction.

5. Proof of Theorem 1 for n=6,7

For n=6, Lemma 4 reduces the nonisomorphic topologies to the unique one
shown in Fig. 9. Since this topology is symmetric with respect to s,, s, must be
the center 0 and T must be symmetric with respect to o. Therefore the length of
T is 3v3> 5 which is the length of an MST.

For n =7 Lemma 4 reduces the nonisomorphic topologies to the three shown
in Fig. 10. Topology 10(a) can be quickly disposed of by comparing the angles
of the polygonal path a,a.a;a,asa, and those of the Steiner path a,s,s,535:a7,
using Lemma 3. The length of the tree yielded by topology 10(c) has been
computed in [13] to be 5.6676 > 5.2068 which is the length of an MST. We now
show that the tree yielded by topology 10(b) is not an SMT as (a,s;)> I;.

Since the topology 10(b) is symmetric with respect to [a,, s3], T must be
symmetric to D and [a,, s;] must overlap with D (see Fig. 11) Extend [a;, s,]
to b such that [a,, b]||[s;, s.)- Extend [a4, s5] to ¢ such that [a,, ¢]|[s;, s:]. Then

(ass3) = (asc) —(asb) +(ass,).

Now
3 o o 3306
X.4,0,C= X.A30,85, = X.038,06— X.5,0,4 =7 * 180°—30°= 7
a
3 dgq
04 03
[+ 73 05
05 03
do dg az
Qe az
* a7 N a
07 01 7 01

(a) (b) (¢)
Fig. 10. Three topologies for n=7.
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Fig. 11.  Tree for 10(b).

Hence
(@ys,) = (aza,) 5in(330°/7) v2[1-cos(360°/7)] sin(330°/7)
372 sin 120° sin 120° ’
(ase) = (a,a4) 5in(330°/7) v2[1—cos(1080°/7)] sin(330°/7)
4 sin 120° sin 120° )
Furthermore,
Aba,as = X 550505 = X.0;a,8, by symmetry.
Hence
(asb) = (a;a5) sin(330°/7) _v2[1—cos(720°)/7)] sin(330°/7)
} sin 120° sin 120° :
Therefore,
(a.8;) = [\/2(1 - COS 360 )+ \/2(1 ~Cos 1080 )
7 7
720°\ | sin(330°/7)
2(1 87 )} sin 120°

=(1.950+0.868 — 1.563)(0.733)/0.866 = 1.06 > [,.

6. The Longest Steiner Minimal Trees for n Cocircular Points

The MST for any n cocircular points is clearly longest when the n points are
equally spaced. Now for any n given points, the length of an SMT never exceeds
that of an MST. Furthermore, Theorem 1 tells us that an MST is an SMT for the
equally spaced set if n= 6. Therefore Theorem 2 is proved for n =6. The proof
of Theorem 2 for n=3, 4, 5 will each be given separately.

Let C, denote a set of n points on the unit circle. Let P, denote the enclosing
polygon of C,.
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Lemma 12. For 3=n=<3, if one of the angles of P, is 120° or larger, than an
SMT for C, is shorter than that for A,,.

Proof. We show that an MST for C, is shorter than the SMT for A,. O
Without loss of generality, assume X a,a,a; = 120°. Then
X400, + X.a,00; < 120°.

By standard minimization techniques it is easily seen that the longest MST for
n cocircular points satisfies the angle conditions

X a,0a;= X.a,0a; = 60°,
and

Xasoa,=- - = X%a,0a,=240°/(n~2).

The length of such an MST is

2V2(1—cos 60°) + (n —3)\/2[1—005(:{0;)]

2<3 for n=3,
={2+V3<V2+V6 for n=4,
2+2572<4.574 for n=>5

where the right side of the inequality is the length of an SMT for A,.
Corollary. If an SMT for C, is not full, then its length is shorter than that of A,.

We now prove Theorem 2 for n=3. Consider C; such that all angles of P;
are less than 120. Construct a regular A BCD such that A and D are on different
sides of [ B, C]. Then (AD) is the length of the SMT for C; (see Fig. 12). Let
X0BD=86:

(AD)=(Ao)+(oD)

(oB)sin 8
=14 =3,
1 sin 30

A

N4

Fig. 12. A Steiner tree for n=3.
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Fig. 13. A Steiner tree for n =4,

Next we prove Theorem 2 for n=4. Consider C, such that all angles of P,
are less than 120°. Suppose that the diagonals [A, C] and [B, D] meet at E.
Without loss of generality, assume that X AEB = 90. Then the Steiner tree T as
shown in Fig. 13 exists.

Construct a regular AABF and a regular AFCG. Then the length of T is
(DG). But AGFB=ACFA, hence (GB)=(AC) and % FBG =% FAC. Fur-
thermore,

X GBD =1360°— X GBF ~ 4. DBF
=360°— % FAC ~ % EBF
=360°~— (360° - 60°— 5. AEB)
=60°+ % AEB.
In AGDB
(GD)*=[(GB)*+(BD)*~2(GB)(BD) cos £ GBD]'?
=[(AC)*+(BD)*~2(AC)(BD) cos (60+ X AEB)]"?
=(2°+2°-2-2-2" cos 150°)"?
=(8+4V3)?
<v2++6.

Finally, we prove Theorem 2 for n = 5. Without loss of generality, assume that
the polygons under study are inscribed in a unit circle. Let M denote the length
of an SMT for A;. Then it is straightforward to calculate

M = 4(sin 36°+sin 72°) sin 96°
=4.574.

Consider a C; with points A, B, C, D, and E. By Lemma 12 we may assume
that XA, X B, XC, D, and X E are all less than 120°. Therefore there exist five

full Steiner trees where one of them is as shown in Fig. 14 and the other other
four can be obtained by rotating the points.
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Fig. 14. A Steiner tree for n=5.

Let M,, M,, M;, M,, and M; denote the lengths of these five trees, respectively.
We prove that

5
M;<5M,
i=1

where M is the length of an SMT for A;. Therefore the SMT for Cs, which is
the shortest one among the five trees, must be shorter than M.

Construct equilateral triangles AABD', ABCE', ACDA', ADEB', AEAC’,
AA'C'B", AB'D'C", AC'E'D", AD’A’'E", and AE’'B’A” (see Fig. 15). Then
[A,A"], [B, B"], [C, C"], [D, D"], and [E, E"] are the five axes. Since (x", x) <
(x",0)+(0,x)=(x",0)+1 for x=A, B, C, D, E, it suffices to prove

S=(A")+(B"0)+(C"0)+(D"0)+(E"0)=5(M —1).

Construct a circle through the three points A”, B’, and E’ and meet [A”, 0]
(or its extension) at G. Then

(A"0)=(GB")+(GE")+(Go) (or —(Go)).

Fig. 15. Axes for the five full Steiner trees.
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Define
XA"0B' =a,, XB'0C'=a,, ..., XE"0A =as,
XE'0A"=8,, XA0B"=8,, ..., 4D'0E"=g;,
%CoD=28,, XDoE=26,, ..., 4BoC=28;.
Since
%A"GB'=3X E'GB'=3(180°— X B'A"E’") = 60°,
we have
(A%0) =§‘;1“—6‘;—‘ (08)+ 2L (o) +§5§;6;1‘3—62(;3‘-Q (0B).
Note that
(oB’)=2sin(30°+6,),
{oE')=2sin(30°+ 05),
-
we have

{(A"0) = f‘ {[(oB") sin a;+ (oE") sin B,]
+{oB’)[sin a, +sin(60°— a,)}+ (0E")[sin B, +sin(60°— B,)1}
\/—{[(OB ) sin a; + (oE') sin 8,]
X (0B’) cos(30°— ;) + (0E’) cos(30°—- B,)}

\/_ {(oB')[sin @, + cos(30°— @;)]+ (0E')[sin B, + cos(30°— B8,)1}
= % {{oB’)[sin &, +sin{60°+ a,)]+ (0E)[sin B, +sin(60°+ B;)1}

\/_ {(oB’) sin(30°+ a,) cos 30°+ (oE’) sin(30°+ B,) cos 30°}

= sin(30°+ a, ) sin(30°+ 8,) +sin(30°+ B,) sin(30°+ 65)
= cos(a; — 0,) — cos(60+ a; + 6,) + cos(B, — 05} — cos(60+ B, + 05)
= Cos(al - 02) + sin(a, +6, _300) + COS(B] - 05) + Sin(ﬂl + 05 - 30°).
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Therefore we can write
S=8+8",
where
S’ =cos(a;— 8,)+cos(B;— 0s)++ - - +cos(as— 8,) +cos(Bs— 0,),
S”=sgin(a, + 6,—30°) +sin(B, + 05— 30%) + - - - +sin(as+ 6, —30°)
+cos(Bs+ 0,—30°).

To bound S’ and S” we need the following lemma.

Lemma 13. Let XXYZ =y where 60°<y<180°. Construct equilateral tri-
angle AXZW and define X WYZ = w (see Fig. 16). Then

min{60°, y —60°} = w = max{60°, y —60°}.

Proof. Construct a circle circumscribing the three points X, Y, and Z. Then W
lies outside of the circle if y <120° on the circle if y =120°, and inside the circle
if y>120°. Consider the first case. When Y moves from Z to X along the arc
ZX, clearly, w increases from y —60° to 60° since the angle of the arc it faces
also increases. An analogous argument proves Lemma 13 for the other two cases.

O

We may assume without loss of generality that 6, <41.25° for 1==i=<5 since
otherwise the MST for C; is already shorter than M.
Define §5= 8, and 6,= 6;. By Lemma 13

a; = min{600, 8,‘..1 + 26, + 8§+1 _600} > e;+!.
Furthermore, a; — 6;,; =max{60°, 6,_+286,+ 0,,,—60°} — 0,,, = 63.75°. Similarly,

we can show 0 < B;—6,_,<63.75°. Since cos x is concave for 0°=< x=<90° and

4 5
;l (a;—8;11)+as—6, +By— 05+ ;2 B:i— 0;_,) =360°,

S’ achieves its maximum when

a1—82=a2—-t93=' . ‘=a5“01=31"85=‘ M ‘=ﬁ5—‘9]=360°/10=36°.
X
\ \
N

N4 Y

Fig. 16. The range of angle w.
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Nextnote that 8, + 8, = 180°— X CDE > 60°and 8, = 41.25° implies 8,> 15°. Hence

005 o; -+ 6;+1 —3005 max{300+ 0,-4.1, Bi—i +26‘ +29i+l —900}
< max{71.25° 113.75°}.

Since sin x is concave for 0°< x < 180° and

a,+80,—-30°+ B+ 05—30°+- - -+ as+ 6, —30°+ B5s+ 6, —30°=T780°,

S” achieves its maximum when

a;+0,~30°=8,+8;-30°=- - - = as+6,~30°= B+ 6,—30°=T780°/10=78",

It is easily verified that when Cs = A, the conditions on «;, $8;, and 6; to maximize
S’ and S” are exactly fulfilled and S=5(M ~1).
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