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Abstract. Let S = {A, B, C, D} consist of the four corner points of a convex quadri- 
lateral where diagonals [A, C] and [B, D] intersect at the point O. There are two 
possible full Steiner trees for S, the A B - C D  tree has A and B adjacent to one 
Steiner point, and C and D to another; the A D - B C  tree has A and D adjacent to 
one Steiner point, and B and C to another. Pollak proved that if both full Steiner 
trees exist, then the A B - C D  (AD-BC)  tree is the Steiner minimal tree if ~AOD > 
( < ) 90 °, and both are Steiner minimal trees if g, AOD = 90 °. While the theorem has 
been crucially used in obtaining results on Steiner minimal trees in general, its 
applicability is sometimes restricted because of the condition that both full Steiner 
trees must exist. In this paper we remove this obstacle by showing: (i) Necessary 
and sufficient conditions for the existence of either full Steiner tree for $. (ii) If 
4AOD>-90 °, then the A B - C D  tree is the SMT even if the A D - B C  tree does not 
exist. (iii) If ~ A O D < 9 0  ° but the A D - B C  tree does not exist, then the A B - C D  
tree cannot be ruled out as a Steiner minimal tree, though under certain broad 
conditions it can. 

1. Introduction 

A Steiner min imal  tree (SMT) for a given set P of points in the Euclidean plane 
is the shortest tree in terconnect ing P Any intersections of edges which are not  
in P are called Steiner points. It is well known [5] that each Steiner point  is of  
degree three and  any  two edges in an SMT intersect at an angle with at least 
120 °. An in terconnect ing  tree satisfying the above two condit ions is called a 
Steiner tree. It is also well known [5] that a Steiner tree for n given points can 
have at most  n - 2 Steiner points.  A Steiner tree is full  if it has n - 2 Steiner points. 
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Melzak [6] gave an elegant method of  constructing a Steiner tree with a given 
topology. However,  the construction of an SMT for a general set P is known [4] 
to be an NP-comple te  problem, largely due to the exploding number of  possible 
topologies. Therefore, results which can rule out certain topolgies by using some 
simple properties of  the given set P or subsets of  P would be very helpful. 
Currently, the interconnection of three points is very well understood. We have 
the following necessary and sufficient conditions to determine an SMT: if the 
triangle formed by the three points contains no angle of 120 ° or more, then the 
shortest connection for these three points is the unique full Steiner tree, otherwise 
the shortest connection consists of  the two shorter sides of  the triangle. However, 
the interconnection of  four points is much more complicated and our current 
knowledge is quite incomplete. We quote the following four results from the 
literature. 

Let S = {A, B, C, D} denote the given set o f  four points and denote the two 
full Steiner trees as shown in Fig. l(a) and (b) by the A D - B C  tree and the 
A B - C D  trees, respectively. 

The first three results are due to Pollak [8]. 

T h e o r e m  1. The existence of either full Steiner tree implies that ABCD is a convex 
quadrilateral. 

Throughout this paper  we assume that the two diagonals [A, C] and [B, D] 
intersect at O. 

T h e o r e m  2. Suppose that both full Steiner trees for S exist. Then 

(length of the A D -  BC tree) .~ ( length of the AB-  CD tree) 

i f  and only if A, A O D ~ 9 0  °. 

We call the AD-BC tree the acute (obtuse) full Steiner tree if  ~,AOD <- ( >- )90 °. 

T h e o r e m  3. Suppose that both full Steiner trees for S exist. Then the acute one is 
the SMT for S and both are if £ A O D  = 90 °. 

C D 
C D 

/ 
/ 

B A 
(a) B (b) A 

Fig. 1. Two full Steiner trees for four points. 



Steiner Minimal Trees on Sets of Four Points 403 

Ollerenshaw [7] proved 

Theorem 4. Suppose that both full Steiner trees for S exist. Then the shorter tree 
is always the one with the longer center edge (edge connecting the two Steiner points ). 

She also gave credit to Sir Bondi for proving Theorem 2 for the case ~_AOD = 
90 °. While Theorem 4 gives an interesting property for SMT, it does not help in 
ruling out the longer full Steiner tree from consideration since one has to construct 
it first. On the other hand, Theorem 3 has been crucially used in finding SMTs 
for special point-sets or in determining their properties [1]-[3], [8]. However, 
even the conditions of  Theorem 3 are sometimes difficult to apply. In this paper  
we attempt to promote the applicability of  Theorem 3 by answering the following 
three questions: 

1. What are the necessary and sufficient conditions for the existence of a full 
Steiner tree for S? 

2. Suppose that the acute full Steiner tree exists. Is it the SMT regardless of  
the existence of the obtuse full Steiner tree? 

3. Suppose that the obtuse full Steiner tree exists. Is it never the SMT regardless 
of the existence of the acute full Steiner tree? 

We give complete answers to all three questions. 

2. Some Preliminary Results 

The notation ~ X Y Z  means the angle extending from line [X, Y] counterclockwise 
to line [ Y, Z] .  For two given points X and Y the notation (XY)  denote the 
point Z such that X Y Z  is an equilateral triangle and ~ YXZ = 60°; the notation 
d[X, Y] denote the distance between X and Y. 

Let ABC be a triangle. Define E=(A(BC))  and F=((AB)C) .  Construct 
equilateral triangles AAB(AB),  ~BC(BC),  AA(BC)E, and A C(AB)F (Fig. 2). 

C 

~A 

F 

(AB) 

E 

Fig. 2. A triangle and some equilateral triangles. 



404 D.Z. Du, F. K. Hwang, G. D. Song, and G. Y. Ting 

L~mma 1. (i) BFE is an equilateral triangle. 
(ii) ACFE is a parallelogram. 

Proof. Since A A B ( B C ) -  A(AB)BC,  we have d[A, ( B C ) ]  = d [ C ,  (AB)] .  Since 
A ( AB ) AE ~- A BA ( BC ), we have d[ ( AB ), E] = d[ B, (BC) ] .  S imi lar ly  we have 
d[( BC), F] = d[ B, (AB)] .  It is now easy to show that  A ( A B ) A E  =- ABA(  BC) =- 
A B ( A B ) C  =-A(BC)FC. In par t icu la r  d[A, E ]  = d [ C ,  F] .  Fur the rmore ,  

K F ( A B ) E  = 180 ° -  ~_(AB)EA - ~_EA(AB) - {120 - K C(AB)B}  

= 60 ° -  ~ ( B C ) C F  = ~_FCB 

= 60 ° -  ~ B ( B C ) A  = K A ( B C ) C  = KE(BC)B.  

Therefore  A F ( A B ) E = - A F C B = - - A A ( B C ) C = - A E ( B C ) B  and  d[E, F ] =  
d[B, F] = d[A, C] = d[B, El.  We have shown that  ACFE is a pa ra l l e logram 
since oppos i t e  sides are equal .  

Lemma 2. Let S = {A, B, C D} where the four points form a convex quadrilateral. 
Let E = (A(BC))  and F = ( (AB)C)  as before (see Fig. 3). Then 

d [ ( D A ) , ( B C ) ] = d [ D , E ] ~ d [ D , F ] = d [ ( A B ) , ( C D ) ]  if £AOD.~90  °. 

Proof. It is eas i ly  verif ied that A ( D A ) A ( B C ) = - A D A E  and  A(CD)C(AB)-= 
ADCF. Hence  d[(DA), (BC) ]  = d[D, E] and  d[(AB), ( C D ) ]  = diD, F]. Fur- 

thermore ,  since A B ( A B ) E  -~ AABC, we have ~_CAB = ~EB(AB) .  It fol lows that  
Z_EBD = ~_AOD + 60 ° and  ~_DBF = 300 ° -  ~ E B D  = 240 ° -  ~AOD. C o m p a r e  
A D B E  and  ADBF. If ~.EBD >- 180 °, then d[ D, E] > d[ B, F] by the law of  cosines 
since ~_DBE > ~_DBF. I f  ~.EBD < 180 °, then,  aga in  by the law of  cosines,  

d[D, E] .~d[D,  F] i f  4 E B D . ~ . D B F  

or, equiva len t ly ,  if  ~ A O D  ~ 90 °. [ ]  

D 

C 

F 

(AB) 

E 

Fig. 3. Comparison of d[D, E] and d[D, F]. 
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Note that d[D, E] is the length of the A D - B C  tree if it exists and diD,  F] 
is the length of  the A B - C D  tree if it exists. Therefore Theorem 1 follows from 
Lemma 2 as a corollary. 

We will call [(AB), (CD)] or [D, F] an axis of the A B - C D  tree. Note that 
there exist other axes of the A B - C D  tree analogous to [D, F]. Lemma 2 says 
that all of them are equal. Of course the same is true for all axes of the A D - B C  
tree. We now answer question 2 in the affirmative. 

Theorem 5. The acute full Steiner tree, if existed, is the SMT. 

Proof. Pollak proved Theorem 3 by showing that any spanning tree is longer 
than either an axis of the A B - C D  tree or an axis of the A D - B C  tree regardless 
of the existence of the two trees. However, the relations between these axes, for 
example, Theorem 2, do depend on the existence of the two trees. Lemma 2 
provides these relations when the existence is not assumed. []  

We now give three lemmas to be used later. Lemma 3 was first noted by 
Ollerenshaw [7]. 

Lemma 3. Suppose that ~_CAB= 120 °. Then ~ ( B C ) A B = 6 0  ° (see Fig. 4). 

Proof The four points A, B, (BC), and C are cocircular. Hence ~ ( B C ) A B  = 
~ C A ( B C )  = 60 ° by noting that ~_BC(BC) is equilateral. []  

Lemma 4. Let A B C D  be a quadrilateral with ~_A + ~ C >- 180 ° (see Fig. 5). Then 
~_ CAB >- ~.CDB (equality is attained only when ~ A  + ~.C = 180°). 

Proof ~_A + ~ C >- 180 ° implies that A is on or inside of the circle circumscribing 

ABCD.  Hence ~ C A B  >- ~_CDB. [] 

A 

B 

C 

(BC) 

Fig. 4. [A, (BC)] divides z~A, 
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C 

B 
B 

Fig. 5. ~CAB>~CDB. 

D 

Let T~, i c {A, B, C, D}, denote the Steiner tree for {A, B, C, D} with exactly 
one Steiner point and that Steiner point is not adjacent to i. 

Lemma 5. Suppose that in the quadrilateral ABCD ~ A  >_ 120 ° and KB >-120 °. 
Then the length of any Steiner tree for {A, B, C, D} with a single Steiner point is 
longer than d[(AB), (CD)] .  

Proof. It is easily shown that Tc and To do not exist. TB has length d[A, (CD)] + 
d[A, (AB)] and TA has length d[B, (CD)]  + d[B, (AB)]. Both are greater than 
d[(AB), (CD)]  by triangle inequality. [] 

3. The Existence o f  a Ful l  Steiner Tree 

Theorem 6. Necessary and sufficient conditions for the existence of the A D - B C  
tree (Fig. 6) are: 

(i) The quadrilateral ABCD is convex. 

DA) 

C 

/ D A 

(BC) 

B 

Fig. 6. The A D - B C  tree. 
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(ii) Z~ DA ( BC ) , ~ ( BC ) DA, ~ ( A D ) BC, and ~. BC ( A D ) are all less than 120 °. 
(iii) ~ A O D  < 120 °. 

Proof. The necessity of (i) follows from Theorem 1. Assuming condition (i) is 
satisfied, we show that conditions (ii) is necessary and sufficient for [(DA), (BC)]  
to lie inside the polygon (DA)AB(BC)CD.  It is easily seen that [(DA), (BC)] 
lies below [(DA), D] if and only if Z.(BC)DA < 120 °. Similar statements can be 
made for the other three angles. But [(DA), (BC)] lying below [(DA), D] and 
[(BC),  C], and lying above [(DA), A] and [(DA), B] implies that [(DA), (BC)] 
lies inside the polygon (DA)AB(BC)CD.  

Finally we show that if ABCD satisfies (i) and (ii), then the A D - B C  tree 
exists if and only if ~.AOD < 120 °. Suppose that the A D - B C  tree exists. Since 
[D, sl] is parallel to [B, s2], si and s2 must lie on different sides of [D, B]. 
Similarly, they must lie on differeent sides of[A, C]. In other words, sl lies within 
Z~AOD and s2 lies within ABOC. Hence ~,AOD<~As~D= 120 °. 

Next suppose that ~ A O D  < 120 °. Without loss of generality assume that O 
lies below [(DA), (BC)] and let [(DA), (BC)] cross [D, O] and [C, O] at U and 
V, respectively (see Fig. 7). We will show that either ~.AUD<_ 120 ° or ~.CVB < 
120 °. Suppose, say, 4CVB<120  °. Then the circle circumscribing A B C ( B C )  
intersects [(DA), (BC)] at a point to the left of V. Since ~,AVD < ~ A O D  < 120 °, 
the circle circumscribing A A D ( D A )  intersects [(DA), (BC)] at a point to the 
right of V. By Melzak's construction the A D - B C  tree exists. 

Let Y be a point on [O, D] such that 2¢AYD-- 120 ° and let X be a point on 
[O, C] such that 2¢CXB = 120 °. Connect (DA) and Y, Y and X, X and (BC) 
(see Fig. 8). By Lemma 3 Z , ( D A ) Y D = ~ , C X ( B C ) = 6 0  °. Hence 

~ ( B C ) X Y +  ~ .XY(DA)  = (BC)XO + (&OXY+ &XYO) + &OY(DA)  

< 120°+ 120°+ 120°= 360 °. 

It follows at least one of  the points X and Y lies above [(DA), (BC)]. Without 
loss of generality assume it is X. Then 2£CVB< ~ CX( B) =  120 °. The proof is 
complete. [] 

C D 

(BC) 

B A 

Fig. 7. V is to the left of U. 

(DA) 
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C D 

B A 

Fig. 8. ~_BVC < ~BXC = 120 °. 

Corollary 1. I f  ~ C + ~ D  >- 240 °, then the AD-BC tree does not exist. 

Proof. Without loss of generality assume ~D->  120 °. Then 

~(BC)DA= ~_D-~_CD(BC)> ~ D - { 1 8 0 ° - ( ~ C  +60)}>-120 °. 

Corollary 2. I f  ~ C + ~D > 300 °, then the spanning tree consisting of the three 
edges [D, A], [C, D] and [B, C] is the SMT. 

Proof. From Corollary 1 the AD-BC tree does not exist. Extend [A, D] and 
[B,C] to meet at E. Then ,~C+~_D->300 ° implies that ~_E->120 °. There- 
fore ~.BOA>~-E>-120 °. Hence the AB-CD tree does not exist. Nor  can 
an SMT contain a single Steiner point since any three points of  {A, B, C, D} 
contain an angle of  at least 120 °. So the SMT must be a minimal spanning 
tree. Finally, it is easily verified that d[A, B]>max{d[A, C], d[B, D]}>  
max{d[D,  A], d[C, D], d[B, C]}. [] 

4. Can the Obtuse Full Steiner Tree Be an SMT? 

We give an example which answers the question posed in the heading in the 
affirmative. 

Let ABCD be a convex polygon such that ,~A = ~.B :> 120 °, d[A, D] = d[B, C],  
~(CD)AB = ~AB(CD) < 120 ° and ~_BOA = 90 ° (the existence of such a polygon 
is without question). By Theorem 6 and Corollary 1 the AB-CD tree exists but 
not the AD-BC tree. By Theorem 5 the AB-CD tree is the SMT. It is clear that 
by a continuity argument we can increase d[A, B] by a tiny amount  such that 
~BOA>90 ° but nothing else is changed qualitatively. Hence the AB-CD tree 
is the SMT. 

Next we give some sufficient conditions under which the obtuse full Steiner 
tree can be ruled out as an SMT. 

Theorem 7. Suppose that ~.A->120°, ~B->120 °. Construct [ A , D ' ]  and [B,C'] 
such that KD'AB = ~ABC'= 120 °, d[A, D] = d[A, D'] and d[ B, C] = d[ B, C']. 
Let [ A, C'] and [13, D'] intersect at 0'. If  ~_BO'A > 90 °, then the spanning tree 
consisting of the three edges [A, D],  [A, B], and [ B, C] is the SMT. 
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C' 

\ D 

l \ \ \ B  / !  

I \ 

" 
I B) 

F 

Fig. 9. The d[(AB),(CD)] is minimized a t / 3 = 0  °. 

Proof. From Corollary 2 of Theorem 6 we need only consider the case 4A + ~.B < 
300. Construct equilateral triangles AB(AB) and (AB)CF. Define LB(AB)C  = c~, 

C'BC =/3, and ~ D ( A B ) B  = y, where 0 ° -  < a < 60 °, 0 ° ---/3 < 180 ° - LA, and 60 ° --- 
" /<90 ° (see Fig. 9). We first show that for ~_A-> 120 ° fixed, d[D, F] achieves a 
minimum at/3 = 0: 

d2[ D, F] = d2[ D, (AB)] + d2[C, (AB)] 

- 2d[D, (AB)]d[ C, (AB)] cos(y + 60°+ a) 

= d2[D, (AB)]+d2[B, C]+d2[B, (AB)]+2d[B, C]a[n, (AB)] cos/3 

-2d[D,  (AB)]d[C, (AB)]{cos(y + 60 °) cos a - s i n ( y +  60 °) sin a} 

But 

sin a = d[B, C] sin/3/d[C,  (AB)] 

and 

J" d2[C, (AB)]-a2[  B, C] sin2 ~ ' / 2  = d[ B, C] cos/3 + d[ B, (AB)] 
c o s  oL [ d2[C, (AB)] J d[C, (AB)] 

Therefore 

d2[D, F] = d2[D, (AB)]+d2[B, C]+d2[B, (AB)] 

+2d[B,  C]{d[B, (AB)] cos/3 - d[D, (AB)] cos(~/+ 60°+/3)} 

-2diD, (AB)]d[B, (AB)] cos(v + 60°). 

Define 

Then 

f(/3) = d[B, (AB)] cos/3 - d[D, (AB)] cos(y + 60°+/3). 

f ' ( 3 )  = -d[B,  (AB)] sin/3 + diD, (AB)] sin(y +60°+3) .  
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Noting that f(/3) is a positive trigonometric function, 

f"(/3 ) = -f(/3 ) < O. 

Hence f(/3) achieves its minimum at one of its two extreme values, i.e., 13 =0  ° 
or/3 = 180°-~_A. 

But 

f (180°-~A)- f (O °) 

= d[ B, (AB)]( - cos 2LA) + diD, (AB)] cos(y + 60 ° -  6A) 

- d[ B, (AB)] + d[D, (AB)] cos( 3' + 60 °) 

= - d [  B, (AB)](I '+ cos2LA) + d [ D, (AB)]{cos(3" + 60 ° - ,~A)  + cos(3, + 60°)} 

= -d[B, (AB)]2 cos 2 y +  diD, (AB)]2 cos 23' + 120°2 - ~_A cos 2LA2 

= 2 cos ~ {d iD,  (aB)]c°s23'+120°-~A2 d[B, (AB)] c o s - ~ }  > 0 

since 

and 

implies 

dED, (AB)] > dEB, (AB)] 

-0 ~_A 2 T + 1 2 0 ° - ~ A  
U >  > ' > O  

2 2 

cos 23, + 120 ° -  4A > cos2fA 
2 2 

Similarly, we can show that for 2LB_> 120 ° fixed, d[D, F] achieves a minimum 
when D=D'.  Combining the two arguments we conclude that d[D, F]>- 
diD', F'], where F ' =  (C', (AB)). Let T be a Steiner tree for {A, B, C, D} having 
at least one Steiner point. By Theorem 6 T is not the AD-BC tree. Furthermore, 

length of T>-d[D, F] 

>_ diD', F'] = d[(AB), (C'D')] 

>_ d[ ( AD'), (BC')] 

=d[A, D']+d[A, B]+d[B, C'] 

=d[A, D]+d[A, B]+d[B, C]. 

by Lemma 5 

by Lemma 2 
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D t 

t I / "  

C ' .  , , " "  I I . . . . f  D 

x . ,  , ,  1 / /  

B A 

Fig. 10. , 5 , B O ' A - 9 0 ° > - ~ _ B O A - ( 2 L A + ~ B  - 150°). 

Hence the SMT for {A, B, C, D} is the minimal spanning tree. But all spanning 
trees other than the one given in Theorem 7 contain an angle o f  less than 120 ° 
and hence cannot  be an SMT. The p roof  is complete.  [ ]  

Corollary. Suppose that 2£A-> 120 °, 4 B > - 1 2 0  °, and ~ . B O A > ~ A + ~ . B - 1 5 0  °. 
Then the spanning tree given in Theorem 7 is the S M T  (Fig. 10). 

Proof Note that  

2fAD'D = ~.D'DA = 90 ° - ~_DAD'/2 > 60 °. 

Hence 4 A  + 2fBD'D > 180 ° in the quadrilateral ABD'D. By Lemma 4 ~DBD'<_ 
2LDAD'. Similarly, we can prove ~,C'AC <-~_C'BC. It follows 

~ B O ' A  - 90 ° = 4 B O A  - ~_DBD' - ~.C'AC - 90 ° 

>- ~ BOA - ~_DAD' - 2~ C' BC - 90 ° 

= ~BOA - ( ~ A  + 2LB - 150 °) [] 

T h e o r e m  8. Suppose that ~_A < 120 ° and ~(  DA) BC >-120 °. Construct [ B, C'] 
such that 2~(DA)BC'= 120 ° and d[B, C'] = d[B, C]. Let [A, C ' ]  and [B, D] 
intersect at 0' .  I f  ~_BO'A > 90 °, then an S M T  is either TA or Tc. 

Proof It is easily verified that every spanning tree contains an angle o f  less than 
120 ° and  hence cannot  be an SMT. Furthermore,  Ta and To do not exist by 
angle considerations,  and the A D - B C  tree does not exist by Theorem 6. Hence,  
if the A B - C D  tree does not exist, then Theorem 8 is trivially true. Therefore we 
may assume that  the A B - C D  tree T exists and intersects [B, C ' ]  at C*. In 
AC'C*C,  2fC'=2fBCC'>-~-C, hence d[C, C*]>-d[C ', C*]. Suppose that C is 
adjacent to the Steiner point  s in T. Let T' be obtained from T by substituting 
[C ' ,  s] for [C, s]. Then 

d[C, s] = d[C, C*] + d[C*, s] >- d[C', C*]  + d[C*, s] >- d[C' ,  s]. 



412 

Note  that T '  has the same topology as the A B - C ' D  tree. Hence 

d [ ( A B ) ,  ( C D ) ]  = length o f  T 

-> length o f  T' 

>- d [ ( A B ) ,  ( C ' D ) ]  

> d [ ( D A ,  BC' ) ]  by Lemma 2 

= length o f  Tc, 

= length o f  Tc. 

The p roof  is complete.  

Corollary. Suppose that  
~ _ ( D A ) B C - 3 0  °. Then an S M T  is either TA or To. 

Proof. 

~_BO'A - 90 ° = ~.BOA - ~ C ' A C  - 90 ° 

>- ~ B O A  - ~ . C ' B C  - 90 ° 

= ~ B O A  - ( ~ ( D A )  B C  - 120 °) - 90 ° 

= ~ B O A  - (Z~(DA)BC - 30°). 

D. Z. Du, F. K. Hwang, G. D. Song, and G. Y. Ting 

~ A  < 120 °, ~ ( D A ) B C  >- 120 °, and 

[] 

~ B O A  >- 

[]  

5. An Imbedding Property 

One may wonder  why we want to study the properties of  an SMT for three or 
four  regular points  since there are only a small number  o f  topologies and one 
can construct  all Steiner trees and compare  them without  too much difficulty. 
The merit o f  such study lies in the fact that Steiner trees for a large number  o f  
regular points can contain subtrees o f  three or  four  points and unders tanding 
the small trees can help us to understand the big trees. To make our  results on 
small trees more useful it is desirable to state the properties in as broad  a term 
as possible, The following theorem represents such an effort. 

Theorem 9. Let  A B C D  be a convex quadrilateral with ~ A  -> 120 °, ~ B  > 120 °, and 
~_BOA >- zf A + ~ B - 150 °. Let A ' B'  C '  D '  be a quadrilateral imbedded in A B C D  
with A' ,  B '  on [A,  B] and C' ,  D '  on [C, D]. Then an S M T  f o r  {A',  B',  C',  D'} 
cannot be full. 

Proof. Let [A' ,  C ' ]  and [B' ,  D ' ]  meet at O'. Then clearly, ~ B ' O ' A > - ~ B O A .  
Note  that  ~ A ' + ~ B ' = 2 ~ A + ~ B > - 2 4 0  °. By Corol lary 1 o f  Theorem 6 the 
A ' D ' - B ' C '  tree does not  exist. Without  loss o f  generality assume ~ B  '>- 120 °. 
I f  ,~_A ' >  - 120 ° also, then by Theorem 7 the A ' B ' - C ' D '  tree is not  an SMT. There- 
fore assume 4 A ' < 1 2 0  °. We now show that 4 ( D ' A ' ) B ' C ' > - 1 2 0  ° and 
~ _ B ' O ' A ' > 4 ( A ' D ' ) B ' C ' - 3 0  ° (Fig. 11). ~ . ( D ' A ' ) B ' C ' = , ~ . B - ~ A B ( D ' A ' ) =  

~ B - ( 1 8 0 ° - ~ _ A ' - 6 0 ° - ~ . B ( D ' A ' ) A ) >  ~ A + ~ B -  120 ° =  120 °. 
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Fig. 11. &B'O'A > &G'B'C' - 30 °. 

(D'A') 

Let  E be  a po in t  on  [B, C ]  such  that  [A ' ,  E ]  is para l le l  to  [A,  B].  Let  [ D ' ,  E ]  

cross  [A ' ,  C ' ]  at F. T h e n  

S ince  

we  h a v e  

H e n c e  

2fEFA' > K B O A  -> ~_A + ~.B - 150 ° = K D ' A ' B ' +  ~_A'B'C' - 150 °, 

2f( D ' A ' ) A ' E  = 60° + g ,D 'A 'E  >- 1 8 0 >  ~(  D 'A ' )A 'B ' ,  

~B ' (  D ' A ' ) A  ' < _ z~B'( D ' A ' ) E  

< ~_B' D' E 

since ~.A_> 120 ° 

by L e m m a  4. 

~ B ' O ' A '  = ~ D ' F O '  + ~ O ' D ' F  

= ~_EFA'+ ~ .B 'D'E 

> ~_D'A'B'+ 4 A ' B ' C '  - 150°+ ~ B ' (D 'A ' )A '  

= ,~ . (D 'A ' )A 'B ' -60°+  ~ . A ' B ' C ' -  150°+ ~_B'(D'A')A'  

= 180 ° -  2£A'B'(D'A')  + 2 £ A ' B ' C ' -  210 ° 

= ~ ( D ' A ' ) B ' C ' - 3 0  o. 

By the  co ro l l a ry  o f  T h e o r e m  8 an S M T  on the  f o u r  po in t s  {A',  B' ,  C ' ,  D'}  c a n n o t  

be  full .  [ ]  
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